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Abstract: This article presents the implementation of amplitude modulation (AM) 
and demodulation using a neural network. The signal parameters are initially defined, 
using the sampling frequency, the number of samples, the amplitudes of the carrier 
and modulating signals, and the carrier frequency. Then, a bit string to be modulated 
is provided. Using the defined parameters and the bit string, a modulating signal is 
generated for each symbol. Depending on the value of the bit (0 or 1), a modulating 
signal with amplitude or zero value is generated. The modulating signal is then 
multiplied by the carrier wave, and the resulting modulated signal is outputted. After 
modulation, white Gaussian noise is generated and added to the modulated signal. The 
signal-to-noise ratio (SNR) is used for this purpose, defined in decibels. The result is 
a noisy modulated signal. Next, a neural network with hidden layers and activation 
functions is constructed. The neural network is trained using the noisy amplitude-
modulated signal and the clean amplitude-modulated signal, with the latter used as the 
target data for training. Upon completing the training, the neural network is used to 
predict the modulated signal. Demodulation of the predicted signal is performed, and 
the bits are decoded. The article presents a comprehensive process of amplitude 
modulation and demodulation using a neural network in the MATLAB programming 
environment. The presented results and the decoded output of the network 
demonstrate the effectiveness of the proposed implementation.   

Keywords: Amplitude Modulation (AM), Neural Network (NN), Signal-to-Noise 
Ratio (SNR), Prediction, Decoding, MATLAB.  
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1. Introduction  
Wireless data transmission is an important technology that allows us to 
communicate and exchange information without the need for physical 
connections. One widely used technique for wireless data transmission is 
amplitude modulation. In combination with neural networks, amplitude 
modulation can help us transmit and decode data with high accuracy, even in 
conditions of noise and interference. 

Amplitude Modulation (AM) is a technique for transmitting information 
that utilizes changes in the amplitude of the carrier signal to convey data. In the 
process of AM, the data is embedded into the carrier signal by varying its 
amplitude according to the data values. At the receiver's end, the reverse process 
occurs – decoding the modulated signal and recovering the original data. With the 
use of neural networks, amplitude modulation can be optimized and improved. 
Neural networks are mathematical models inspired by the workings of the human 
brain, capable of "learning" to recognize and process complex patterned data. 
When combined with amplitude modulation, neural networks can be trained to 
accurately recognize and decode data, even in the presence of noise and 
interference. This combination of AM modulation and neural networks has a wide 
range of applications. For example, in wireless communications such as mobile 
phones and Wi-Fi, RFID networks. AM modulation is used for transmitting voice, 
data, and other types of information. The use of neural networks in this context 
can enhance the quality of data transmission and reception, particularly under 
conditions of noise and interference. 

2. Amplitude Modulation and Demodulation 
Amplitude modulation (AM) is a technique for transmitting information where the 
amplitude of the carrier signal is varied according to the data we want to transmit 
[3, 4, 6]. Modulation is a process of changing the parameters of a signal, called 
the carrying signal, under the influence of another one, called the modulating 
signal [8, 21]. The carrying signal has a much higher frequency than the 
modulating one and is usually changed by the sinusoidal or cosine theorem. 
Depending on the parameter that is being modulated we can distinguish amplitude 
modulation (AM), frequency modulation (FM) and phase modulation (PM). The 
last two are more well-known with their joint name angular modulation. When the 
carrier signal has rectangular form, an impulse modulation occurs. As with the 
other type, this can also be split into amplitude impulse modulation (AIM), 
frequency impulse modulation (FIM), phase impulse modulation (PIM) and wide 
impulse modulation (WIM). When the carrier signal is harmonic, and the 
modulating one has a rectangular form, the terms of manipulation are similar – 
amplitude, frequency and phase. 

The mathematical model of an amplitude modulated signal follows: 
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𝐴𝐴𝑎𝑎𝑎𝑎(𝑡𝑡) = 𝐴𝐴. (1 + 𝑚𝑚. 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋.𝑓𝑓0. 𝑡𝑡 + Ψ𝑜𝑜). cos (2𝜋𝜋.𝑓𝑓. 𝑡𝑡 + Ψ)  (1) 
where 𝑎𝑎(𝑡𝑡) is carrying signal: 
 𝑎𝑎𝑜𝑜(𝑡𝑡) = 𝐴𝐴. 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋.𝑓𝑓. 𝑡𝑡 + Ψ)    (2) 
where 𝑎𝑎0(𝑡𝑡) is modulating signal: 
 𝑎𝑎𝑜𝑜(𝑡𝑡) = 𝐴𝐴. 𝑐𝑐𝑐𝑐𝑐𝑐0(2.𝜋𝜋.𝑓𝑓0. 𝑡𝑡 +Ψ0)      (3)  

The frequency of the modulating signal is much smaller than the one of the 
carrying signal (𝜔𝜔0 ≪ 𝜔𝜔 ). 

