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Abstract: The growing reliance on Large Language Models (LLMs) in 
knowledge-intensive tasks has led to the rapid adoption of Retrieval-Augmented 
Generation (RAG) as a strategy for improving factual grounding and domain 
adaptability. This review traces the evolution of RAG systems, from their roots in 
Information Retrieval (IR) and early Natural Language Processing (NLP) to 
current modular architectures that support dynamic reasoning and real-time 
knowledge integration. It categorizes key frameworks according to the specific 
challenges they target – such as retrieval precision, hallucination reduction, 
domain specialization, and interpretability – and analyzes how each addresses 
recurring failure modes in real-world applications. Through a comparative lens, 
the paper highlights both the fragmented nature of current solutions and the need 
for more unified, self-aware designs. Evaluation frameworks, including RAGAS, 
RGB, and PaSSER, are discussed in light of these gaps. Based on this analysis, 
the review outlines core directions for future research, emphasizing the 
importance of real-time retrieval validation, sentence-level attribution, failure 
correction mechanisms, and adaptable query rewriting. The findings suggest that 
RAG research is entering a phase of consolidation, where system reliability, 
transparency, and domain robustness will define progress more than generative 
fluency alone. 

Keywords: Artificial Intelligence, Information Retrieval, Large Language 
Models, Natural Language Processing, Retrieval-Augmented Generation 

1. Introduction  
The landscape of software engineering and AI is experiencing unprecedented 
changes driven by the rapid progress in LLMs. These models, powered by deep 
learning architectures – particularly transformer-based neural networks – have 
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revolutionized various NLP tasks, including machine translation, content 
generation, and conversational systems. Their extraordinary ability to understand, 
generate, and contextualize human language has significantly impacted fields 
such as healthcare, finance, education, and technology. 

Nevertheless, traditional LLMs struggle with static knowledge, high 
computational demands, and limited adaptability to evolving information. To 
overcome these limitations, RAG has appeared as a method that dynamically 
retrieves external knowledge before generating responses, ensuring greater 
contextual relevance. 

RAG systems enhance the capabilities of traditional LLMs by softening the 
risks of knowledge hallucinations and inaccuracies, offering improved 
transparency and traceability of generated content. Although these systems have 
demonstrated remarkable potential, they also introduce novel complexities 
regarding retrieval precision, heterogeneous data integration, and computational 
overhead.  

In addition to tracing key milestones that led to the rise of RAG, this review 
employs a comparative approach, examining the capabilities and limitations of 
representative RAG frameworks across diverse use cases. By highlighting 
influential architectures, exploring prevailing challenges, and evaluating existing 
approaches through practical lenses, the discussion provides a clearer picture of 
RAG's evolution and real-world performance. Furthermore, by outlining 
theoretical foundations and practical implications, this review aims to guide future 
research directions, fostering improvements that support more efficient, 
transparent, and reliable knowledge-driven applications. 

2. Beginning: First steps 
The foundations of RAG are deeply rooted in historical developments within IR 
and NLP. To better trace how these innovations converged, it is helpful to group 
the seminal work and technical breakthroughs into four categories: basic indexing 
and data organization, formal IR evaluation and early IR–NLP fusion, advanced 
semantic retrieval and NLP methods, large-scale IR–NLP integration and modern 
embedding-based developments. Table 1 summarizes these categories of 
innovation and their impact on the evolution of RAG systems. 

The first set of advancements focused on fundamental methods for indexing 
and organizing textual data, thereby laying a foundation for large-scale retrieval. 
Memex [1], pioneered the notion of linking information through associative trails, 
effectively prefiguring modern hypertext navigation by allowing users to create 
and traverse context-rich connections among documents. Around the same time, 
statistical text analysis [2] advanced beyond manual indexing by applying word-
frequency counts and distributional patterns to large textual corpora, 
systematically measuring how terms co-occur or spread across documents.  
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Table 1. Key Technological Milestones Contributing to the Development of RAG 

Category Key 
Advancements Contribution to RAG Development 

Basic Indexing 
and Data 
Organization 

Memex, 
Statistical Text 
Analysis, KWIC 
Indexing 

Laid the groundwork for efficient large-scale 
retrieval of information, a fundamental 
requirement for RAG systems to access and 
utilize external knowledge. 

Formal IR 
Evaluation and 
Early IR–NLP 
Fusion 

Cranfield Studies, 
BASEBALL 
System 

Established methods for evaluating retrieval 
effectiveness and demonstrated early attempts 
to use natural language for querying, paving 
the way for more sophisticated query handling 
and evaluation in RAG. 

Advanced 
Semantic 
Retrieval and 
NLP Methods 

TF-IDF, Vector 
Space Models, 
Word2Vec 

Enabled retrieval based on semantic similarity 
rather than just keywords, and provided 
methods for understanding the meaning of text, 
which are crucial for selecting relevant context 
to augment generation in RAG. 

Large-Scale IR–
NLP Integration 
and Modern 
Embeddings 

IBM Watson, 
Transformers, 
Dense Passage 
Retrieval, GPT 
Series 

Showcased the integration of retrieval and 
generation at scale, and provided the powerful 
embedding techniques and fluent generative 
models that are the core components of modern 
RAG systems. 

 
This data-driven approach enabled more objective methods of categorizing 

and retrieving information, as it drew on quantifiable evidence rather than 
subjective classifications. Another significant innovation, Key Word in Context 
(KWIC) indexing [3], automated the extraction of localized snippets around each 
keyword, expediting relevance assessments with concise, context-rich summaries. 
Meanwhile, the WRU Searching Selector [4] devised by Kent and Rees employed 
rods or channels to physically filter and retrieve documents based on selected 
attributes, while Mooers's edge-notched cards [5] allowed users to "notch" card 
edges to indicate indexing categories and quickly isolate relevant items. By 
introducing systematic, semi-automated approaches to identifying pertinent data, 
these early developments laid a solid groundwork for the large-scale and 
integrated retrieval techniques now fundamental to retrieval-augmented 
generation. 

