
23

BULGARIAN ACADEMY OF SCIENCES
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS • 2023 • Vol. 80, pp. 23-32

p-ISSN: 2738-7356; e-ISSN: 2738-7364
https://doi.org/10.7546/PECR.80.23.03

Wireless Data Transmission and Neural Networks:
Using Amplitude Modulation and Demodulation

Krasimir Markov

Institute of Information and Communication Technologies
Bulgarian Academy of Sciences
Acad. Georgi Bonchev Str., bl. 2, 1113 Sofia, Bulgaria
E-mail: krasikasi@abv.bg

Abstract: This article presents the implementation of amplitude modulation (AM)
and demodulation using a neural network. The signal parameters are initially defined,
using the sampling frequency, the number of samples, the amplitudes of the carrier
and modulating signals, and the carrier frequency. Then, a bit string to be modulated
is provided. Using the defined parameters and the bit string, a modulating signal is
generated for each symbol. Depending on the value of the bit (0 or 1), a modulating
signal with amplitude or zero value is generated. The modulating signal is then
multiplied by the carrier wave, and the resulting modulated signal is outputted. After
modulation, white Gaussian noise is generated and added to the modulated signal. The
signal-to-noise ratio (SNR) is used for this purpose, defined in decibels. The result is
a noisy modulated signal. Next, a neural network with hidden layers and activation
functions is constructed. The neural network is trained using the noisy amplitude-
modulated signal and the clean amplitude-modulated signal, with the latter used as the
target data for training. Upon completing the training, the neural network is used to
predict the modulated signal. Demodulation of the predicted signal is performed, and
the bits are decoded. The article presents a comprehensive process of amplitude
modulation and demodulation using a neural network in the MATLAB programming
environment. The presented results and the decoded output of the network
demonstrate the effectiveness of the proposed implementation.

Keywords: Amplitude Modulation (AM), Neural Network (NN), Signal-to-Noise
Ratio (SNR), Prediction, Decoding, MATLAB.

24

1. Introduction
Wireless data transmission is an important technology that allows us to
communicate and exchange information without the need for physical
connections. One widely used technique for wireless data transmission is
amplitude modulation. In combination with neural networks, amplitude
modulation can help us transmit and decode data with high accuracy, even in
conditions of noise and interference.

Amplitude Modulation (AM) is a technique for transmitting information
that utilizes changes in the amplitude of the carrier signal to convey data. In the
process of AM, the data is embedded into the carrier signal by varying its
amplitude according to the data values. At the receiver's end, the reverse process
occurs – decoding the modulated signal and recovering the original data. With the
use of neural networks, amplitude modulation can be optimized and improved.
Neural networks are mathematical models inspired by the workings of the human
brain, capable of "learning" to recognize and process complex patterned data.
When combined with amplitude modulation, neural networks can be trained to
accurately recognize and decode data, even in the presence of noise and
interference. This combination of AM modulation and neural networks has a wide
range of applications. For example, in wireless communications such as mobile
phones and Wi-Fi, RFID networks. AM modulation is used for transmitting voice,
data, and other types of information. The use of neural networks in this context
can enhance the quality of data transmission and reception, particularly under
conditions of noise and interference.

2. Amplitude Modulation and Demodulation
Amplitude modulation (AM) is a technique for transmitting information where the
amplitude of the carrier signal is varied according to the data we want to transmit
[3, 4, 6]. Modulation is a process of changing the parameters of a signal, called
the carrying signal, under the influence of another one, called the modulating
signal [8, 21]. The carrying signal has a much higher frequency than the
modulating one and is usually changed by the sinusoidal or cosine theorem.
Depending on the parameter that is being modulated we can distinguish amplitude
modulation (AM), frequency modulation (FM) and phase modulation (PM). The
last two are more well-known with their joint name angular modulation. When the
carrier signal has rectangular form, an impulse modulation occurs. As with the
other type, this can also be split into amplitude impulse modulation (AIM),
frequency impulse modulation (FIM), phase impulse modulation (PIM) and wide
impulse modulation (WIM). When the carrier signal is harmonic, and the
modulating one has a rectangular form, the terms of manipulation are similar –
amplitude, frequency and phase.

The mathematical model of an amplitude modulated signal follows:

25

𝐴𝐴𝑎𝑎𝑎𝑎(𝑡𝑡) = 𝐴𝐴. (1 + 𝑚𝑚. 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋.𝑓𝑓0. 𝑡𝑡 + Ψ𝑜𝑜). cos (2𝜋𝜋.𝑓𝑓. 𝑡𝑡 + Ψ) (1)
where 𝑎𝑎(𝑡𝑡) is carrying signal:
 𝑎𝑎𝑜𝑜(𝑡𝑡) = 𝐴𝐴. 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋.𝑓𝑓. 𝑡𝑡 + Ψ) (2)
where 𝑎𝑎0(𝑡𝑡) is modulating signal:
 𝑎𝑎𝑜𝑜(𝑡𝑡) = 𝐴𝐴. 𝑐𝑐𝑐𝑐𝑐𝑐0(2.𝜋𝜋.𝑓𝑓0. 𝑡𝑡 +Ψ0) (3)

The frequency of the modulating signal is much smaller than the one of the
carrying signal (𝜔𝜔0 ≪ 𝜔𝜔).

The following relation represents the modulation coefficient and represents
a measure of the depth of a modulation:
 𝑚𝑚 = 𝐴𝐴0 /𝐴𝐴 (4)

For a successful transfer of the message sent, it (the coefficient) has to be
less than 1 (𝑚𝑚 < 1) . If 𝑚𝑚 > 1 the so called over modulation happens and on
restoration of the initial signal at the receiver site, warping of the signal occurs.
This leads to loss of information. In our script (Appendix 1), we use AM for
transmitting binary data. When the bit is "1," we modulate the carrier signal with
a specific amplitude, and when the bit is "0," the amplitude of the modulating
signal is zero. Once we modulate the data, we generate a modulated signal that
contains the information we want to transmit.

This modulated signal can be subjected to interference and noise during
transmission. To recover the information from the modulated signal, we use
demodulation. The demodulation is the process of recovering the original signal
(modulating signal) from the modulated signal after it has been transmitted
through the channel and received by the receiver. This is done to retrieve the data
or information that was modulated onto the carrier signal before transmission.

The Nyquist-Shannon sampling theorem, also known as the Shannon
sampling theorem, can be expressed as follows: If a function with a continuous
spectrum does not contain frequency components higher than 𝑓𝑓_𝑚𝑚𝑎𝑎𝑚𝑚, then that
function can be fully and accurately reconstructed from its samples taken at a rate
of at least twice the frequency 𝑓𝑓_𝑚𝑚𝑎𝑎𝑚𝑚. This means that in order to avoid
information loss during the sampling of a signal with a maximum frequency
𝑓𝑓_𝑚𝑚𝑎𝑎𝑚𝑚, a sampling rate of at least twice the frequency 𝑓𝑓_𝑚𝑚𝑎𝑎𝑚𝑚 must be used.

In the script (Appendix 1), we employ a neural network for demodulation.
The neural network is trained to predict the clean modulated signal using the noisy
modulated signal as input. This allows us to recover the information and decode
the transmitted data.

3. Training the Neural Network
In the script (Appendix 1), we use a neural network with two hidden layers to
decode the transmitted data. The network is trained using the backpropagation
algorithm. Training is performed by feeding the noisy modulated signal as input
and the transmitted clean modulated signal as target data [8, 14-21].

26

We optimize the parameters of the network by adjusting the number of hidden
neurons and the learning rate. Our goal is to achieve high accuracy in decoding
the transmitted data. The neural network used in the script (Appendix 1) is known
as a feedforward neural network. It is organized in sequential layers of neurons
that propagate from the input layer through the hidden layers to the output layer.

Backpropagation is an algorithm used to train multilayer feedforward
neural networks. The goal of the algorithm is to minimize the error between the
network's predictions and the target outputs by adjusting the weights of the
connections between neurons.