A second cluster of advancements revolved around formalizing evaluation 
metrics and incorporating elementary language-processing techniques into IR. 
One notable example was the BASEBALL system [6], which used basic parsing 
rules and pattern matching to interpret domain-specific queries, thus illustrating 
how natural language input could successfully drive search and retrieval. 
Meanwhile, Cyril Cleverdon's Cranfield studies [7] solidified the importance of 
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standardized performance metrics – namely precision and recall – transforming 
retrieval from an ad hoc process into a more scientific discipline. By quantifying 
how effectively a system retrieved relevant documents while filtering out 
irrelevant ones, these metrics became indispensable benchmarks for evaluating IR 
approaches. Linking data retrieval with simplified natural language processing 
and systematically measuring retrieval quality ultimately laid essential 
groundwork for future architectures that merge retrieval with generative 
capabilities. 

Third group of advancements revolved around deepening the semantic 
understanding of queries and documents, enabling more flexible and context-
aware retrieval strategies. Between the 1970s and 1990s, IR advanced well beyond 
basic Boolean methods, placing renewed emphasis on how linguistic nuances 
affect both user queries and underlying content. Winograd's natural language 
understanding systems [8] introduced context-aware parsing, leveraging syntactic 
and situational cues—such as grammatical relationships and anaphoric 
references—to interpret queries more accurately. Around the same time, Spärck 
Jones's Term Frequency–Inverse Document Frequency (TF-IDF) algorithm [9] 
applied statistical weighting, giving terms that appear frequently in a single 
document but rarely throughout an entire corpus greater significance. This 
approach guided retrieval engines toward more discriminative keywords. In 
parallel, domain-specific frameworks like LUNAR [10] highlighted how rule-
based NLP methods could employ explicit grammar rules and specialized lexicons 
to handle queries in specialized fields, such as geological data. Building on these 
insights, vector space models [11] placed both queries and documents in a high-
dimensional space, where each dimension corresponded to a term or feature, 
thereby enabling similarity measures (e.g., cosine similarity) that surpassed 
simple keyword overlap. Although these methods led to more conversational 
interfaces by the late 1980s and 1990s, scaling them across diverse domains 
remained challenging, ultimately motivating the flexible retrieval-generation 
paradigms that define modern RAG systems.  

Finally, fourth category dealt with large-scale systems that integrated or 
further refined these earlier ideas, leading to the emergence of prototypes that 
blended retrieval and generation in a manner akin to modern RAG systems. An 
early exemplar was IBM Watson [12], whose DeepQA pipeline decomposed 
complex queries, retrieved evidence from both structured and unstructured data, 
generated possible answers, and then ranked these answers based on confidence 
scores.  

Fig. 1, follows a multi-step pipeline consisting of query decomposition, 
hypothesis generation, supporting evidence retrieval, and final answer ranking.  
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Fig. 1. DeepQA High-Level Architecture, illustrating Watson’s pipeline for evidence 

retrieval and answer generation. Reprinted from [12] 

Despite its successful performance on the quiz show Jeopardy!, Watson 
encountered scalability and real-time integration challenges, prompting further 
exploration into more modular retrieval-generation designs.  

Subsequent advancements included Word2Vec [13], which produced 
continuous vector embeddings to represent semantic relationships between words. 
This technique moved beyond mere keyword overlap by evaluating conceptual 
similarities among terms. Building on such embedding methods, transformer 
architectures [14] introduced an attention-based mechanism for parallelizing the 
processing of sequences, allowing all tokens within a sentence to be analyzed in 
tandem. This not only sped up training compared to purely sequential models, but 
also enhanced the ability to capture intricate context and dependencies. 

For retrieval tasks, Dense Passage Retrieval (DPR) [15] expanded on the 
embedding idea by placing queries and documents in a shared high-dimensional 
space, thereby matching textual content based on semantic affinity rather than 
strict keyword alignment. On the generative side, models like the GPT series [16] 
achieved unprecedented fluency in synthesizing text by leveraging large-scale 
transformer architectures trained on extensive text corpora. Specifically, these 
models learned language patterns from billions of tokens spanning diverse 
domains, so that each token in a sequence could be generated with an awareness 
of the surrounding context. 

Taken together, the above categories illustrate the evolution of retrieval and 
language understanding techniques, from rigid keyword matching to semantically 
rich, context-aware systems. This progression laid the theoretical and technical 
foundation for RAG. Building directly on decades of IR and NLP innovation, 
RAG emerged as a practical response to the limitations of traditional language 
models – especially their inability to access up-to-date or verifiable information. 
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3. RAG 
The RAG framework was formally introduced in 2020 by Facebook AI Research 
(now Meta AI) in the foundational study Retrieval-Augmented Generation for 
Knowledge-Intensive NLP Tasks [17]. It integrates information retrieval directly 
into the generative process, addressing key limitations of traditional LLMs, such 
as reliance on static training data, lack of source attribution, and a tendency to 
produce fluent but inaccurate outputs – commonly known as hallucinations. 

Unlike conventional models that encode all knowledge within their 
parameters, RAG separates retrieval and generation. At inference time, it 
dynamically retrieves relevant external documents – typically from Wikipedia – 
which condition the response. This approach improves factual accuracy, enables 
transparency, and supports domain adaptation without retraining. 

RAG consists of two main components: a retriever and a generator. The 
retriever uses DPR, a neural method that converts both queries and documents 
into high-dimensional vectors (dense embeddings) using transformer encoders 
based on the Bidirectional Encoder Representations from Transformers (BERT) 
architecture. BERT processes text bidirectionally—capturing context from both 
the left and right of each word—enabling rich semantic representations ideal for 
similarity-based retrieval. 

Relevant documents are identified via Maximum Inner Product Search 
(MIPS), a technique that ranks documents by computing the inner product 
between their embeddings and the query vector. To maintain efficiency at scale, 
MIPS is typically implemented using approximate nearest neighbor (ANN) 
algorithms. 

The generator component is based on the Bidirectional and Auto-Regressive 
Transformers (BART) architecture, which combines a bidirectional encoder and 
an auto-regressive decoder. This hybrid design captures deep contextual 
relationships while generating fluent responses token-by-token. BART operates 
within a sequence-to-sequence (seq2seq) framework—originally developed for 
machine translation—which transforms an input sequence (query + retrieved 
passages) into a coherent, evidence-based output. This design enables RAG to 
synthesize responses that are both contextually grounded and factually verifiable. 

Fig. 2 provides a high-level overview of the RAG architecture, illustrating 
the integration of dense retrieval and generative language modeling within an end-
to-end framework. The retriever module, denoted as 𝑃𝑃𝑛𝑛1, encodes the input query 
into a dense vector representation and retrieves the most semantically relevant 
documents from an external knowledge base using MIPS. This retrieval process, 
grounded in vector similarity rather than keyword matching, facilitates context-
aware document selection. 
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Fig. 2. Overview of the RAG Architecture, illustrating the integration of dense retrieval 

and generative language modeling. Reprinted from [17]. 

The retrieved documents are subsequently passed to the generator module, 
denoted as 𝑃𝑃𝜃𝜃, which synthesizes a coherent and contextually grounded response 
by incorporating information from multiple sources. This multi-passage 
integration step reduces dependence on any single document, thereby improving 
factual consistency and resilience to retrieval noise. Additionally, the figure 
demonstrates RAG's flexibility across a range of downstream tasks, including 
question answering, fact verification, and open-ended generation, underscoring its 
capacity to produce well-grounded outputs in knowledge-intensive applications. 

By embedding retrieval directly into the generation process, RAG helped 
reduce hallucinations and improved output traceability. Its use of external corpora 
also enabled seamless updates—new knowledge could be incorporated by 
refreshing the retrieval index, without retraining the model. 

However, RAG’s reliance on sources like Wikipedia also introduced risks 
of bias or misinformation. These concerns underscore the ongoing need for more 
selective and reliable retrieval strategies. Still, RAG laid the groundwork for a 
new generation of retrieval-aware language models. 

4. Enhancing RAG: Key Innovations and Their Targets 
Following its initial release, RAG underwent a series of substantial enhancements 
aimed at improving retrieval precision, generative accuracy, interpretability, and 
computational efficiency. As the field matured, research shifted from foundational 
development to more focused improvements, each addressing a specific limitation 
of the original framework. These improvements span a wide range of goals, from 
architectural efficiency to grounding factuality.  

Table 2 presents a functional overview of the advancements, organized by 
the core challenges they were intended to solve. 

 



39 

Table 2. Functional Categorization of Recent RAG Advancements 

Focus Area Objective 

Architectural Efficiency and 
Scalability 

Reduce computational cost, improve inference speed, 
and support real-time applications 

Data-Centric Optimization Improve training quality through noise reduction, 
sampling, and data selection techniques 

Knowledge Integration 
(Structured and 
Unstructured Sources) 

Combine symbolic and neural retrieval to access 
diverse knowledge representations 

Domain Adaptation and 
Specialization 

Enable RAG systems to perform well in specialized 
domains or narrow knowledge fields 

Iterative Retrieval and Self-
Refinement 

Introduce mechanisms for multi-step reasoning, 
response revision, or feedback-based retrieval 

Multimodal Extension Expand RAG to operate across multiple input 
modalities, such as text and images 

Few-Shot and Low-
Resource Enhancement 

Improve generalization with limited training data 
through retrieval-enhanced few-shot learning 

Factual Verification and 
Grounding 

Reduce hallucinations and improve transparency by 
anchoring outputs in verifiable sources 

4.1. Architectural Efficiency and Scalability 
One of the earliest and most impactful enhancements to the RAG architecture was 
the introduction of FiD-Light [18], a computationally efficient variant of the 
Fusion-in-Decoder (FiD) model. In the original FiD architecture, multiple 
retrieved documents are concatenated and passed jointly through a decoder, 
enabling the model to synthesize responses that integrate information from diverse 
sources. While effective in terms of output quality, this design introduces 
considerable computational overhead, as the decoder must attend uniformly to all 
tokens across all retrieved passages. 

FiD-Light addresses this bottleneck through two key innovations: selective 
attention mechanisms and source pointer strategies. The selective attention 
mechanism allows the model to dynamically filter and prioritize only the most 
relevant segments from the retrieved passages. This focused attention reduces 
unnecessary computation and minimizes the influence of irrelevant or noisy 
content, thereby improving efficiency without sacrificing performance. In 
parallel, the source pointer strategy tracks the provenance of information used 
during generation, preserving alignment between generated content and its 
evidence source. This enhances interpretability and helps mitigate hallucination, 
especially in fact-sensitive applications. 
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As illustrated in Fig. 3, FiD-Light demonstrated state-of-the-art 
performance on the Knowledge-Intensive Language Tasks (KILT) benchmark 
[19], significantly outperforming prior RAG models in retrieval precision, 
response fluency, and computational efficiency. These results marked a step 
toward making retrieval-augmented generation suitable for real-time and 
production-scale deployment. 

 

 
Fig. 3. Performance evaluation of FiD-Light across the Knowledge-Intensive Language 
Tasks (KILT) benchmark, demonstrating improved accuracy and efficiency. Reprinted 

from [18].  

To support more structured and context-aware retrieval, LightRAG [20]  
introduced a graph-based architecture that organizes knowledge into entity-
relationship graphs, moving beyond flat document representations. This structure 
encodes semantic relationships between entities, enabling the retriever to preserve 
logical flow and improve coherence across documents. Unlike standard dense 
retrievers that rely solely on vector similarity, LightRAG uses graph topology to 
guide retrieval toward semantically connected content – especially effective in 
multi-hop reasoning tasks requiring evidence from multiple sources. Evaluations 
on different datasets showed notable gains in retrieval recall, answer accuracy, 
and factual grounding. Its design also supports dynamic knowledge expansion, 
making it suitable for real-time applications with frequently updated corpora. 