Here is how the backpropagation algorithm works:
• Weight initialization: Initially, the weights of the connections between

neurons are initialized with random values.
• Forward calculation: An input signal is propagated through the network

from the input layer to the output layer. The signal propagation in the
network is computed by multiplying the input signal with the weights of
the connections and applying an activation function to the result. This
process continues until reaching the output layer.

• Error calculation: After obtaining the output predictions, the error is
calculated by comparing the predictions with the target outputs.

• Backward propagation of error: The error is propagated backward from
the output layer to the hidden layers. For each connection weight, the
gradient is computed, indicating how a change in that weight would affect
the error. The gradients are calculated using the chain rule and are used to
update the weights.

• Weight update: Based on the computed gradients, the weights of the
connections between neurons are updated. Typically, a gradient descent
method is used, where the weights are adjusted with a certain learning rate
that controls the magnitude of the change.

• Iteration of the process: Steps 2 to 5 are repeated for several epochs or
until the desired accuracy of predictions is achieved.

This process of backpropagation allows the network to adapt and learn the
relationships between the input data and the target outputs by adjusting the
weights to minimize the error. With more training iterations, the network becomes
better at predicting new input data.

4. Decoding the Transmitted Data

After training the neural network, we use it to decode the transmitted data. In our
script (Appendix 1, 2), we divide the transmitted signal into segments and
calculate the average amplitude of each segment [1, 2, 3, 9-13]. If the average
amplitude exceeds half of the amplitude of the carrier signal, we assign "1" for
decoding. Otherwise, we assign "0". This allows us to reconstruct the binary data
that has been transmitted.

27

7. Conclusion
The use of amplitude modulation and demodulation in combination with neural
networks provides a powerful tool for wireless data transmission and decoding.
This technique allows us to transmit and recover data with high accuracy even in
noisy and distorted conditions. By utilizing neural networks, we can train the
system to handle various data transmission scenarios and achieve better results.
This article presented the fundamental idea and implementation of wireless data
transmission and decoding using neural networks. In real-world applications,
additional optimizations and improvements can be performed based on specific
requirements and conditions. It is possible to convert the MATLAB script into
VHDL or Verilog for implementation on programmable logic integrated circuits
(FPGAs). I hope this article provides useful information and inspiration for further
research and applications in the field of wireless data transmission and neural
networks.

Acknowledgments
This work was supported by the Bulgarian Ministry of Education and Science
under the National Research Programme „Smart crop production” approved by
Decision of the Ministry Council No 866/26.11.2020 (No D01-65/19.03.2021).

References
1. Oppenheim, A. V., Willsky, A. S., Young, I. T.: Signals and Systems. Sofia,

Technical Press. (1993).
2. Penev, N.: Contemporary Communication Systems and Technologies. Sofia, V.

Nedkov. (2008).
3. Ifeachor, E., Jervis, B.: Digital Signal Processing: A Practical Approach.

Edinburgh Gate: Pearson Education. (2002).
4. MATLAB – Communications System Toolbox-User's Guide. Retrieved from

www.mathworks.com.
5. MATLAB – Control System Toolbox-User's Guide. Retrieved from

www.mathworks.com.
6. MATLAB – Signal Processing Toolbox-User's Guide. Retrieved from

www.mathworks.com.
7. MATLAB – Symbolic Math Toolbox-User's Guide. Retrieved from

www.mathworks.com.
8. MATLAB – Neural Network Toolbox -User's Guide. Retrieved from

www.mathworks.com.
9. Doukovska, L.: Hough target detectors with small values of signal-to-noise ratio.

NATO Advanced Study Institute “Unexploded Ordnance Detection and
Mitigation”, Il Ciocco, Italy, (2008).

http://www.mathworks.com/
http://www.mathworks.com/
http://www.mathworks.com/
http://www.mathworks.com/
http://www.mathworks.com/

28

10. Doukovska, L.: Application of mathematical transform in detection algorithms. In:
Proc. of the First International Symposium on Business Modelling and Software
Design – BMSD’11, Sofia, Bulgaria, pp. 161–167, DOI:
10.5220/0004459801610167, (2011).