Extending this line of innovation, Auto-RAG [21] introduces a self-
optimizing architecture that autonomously adjusts its internal retrieval and 
generation components without requiring manual intervention. Traditional RAG 
implementations often depend on fixed retrieval-generation pipelines or require 
labor-intensive fine-tuning to adapt to new domains or data conditions. In contrast, 
Auto-RAG is designed to monitor its own performance during inference and make 
real-time adjustments to its operational strategy. This is achieved through self-
supervised feedback loops, in which the system evaluates the quality of its 
generated outputs – based on internal consistency checks, retrieval relevance 



41 

scores, or proxy supervision signals – and uses this feedback to iteratively refine 
both retrieval selection and generative behavior. 

This capacity for real-time self-adjustment makes Auto-RAG particularly 
valuable in high-stakes or constantly evolving environments, such as customer 
support systems, technical documentation assistants, and large-scale knowledge 
access platforms. In these contexts, models must handle unpredictable user input 
and rapidly changing information without the latency or overhead of human-
guided retraining. 

While architectural innovations such as FiD-Light, LightRAG, and Auto-
RAG significantly enhanced the efficiency, scalability, and modularity of RAG 
systems, improvements in model architecture alone are not sufficient to ensure 
robust performance across diverse tasks and domains. As RAG systems rely 
heavily on large and often heterogeneous datasets, the quality of the training data 
becomes a critical determinant of retrieval relevance and generation accuracy. 
Consequently, the efforts have turned toward data-centric strategies aimed at 
minimizing noise, enhancing supervision signals, and improving generalization 
without the need for extensive manual tuning.  

4.2. Data-Centric Optimization 
Unlike architecture-driven solutions that focus on design improvements or 
parameter tuning, data-centric methods aim to enhance how models learn by 
selecting, filtering, and weighting training examples to reduce noise – especially 
in multi-task and low-resource scenarios where inconsistent data hampers 
generalization. 

A key contribution here is Relevance Sampling [22], which addresses 
training quality by assigning confidence scores to examples based on model 
uncertainty, retrieval relevance, or internal consistency. Low-confidence 
examples are excluded, allowing the model to learn from cleaner, more 
informative data. This approach is task-agnostic, applicable across domains, and 
has been shown to improve generalization, reduce hallucination, and stabilize 
convergence in knowledge-intensive tasks. 

Complementing this, Speculative RAG [23] introduces a two-stage 
generation strategy: an initial speculative draft is produced, then refined through 
retrieval-informed verification. The second phase re-checks evidence and corrects 
or strengthens claims, inspired by human reasoning. This process filters out 
unsupported content and improves factual grounding and fluency. 

Together, these techniques reflect a shift toward self-aware learning, where 
models not only train on higher-quality data but also refine their outputs 
dynamically. They mark a broader trend in data responsibility, acknowledging 
that robust reasoning requires disciplined interaction with data – not just better 
architectures. 
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While these strategies improve how RAG systems learn, another emerging 
priority is broadening what they can learn from. Early RAG systems mostly used 
unstructured text (e.g., Wikipedia), but real-world applications increasingly 
demand access to heterogeneous sources – like knowledge graphs, relational 
databases, and metadata-enriched corpora. The following section explores hybrid 
retrieval methods that combine neural and symbolic techniques. 

Evaluations of these hybrid strategies demonstrate improved retrieval 
accuracy and reduced hallucinations, particularly when structured sources such as 
knowledge graphs are integrated with unstructured text [24]. 

4.3. Knowledge Integration (Structured and Unstructured Sources) 
A key challenge emerged as RAG systems evolved: integrating structured 
knowledge sources – such as knowledge graphs, relational databases, and 
ontologies – alongside traditional unstructured text. While free-text corpora like 
Wikipedia are common in early RAG setups, many applications demand 
information organized by entities, attributes, and relationships, which offer greater 
precision and verifiability.  

GraphRAG [25] is a leading approach to structured knowledge integration 
in RAG systems. As shown in Figure 5, it converts unstructured documents into 
entity-relationship graphs using LLM-based entity recognition and relationship 
extraction during indexing. This organizes content into semantically coherent 
clusters, improving interpretability and retrieval precision. 

 

 
Fig. 5. GraphRAG pipeline illustrating the transformation from source documents into structured 
knowledge graphs, applying community detection and query-focused summarization. Reprinted 

from [25]. 
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To refine structure, community detection algorithms segment the graph into 
subgraphs that capture domain-specific relationships. At inference time, these 
subgraphs act as targeted retrieval units, enabling query-focused summarization 
and domain-aware responses. By parallelizing retrieval and summarization during 
both indexing and inference, GraphRAG enhances efficiency and relevance. 

A major advantage of this architecture lies in its separation of knowledge 
structuring from retrieval execution, allowing for greater modularity, scalability, 
and specialization. GraphRAG performs intermediate structuring and refinement, 
leading to more coherent, contextually grounded, and non-redundant outputs. This 
architectural distinction reflects the broader principles of Modular RAG, enabling 
more interpretable and adaptable systems – particularly useful in complex, 
evolving knowledge environments that demand high factual precision and 
contextual depth. 

In addition to graph-based retrieval, researchers have developed hybrid 
approaches [26] that combine dense vector search with symbolic querying and 
structured data. These systems aim to blend the semantic flexibility of neural 
retrieval with the precision and traceability of structured queries. Common 
techniques include SPARQL-style queries – structured formats similar to the 
SPARQL protocol [27] used for querying knowledge graphs – along with 
metadata tagging, schema alignment, and post-retrieval reranking. These methods 
incorporate entity types, ontological links, and domain filters to improve retrieval 
relevance and reduce noise. 

By fusing symbolic and neural retrieval, RAG systems can pull from both 
unstructured text and structured knowledge bases, producing more grounded and 
interpretable outputs. This hybridization is especially beneficial in domains like 
biomedicine, finance, and law, where information is complex and factual accuracy 
is paramount. 

However, hybrid strategies alone may not suffice for domain-specialized 
tasks. Real-world applications also demand systems that adapt to specific 
terminologies, citation styles, and data structures. To meet these needs, recent 
RAG architectures now incorporate custom pipelines, modular design, and 
iterative refinement to better serve specialized contexts. 

4.4. Domain Adaptation and Specialization 
While general-purpose RAG systems perform well on open-domain benchmarks, 
they often struggle when applied to specialized domains such as biomedical 
research, legal analysis, or technical documentation.  

One of the most impactful frameworks designed to support domain 
adaptation in RAG is RaLLe [28], a modular and extensible research environment 
that facilitates systematic evaluation and fine-tuning of RAG pipelines. RaLLe 
allows researchers to interchange retrieval components, without requiring 
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architectural overhaul, enabling efficient experimentation across tasks and 
domains. Its modular design supports custom ranking mechanisms, query 
expansion strategies, reranking models, and fusion techniques, making it well-
suited for tailoring RAG systems to the nuanced requirements of specialized 
fields. 

A key feature of RaLLe is its integrated benchmarking suite, offering 
preconfigured workflows for datasets like Natural Questions, TriviaQA, and 
HotpotQA. This enables direct comparison of retrieval-generation strategies. 
RaLLe also supports diverse knowledge sources – structured databases, 
unstructured corpora, and multimodal inputs – making it suitable for domains such 
as biomedicine, law, and finance. Its domain-specific configurations allow for 
fine-tuning of retrieval depth, query reformulation, and reranking logic, 
optimizing performance for multi-hop, long-form, and fact-sensitive tasks. With 
standardized metrics like retrieval recall, relevance precision, and factual 
grounding, RaLLe facilitates rigorous and reproducible evaluation. As an open-
source framework, it also promotes collaborative development and real-world 
RAG deployment. 

Similarly, PaperQA [29], is a domain-focused RAG system tailored for 
scientific literature synthesis. PaperQA ensures all answers are explicitly 
grounded in scientific references, which is crucial for citation accuracy and 
evidence traceability in academic settings. Its pipeline follows three steps: search 
via academic APIs and structured repositories, evidence gathering using 
Maximum Marginal Relevance (MMR) and vector retrieval, answer generation 
with citation-aligned synthesis. 

This process delivers both fluency and verifiability, making PaperQA 
highly effective in research-intensive applications. As illustrated in Figure 6, 
PaperQA's architecture includes dynamic evidence refinement based on LLM-
driven relevance scoring. Retrieved document chunks are scored and re-ranked 
iteratively, and only the most reliable are passed to the generation module. This 
approach reduces misinformation and reinforces citation accuracy. 

Empirical results on biomedical benchmarks such as PubMedQA and 
LitQA confirm PaperQA's superior performance in handling domain-specific 
queries. Its success underscores the growing importance of targeted RAG 
pipelines in fields that demand factual rigor and domain expertise.  

Beyond academia, similar domain-adaptive RAG systems are gaining 
traction in enterprise knowledge management. For example, legal and financial 
institutions increasingly rely on hybrid retrieval pipelines that combine structured 
documents – such as earnings reports or legal filings – with unstructured 
commentary, enabling more informed decision-making, compliance monitoring, 
and risk assessment. 
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Fig. 6. Workflow diagram illustrating the PaperQA retrieval-augmented generation process 

tailored specifically for scientific literature. Reprinted from [28]. 

4.5. Iterative Retrieval and Self-Refinement 
While domain-specific customization improves relevance and precision, many 
knowledge-intensive tasks require not just better retrieval – but retrieval that 
evolves during the generation process. Static, one-shot retrieval pipelines often 
fall short when handling multi-hop questions, ambiguous prompts, or incomplete 
evidence. To overcome these limitations, recent frameworks have introduced 
iterative and self-reflective mechanisms that allow RAG systems to re-evaluate, 
revise, and refine their outputs dynamically. These systems go beyond fixed 
pipelines by integrating retrieval directly into the inference loop, enabling 
stepwise reasoning, uncertainty detection, and response revision based on 
intermediate feedback. The following models illustrate how this class of retrieval-
aware architectures improves coherence, factual grounding, and adaptability in 
complex question-answering scenarios. 

One of the most intuitive implementations of this paradigm is Self-RAG 
[30], which incorporates a self-reflective retrieval loop into the generation 
process. Rather than relying solely on its initial output, the model critiques its own 
response and initiates additional retrieval when it identifies potential factual 
inconsistencies. This retrieval-based self-correction enables the system to 
iteratively refine its output, improving alignment with external evidence. 
Particularly in open-domain and zero-shot contexts, Self-RAG significantly 
reduces hallucination and enhances the reliability of generated content by 
embedding a mechanism of self-assessment within the RAG architecture. 

While Self-RAG emphasizes introspective critique, FLARE [31] builds on 
this idea by introducing a more dynamic, confidence-driven mechanism that 
continuously reassesses the generation in real time – bridging reasoning with 
retrieval at every step. Instead of treating all generated content equally, FLARE 
identifies segments with low confidence scores – determined through internal 
uncertainty estimation – and triggers additional retrieval operations to supply 
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more relevant context. As illustrated in Figure 7, this feedback-driven mechanism 
issues new queries (e.g., q₂, q₃) whenever gaps in confidence are detected, 
ensuring that evidence acquisition is tightly coupled to the unfolding generation 
process. 

 
Fig. 7. An illustration of the FLARE iterative retrieval-generation process, highlighting its active 

retrieval and iterative refinement mechanism. Reprinted from [30]. 

FLARE’s architecture is particularly effective for multi-hop reasoning, 
legal and financial analysis, and any task where contextual precision is paramount. 
By decoupling retrieval from a single pre-generation phase and embedding it 
within the generative loop, FLARE reduces hallucinations and improves answer 
consistency.  