11. Doukovska, L.: Constant false alarm rate detectors in intensive noise environment
conditions. Cybernetics and Information Technologies 10 (3), pp. 31– 48, (2010).

12. Doukovska, L., Angelova, D.: Comparative analysis of two techniques for moving
target velocity estimation. In: Proc. of the 7-th European Radar Conference –
EuRAD’10, Paris, France, pp. 431–434, (2010).

13. Kamenov, D., Sgurev, V., Doukovska, L.: Controlling Multiagent System for
Sensor Networks - Software Architecture Modelling and Diagnostics. Proc. of
Signal Processing Symposium - SPS’11, Jachranka, Poland, IEEEXplore, CD
Proc. (2011).

14. Toskova, A., Toskov, B., Doukovska, L., Daskalov, B., Radeva, I.:
Neural Networks in the Intelligent Educational Space. Proc. of the IEEE
International Workshop on Advances in Neural Networks and Applications –
ANNA 2018, VDE VERLAG GMBH, Berlin, IEEEXplore, 2018, ISBN:978-3-
8007-4756-6, 107-112, (2018).

15. Shahpazov, V., Doukovska, L., Karastoyanov, D.: Artificial Intelligence
Neural NetworksApplications in Forecasting Financial Markets and Stock Prices.
Proc. of the International Symposium on Business Modeling and Software Design
– BMSD’14, Luxembourg, Grand Duchy of Luxembourg, SCITEPRESS - Science
and Technology Publications, 2014, ISBN:978-989-758-032-1,
DOI:10.5220/0005427202820288, 282-288, (2014).

16. Shahpazov, V., Velev, V., Doukovska, L: Design and Application of Artificial
Neural Networks for Predicting the Values of Indexes on the Bulgarian Stock
Market. Proc. of the Signal Processing Symposium – SPS’13, Jachranka Village,
Poland, IEEEXplore, ISBN:978-1-4673-6319-8-13, CD Proc. (2013).

17. Shahpazov, V., Doukovska, L.: Forecasting financial markets with artificial
intelligence. Proc. of the International Workshop on Advanced Control and
Optimisation: Step Ahead – ACOSA’14, Bankya, Bulgaria, Prof. Marin Drinov
Publishing House, ISSN:1314-4634, 67-74, (2014).

18. Terziyska, M., Doukovska, L.: Semi fuzzy neural networks, Part 1: Nonlinear
system identification. Proc. of the International Workshop on Advanced Control
and Optimisation: Step Ahead – ACOSA’14, 2014, Bankya, Bulgaria, Prof. Marin
Drinov Publishing House, ISSN:1314-4634, 18-23, (2014).

19. Terziyska, M., Doukovska, L.: Semi fuzzy neural networks, Part 2: Predictive
control, Proc. of the International Workshop on Advanced Control and
Optimisation: Step Ahead – ACOSA’14, Bankya, Bulgaria, Prof. Marin Drinov
Publishing House, ISSN:1314-4634, 24-28, (2014).

20. Hu, Y. H., Hwang, J. N.: Neural Network Signal Processing. CRC Press. (1999).
21. Lagnese, M. C.: Neural Networks with MATLAB. Pearson, (2003).

29

APPENDIX 1
MATLAB SCRIPT
% Signal Parameters
Fs = 100e6; % Sampling frequency
N = 1024; % Number of samples
dt = 1/Fs; % Time step
A1 = 5; % Carrier signal amplitude A
2 = 3.3; % Modulating signal amplitude
 fc = 13.56e6; % Carrier frequency
t = 0:dt:(N-1)*dt; % Time axis
carrier = A1cos(2pifct); % Carrier wave

% Modulating signal
bits = '01101101 01100001 01100111 01101110 01101001 01110100
'; % magnit
modulated_data = []; % Initialize empty array
bits = strrep(bits, ' ', ''); % Remove spaces from the string
% Generate modulating signal for each character
for i = 1:length(bits) if bits(i) == '1'
modulated_signal = A1 * cos(2pifc*t); % Modulating signal for
'1'
else
modulated_signal = zeros(size(t)); % Modulating signal for '0'
end modulated_
data = [modulated_data modulated_signal]; % Add modulating
signal to the array
end