FLARE thus emphasizes retrieval as an active, iterative process driven by 
uncertainty. RAVEN [29] complements this by integrating retrieval even more 
deeply – embedding it within the attention mechanisms of the encoder-decoder 
itself, enabling simultaneous reasoning over both prompts and retrieved 
knowledge. The key innovation lies in its dual attention mechanism, which allows 
the encoder-decoder model to simultaneously attend to the original query prompt 
and the retrieved evidence. This fusion prevents context fragmentation and 
ensures that all parts of the output are informed by both task intent and external 
knowledge. RAVEN’s iterative retrieval during inference enables multi-step 
reasoning, making it particularly well-suited for complex tasks that require 
maintaining dependencies across multiple retrieved facts. 

Together, these models represent a shift toward adaptive and reflective 
retrieval paradigm, where the RAG system becomes an active participant in its 
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own reasoning cycle – constantly revisiting its evidence, questioning its outputs, 
and refining its answers in real time. 

4.6. Multimodal Extension 
While text-based retrieval-augmented systems have advanced considerably, real-
world tasks also require integrating multiple modalities—such as images, charts, 
or diagrams—alongside textual data. This is particularly relevant in domains like 
education, technical documentation, and medical imaging, where visual 
information is central to understanding. To address this, recent frameworks have 
extended RAG architectures to support multimodal retrieval and generation, 
allowing models to synthesize knowledge from both textual and non-textual 
sources. 

A notable contribution in this direction is MuRAG [31], which introduces a 
dual-retriever framework that processes and fuses textual and visual evidence. 
MuRAG includes two parallel retrieval pathways: a text retriever that searches 
through traditional corpora, and a vision retriever that locates relevant images or 
visual artifacts from associated databases. These retrieved inputs are then jointly 
embedded and passed to a multimodal generation module that produces a response 
grounded in both linguistic and visual evidence. 

This multimodal integration significantly enhances the model’s capacity to 
answer complex questions that depend on visual context, such as interpreting 
charts, annotating diagrams, or correlating textual claims with accompanying 
illustrations. By aligning representations across modalities, MuRAG enables more 
informed and complete responses than would be possible through unimodal 
systems. Furthermore, its design supports cross-modal reasoning, allowing the 
model to reconcile and synthesize information that may be partially encoded in 
each modality. 

Empirical evaluations demonstrate that MuRAG improves performance on 
multimodal benchmarks by a substantial margin, particularly in tasks involving 
diagram understanding, text-image alignment, and cross-modal retrieval-based 
question answering. Its architecture represents a major step toward more general-
purpose, perception-aware RAG systems capable of engaging with the full range 
of content encountered in complex, real-world applications. 

4.7. Few-Shot and Low-Resource Enhancement 
While LLMs demonstrate strong performance across a range of NLP tasks, they 
typically rely on extensive labeled datasets for fine-tuning. However, in many 
real-world scenarios—such as specialized scientific domains, under-resourced 
languages, or rapidly evolving topics – such data may be limited or entirely 
unavailable. These situations are referred to as low-resource settings, where 
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training data is insufficient to support conventional supervised learning 
approaches. 

To address this challenge, researchers have turned to few-shot learning, 
where models are expected to perform tasks after seeing only a few examples 
(typically fewer than ten). A leading approach in this space is Atlas [32], a 
framework designed to enhance few-shot performance by avoiding task-specific 
fine-tuning. Instead, Atlas uses dense retrieval to dynamically gather relevant 
information from large external corpora. Built on the Fusion-in-Decoder (FiD) 
architecture, it combines multiple retrieved passages during generation to produce 
more informed and grounded responses. 

By leveraging context-specific evidence instead of static memorization, 
Atlas enhances factual consistency and adaptability—even in constrained settings. 
As shown in Figure 8, it supports iterative refinement across tasks through 
retrieval-grounded outputs.  

 
Fig. 8. Workflow diagram illustrating the Atlas framework’s retrieval-augmented few-shot 

learning approach. Reprinted from [32]. 

Atlas operates across a wide range of NLP tasks – including masked 
language modeling, fact verification, and question answering – and excels in zero-
shot or low-supervision contexts. During inference, Atlas issues retrieval queries 
for each prompt, processes the retrieved evidence in parallel, and fuses the content 
into a coherent output. This retrieval-enhanced generation pipeline acts as a proxy 
for missing training examples, allowing the model to perform tasks it has seen few 
or no direct examples of. 

4.8. Factual Verification and Grounding 
One persistent challenge for RAG systems remains factual consistency – ensuring 
that generated outputs are traceable to verifiable sources and free from 
hallucinated or unsupported claims. This issue becomes particularly critical in 
high-stakes domains such as scientific research, journalism, medicine, and law, 
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where output provenance and citation fidelity are essential. To address these 
challenges, recent innovations have focused on improving the alignment between 
generated content and external evidence, introducing mechanisms for explicit 
grounding, citation-level attribution, and post-generation verification. 

A notable example is ReClaim [33] , a retrieval-augmented framework 
designed to enforce sentence-level attribution in generated responses. 
Traditionally RAG models cite entire documents or broad passages, ReClaim 
ensures that each factual statement in the output is explicitly linked to a supporting 
source sentence. This granularity enhances both transparency and trust, allowing 
users to verify specific claims directly. By constraining generation to content 
grounded in verifiable evidence, ReClaim significantly reduces hallucination and 
improves factual reliability. Empirical evaluations have shown that ReClaim 
outperforms baseline RAG models in source attribution accuracy and is 
particularly well suited for domains where traceability is non-negotiable. 
ReClaim exemplifies a movement toward trustworthy and verifiable generation, 
where the credibility of outputs is enhanced not just through better retrieval, but 
through explicit, structured connections between claims and sources. These 
systems reinforce the need for evaluation frameworks that go beyond accuracy 
and fluency, incorporating measures of evidence alignment, citation fidelity, and 
user interpretability. 

All these innovations reveal the growing sophistication and specialization 
of Retrieval-Augmented Generation. From architectural streamlining and data 
curation to domain-specific optimization and factual verification, RAG research 
has moved beyond foundational breakthroughs toward highly modular, task-
aware, and adaptable architectures. However, the very complexity and diversity 
of these systems now demand standardized, transparent, and multi-dimensional 
evaluation frameworks. As RAG systems become increasingly embedded in 
sensitive, high-stakes domains, rigorous assessment of retrieval quality, response 
validity, and knowledge integration is not merely beneficial – it is essential. 

5. Evaluating RAG 
RAG systems evolve in complexity and scope and evaluating their performance 
requires more than simple accuracy metrics or surface-level comparisons. 
Effective assessment must capture not only how well a model retrieves and 
generates, but also how coherently it integrates external knowledge and grounds 
its outputs in verifiable sources. 

One of the prominent contributions in this space is RAGAS [34], which 
standardizes and automates the evaluation of RAG models. RAGAS introduces a 
structured multi-dimensional evaluation framework to assess retrieval precision, 
generation fluency, and the integration of retrieved knowledge. It automates 
scoring mechanisms using neural models trained on annotated datasets, enabling 
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large-scale performance comparison across different tasks. Empirical results 
highlight common weaknesses in RAG models, including retrieval failures, 
improper knowledge integration, and hallucination risks. By offering a unified 
benchmark, RAGAS provides a foundation for optimizing retrieval-augmented 
architectures across diverse applications. 

Complementing this, the Retrieval-Augmented Generation Benchmark 
(RGB) [35] evaluates RAG models under four conditions: noise robustness, 
negative rejection, information integration, and counterfactual robustness. 
Notably, findings reveal that models struggle most with negative rejection, often 
generating responses despite insufficient evidence. These insights highlight the 
need for improved fact-verification mechanisms. 

In addition to general benchmarking frameworks, domain-specific 
evaluations are essential for assessing RAG performance in practical applications. 
The study Web Application for Retrieval-Augmented Generation: 
Implementation and Testing [36] presents PaSSER, a RAG-based web application 
designed as a fully functional implementation rather than a standalone 
benchmarking tool. Unlike traditional evaluations that assess pre-trained models 
in isolated test environments, PaSSER integrates the entire RAG pipeline—
retrieval, generation, evaluation, and blockchain-based verification—offering a 
real-world framework for performance assessment. This distinction enables 
direct, reproducible testing of RAG models in dynamic settings, ensuring practical 
applicability across different domains. 

A key feature of PaSSER is its modular architecture, which facilitates 
scalable retrieval and response generation while ensuring transparent evaluation 
through blockchain integration. The system is built using LangChain and 
ChromaDB for efficient retrieval, while its front-end leverages PrimeReact and 
WharfKit for interactive, real-time user engagement. Fig. 9 illustrates the PaSSER 
architecture, detailing its local LLM deployment, web-based interaction layer, and 
blockchain-backed data verification. 

 
Fig. 9. Illustration of the PaSSER architecture. Reprinted from [36]. 
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Building on this work, the Similarity Thresholds in RAG study  [37] further 
explores the impact of similarity threshold optimization on retrieval performance 
and response quality. A systematic evaluation of three open-source LLMs 
(Mistral:7b, Llama2:7b, and Orca2:7b) investigates how fine-tuning similarity 
thresholds affects precision-recall trade-offs and composite model performance. 
As illustrated in Fig. 10, higher similarity thresholds improve factual accuracy by 
filtering out less relevant retrieved documents but risk excluding useful contextual 
information. Conversely, lower thresholds enhance recall, retrieving a broader set 
of passages at the expense of increased irrelevant data. 

 
Fig. 10. Composite Performance Score (CPS) across different similarity thresholds for Mistral, 
Orca, and Llama LLMs, illustrating the impact of threshold tuning on retrieval precision, recall, 

and overall response quality in RAG systems. Reprinted from [37]. 

To quantify overall model effectiveness, the study introduces a Composite 
Performance Score (CPS), which aggregates multiple evaluation metrics. As 
illustrated in Fig. 10, the CPS varies across similarity thresholds, highlighting the 
trade-off between retrieval precision and recall. Higher similarity thresholds 
improve factual accuracy by filtering out less relevant retrieved documents but 
risk excluding useful contextual information. Conversely, lower thresholds 
enhance recall, retrieving a broader set of passages at the expense of increased 
irrelevant data.  

To ensure the continued advancement of RAG systems, rigorous evaluation 
and benchmarking frameworks play a central role in identifying strengths, 
weaknesses, and areas for improvement. The development of standardized 
assessment methods, has provided valuable insights into retrieval accuracy, 
generative quality, and integration effectiveness, allowing researchers to refine 
models systematically. Additionally, domain-specific evaluations, highlight the 
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importance of computational infrastructure and transparency in real-world 
implementations.  

While these evaluation frameworks have significantly enhanced the 
reliability of RAG models, persistent challenges remain in scalability, 
adaptability, and factual grounding. Addressing these limitations requires a 
forward-looking approach, integrating emerging methodologies and refining 
existing techniques to ensure the robustness of future RAG systems. The 
following section explores key directions for overcoming these challenges and 
improving the next generation of retrieval-augmented models. 

6. Challenges 
Despite the considerable progress in Retrieval-Augmented Generation (RAG), 
real-world deployments continue to expose a number of persistent challenges [38]. 
These include: 
 Missing content, where relevant knowledge is absent from the corpus, 

leading to outdated or incomplete answers 
 Missed top-ranked documents, when the retrieval mechanism fails to 

surface the most relevant evidence 
 Fragmented context, caused by incoherent or contradictory sources that 

undermine generation quality 
 Poor content extraction, especially in technical domains where key 

information is buried or ambiguously expressed 
 Inconsistent structuring, where output formatting fails to meet task-

specific needs 
 Incorrect specificity, producing answers that are either too vague or 

overly detailed 
 Incomplete responses, where outputs omit essential information, leaving 

queries only partially addressed 
These failure points highlight the structural and operational fragilities that still 
affect many RAG systems. As RAG continues to permeate sensitive application 
areas like scientific research, healthcare, and legal reasoning, the demand for 
verifiable, context-aware, and scalable solutions is growing. 