% Amplitude modulation
carrier_replicated = repmat(carrier, 1, length(modulated_data)
/ length(carrier));
modulated_signal = carrier_replicated .* (1 + (A2/A1) *
modulated_data); % Formula
t = 0:dt:(length(modulated_signal)-1)*dt; % Update the length
of the t vector

% White Gaussian noise generation
SNR = 10; % Signal-to-noise ratio (dB)
noisy_signal = awgn(modulated_signal, SNR, 'measured');

% Generate data for the neural network
input_data = noisy_signal; % Noisy amplitude-modulated signal
target_data = modulated_signal; % Clean amplitude-modulated
signal (message)

% Create a neural network
hidden_units = 100; % Number of hidden neurons
net = feedforwardnet(hidden_units);

30

net.layers{1}.transferFcn = 'logsig'; % Activation function for
the first hidden layer net.layers{2}.transferFcn = 'tansig'; %
Activation function for the second hidden layer

% Set training parameters
net.trainParam.epochs = 100; % Number of epochs
net.trainParam.lr = 0.01; % Learning rate

% Train the neural network
net = train(net, input_data, target_data);
predicted_signal = sim(net, target_data);

% Demodulation
demodulated_signal = (predicted_signal ./ carrier_replicated -
1) * A1/A2;

% Decoding the network output
decoded_bits_predicted = ''; for i =
1:length(predicted_signal)/N
chunk_predicted = predicted_signal((i-1)N+1:iN);
average_amplitude_predicted = mean(abs(chunk_predicted));
 if average_amplitude_predicted > 0.5 * A1
 decoded_bits_predicted = [decoded_bits_predicted '1'];
else
decoded_bits_predicted = [decoded_bits_predicted '0'];
 end
end

APPENDIX 2
RESULTS
1. Decoding the network output:
decoded_message_predicted =
char(bin2dec(reshape(decoded_bits_predicted, 8, []).'));
disp('Decoded network output:');
disp(decoded_message_predicted);
 Output: Decoded network output: m a g n i t
The goal has been achieved. The modulated message has been
correctly recognized.

2. Time characteristics of the signals:
The carrier wave, the modulating signal and the modulated signal are shown on
Fig. 1.
figure(1);
subplot(3, 1, 1);
plot(t, carrier_replicated);

31

title('Carrier Wave'); xlabel('Time'); ylabel('Amplitude');
 subplot(3, 1, 2);
 stem(t, modulated_data);
title('Modulating Signal'); xlabel('Time');
ylabel('Amplitude');
subplot(3, 1, 3);
plot(t, modulated_signal);
 title('Modulated Signal');
xlabel('Time');ylabel('Amplitude');

Fig. 1. Signal modulation

3. Time characteristics of the signals:
The real modulated signal and noisy modulated signal are shown on Fig. 2.
figure(2);
 subplot(2, 1, 1);
 plot(t, modulated_signal);
 title('Modulated Signal');
xlabel('Time');
ylabel('Amplitude');
subplot(2, 1, 2);
 plot(t, noisy_signal);
 title('Noisy Modulated Signal');
xlabel('Time');
 ylabel('Amplitude');

32

Fig. 2. Noise modulation

4. Time characteristics of the signals:
The results for real modulated signal, noisy modulated signal and output signal
from a neural network are shown on Fig. 3.
figure(3);
 subplot(3, 1, 1);
plot(t, modulated_signal);
 title('Modulated Signal'); xlabel('Time');
ylabel('Amplitude');
subplot(3, 1, 2);
plot(t, noisy_signal);
 title('Noisy Modulated Signal'); xlabel('Time');
ylabel('Amplitude');
subplot(3, 1, 3);
 plot(t, predicted_signal);
title('Output Signal from the Neural Network');
xlabel('Time'); ylabel('Amplitude');

Fig. 3. Output signal

	1. Introduction
	2. Amplitude Modulation and Demodulation
	3. Training the Neural Network