However, many of these challenges are already being mitigated by targeted 
innovations introduced in recent frameworks. 

For example, Auto-RAG and GraphRAG address the issue of missing 
content by enabling dynamic corpus updates and modular knowledge structuring, 
ensuring the system remains aware of evolving information. Failures related to 
missed top-ranked documents are tackled by Relevance Sampling, which 
improves training signal quality, and FLARE, which iteratively reassesses and 
enhances retrieval during generation.  
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To prevent fragmented or contradictory responses – categorized as not in 
context—approaches like LightRAG and Self-RAG introduce semantic filtering 
and feedback-driven refinement to improve coherence. Similarly, not extracted 
issues are mitigated by frameworks such as RAVEN, FLARE, and PaperQA, 
which enhance the precision of information extraction through attention 
mechanisms and iterative evidence validation. 

More pragmatic failure points – such as wrong format or incorrect 
specificity—are addressed by customizable pipelines like RaLLe, which allows 
developers to tailor output structure and granularity to specific domain 
requirements. Finally, issues of incomplete responses are mitigated by Speculative 
RAG, Self-RAG, and FLARE, all of which incorporate mechanisms for multi-
pass reasoning and dynamic retrieval that help ensure comprehensive and well-
grounded outputs. These developments demonstrate that while core challenges 
remain, the RAG research community has begun to proactively design 
mechanisms that directly address known vulnerabilities – paving the way for more 
resilient and context-aware systems. 

Nevertheless, no single framework comprehensively resolves all of these 
challenges. Most existing systems are highly specialized, optimized for specific 
tasks or domains, and often incompatible with one another. This fragmentation 
has led to a patchwork of partial solutions rather than a cohesive architecture. As 
RAG systems are increasingly applied in high-stakes fields like healthcare, legal 
reasoning, scientific research, and enterprise knowledge management, the need 
for integrated, transparent, and self-aware architectures becomes urgent. 

7. Future Directions 
Although recent frameworks have begun to address specific RAG failure modes 
– such as missing content, incoherent context, or incomplete outputs – these 
solutions remain fragmented across different architectures. The current landscape 
is marked by specialized systems that are often incompatible, difficult to integrate, 
or narrowly focused on individual tasks or domains. To fully realize the potential 
of Retrieval-Augmented Generation, the next phase of research must emphasize 
convergence: developing unified, modular frameworks that integrate the most 
effective innovations into a cohesive and generalizable architecture. 
Four strategic priorities should guide this effort: 
 Real-time retrieval validation: Future systems must embed mechanisms 

to assess the accuracy, currency, and contextual relevance of retrieved 
content before it is used for generation. This includes timestamp-aware 
retrieval, domain-adaptive filters, and low-latency consistency checks that 
prevent outdated or incorrect evidence from influencing outputs. 

 Dynamic reranking and query rewriting: As a response to uncertainty or 
failure detection during inference, systems should be able to adapt retrieval 
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strategies on the fly. This includes rephrasing queries, expanding retrieval 
depth, or reranking results based on the evolving generative context – 
enhancing flexibility and resilience in multi-hop reasoning or ambiguous 
tasks. 

 Sentence-level attribution mechanisms: Especially in high-stakes 
domains, future RAG architectures must link each generated statement to a 
verifiable source at sentence granularity. This would improve transparency, 
traceability, and user trust – while also enabling downstream auditing, fact-
checking, and human-in-the-loop validation. 

 Explicit failure detection and correction layers: Runtime modules should 
be capable of detecting hallucinations, omissions, or irrelevance as they 
occur, and trigger corrective retrieval or regeneration steps. Such 
mechanisms may involve confidence scoring, evidence alignment checks, 
or pattern-based failure mode recognition – drawing inspiration from recent 
advances in reflective and speculative generation. 

Ultimately, these directions signal a shift in RAG development from performance-
centric metrics to trust-centric design. The goal is no longer simply to generate 
plausible responses, but to ensure that every output is verifiable, complete, and 
contextually appropriate. As RAG continues to expand into mission-critical 
domains, its future will depend not only on architectural sophistication but on its 
ability to consistently retrieve the right evidence – and explain why it matters. 

8. Conclusion 
This review has traced the technical evolution and architectural diversification of 
Retrieval-Augmented Generation (RAG) systems, emphasizing the functional 
innovations developed to enhance retrieval precision, domain adaptability, 
scalability, and factual consistency. Through a comparative analysis of major 
RAG frameworks, the paper demonstrated how specific solutions – such as 
iterative refinement, modular pipelines, and multimodal integration – have 
responded to known system vulnerabilities, including incomplete retrieval, 
hallucinated content, and weak evidence alignment.  

This review offered a synthesized view of these advancements into thematic 
categories, highlighting how current frameworks address recurring failure points 
in real-world applications. However, the analysis also revealed a persistent 
fragmentation in the RAG landscape: while individual frameworks target isolated 
issues effectively, no single system offers a comprehensive solution capable of 
generalizing across domains, modalities, and dynamic data conditions. 

In light of these findings, the findings suggest the need for a shift in RAG 
research from isolated innovation to architectural consolidation. Future work 
should prioritize the development of unified, self-aware systems that embed real-
time retrieval validation, adaptive reranking and query rewriting, sentence-level 
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attribution, and integrated failure correction layers. These features are essential 
for ensuring not just the fluency of generated content, but its credibility, 
traceability, and reliability in high-stakes domains. 

Ultimately, the next generation of RAG systems will be evaluated not by 
their capacity to generate responses, but by their ability to retrieve relevant 
knowledge, ground outputs in verifiable evidence, and transparently justify their 
claims. 
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