The following relation represents the modulation coefficient and represents 
a measure of the depth of a modulation: 
 𝑚𝑚 = 𝐴𝐴0 /𝐴𝐴  (4)  

For a successful transfer of the message sent, it (the coefficient) has to be 
less than 1 (𝑚𝑚 < 1) . If 𝑚𝑚 > 1 the so called over modulation happens and on 
restoration of the initial signal at the receiver site, warping of the signal occurs. 
This leads to loss of information. In our script (Appendix 1), we use AM for 
transmitting binary data. When the bit is "1," we modulate the carrier signal with 
a specific amplitude, and when the bit is "0," the amplitude of the modulating 
signal is zero. Once we modulate the data, we generate a modulated signal that 
contains the information we want to transmit.  

This modulated signal can be subjected to interference and noise during 
transmission. To recover the information from the modulated signal, we use 
demodulation. The demodulation is the process of recovering the original signal 
(modulating signal) from the modulated signal after it has been transmitted 
through the channel and received by the receiver. This is done to retrieve the data 
or information that was modulated onto the carrier signal before transmission. 

The Nyquist-Shannon sampling theorem, also known as the Shannon 
sampling theorem, can be expressed as follows: If a function with a continuous 
spectrum does not contain frequency components higher than 𝑓𝑓_𝑚𝑚𝑎𝑎𝑚𝑚, then that 
function can be fully and accurately reconstructed from its samples taken at a rate 
of at least twice the frequency 𝑓𝑓_𝑚𝑚𝑎𝑎𝑚𝑚. This means that in order to avoid 
information loss during the sampling of a signal with a maximum frequency 
𝑓𝑓_𝑚𝑚𝑎𝑎𝑚𝑚, a sampling rate of at least twice the frequency 𝑓𝑓_𝑚𝑚𝑎𝑎𝑚𝑚 must be used. 

In the script (Appendix 1), we employ a neural network for demodulation. 
The neural network is trained to predict the clean modulated signal using the noisy 
modulated signal as input. This allows us to recover the information and decode 
the transmitted data. 

3. Training the Neural Network 
In the script (Appendix 1), we use a neural network with two hidden layers to 
decode the transmitted data. The network is trained using the backpropagation 
algorithm. Training is performed by feeding the noisy modulated signal as input 
and the transmitted clean modulated signal as target data [8, 14-21]. 
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We optimize the parameters of the network by adjusting the number of hidden 
neurons and the learning rate. Our goal is to achieve high accuracy in decoding 
the transmitted data. The neural network used in the script (Appendix 1) is known 
as a feedforward neural network. It is organized in sequential layers of neurons 
that propagate from the input layer through the hidden layers to the output layer. 

Backpropagation is an algorithm used to train multilayer feedforward 
neural networks. The goal of the algorithm is to minimize the error between the 
network's predictions and the target outputs by adjusting the weights of the 
connections between neurons. 

Here is how the backpropagation algorithm works: 
• Weight initialization: Initially, the weights of the connections between 

neurons are initialized with random values. 
• Forward calculation: An input signal is propagated through the network 

from the input layer to the output layer. The signal propagation in the 
network is computed by multiplying the input signal with the weights of 
the connections and applying an activation function to the result. This 
process continues until reaching the output layer. 

• Error calculation: After obtaining the output predictions, the error is 
calculated by comparing the predictions with the target outputs. 

• Backward propagation of error: The error is propagated backward from 
the output layer to the hidden layers. For each connection weight, the 
gradient is computed, indicating how a change in that weight would affect 
the error. The gradients are calculated using the chain rule and are used to 
update the weights. 

• Weight update: Based on the computed gradients, the weights of the 
connections between neurons are updated. Typically, a gradient descent 
method is used, where the weights are adjusted with a certain learning rate 
that controls the magnitude of the change. 

• Iteration of the process: Steps 2 to 5 are repeated for several epochs or 
until the desired accuracy of predictions is achieved. 

This process of backpropagation allows the network to adapt and learn the 
relationships between the input data and the target outputs by adjusting the 
weights to minimize the error. With more training iterations, the network becomes 
better at predicting new input data. 

4. Decoding the Transmitted Data 

After training the neural network, we use it to decode the transmitted data. In our 
script (Appendix 1, 2), we divide the transmitted signal into segments and 
calculate the average amplitude of each segment [1, 2, 3, 9-13]. If the average 
amplitude exceeds half of the amplitude of the carrier signal, we assign "1" for 
decoding. Otherwise, we assign "0". This allows us to reconstruct the binary data 
that has been transmitted. 
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7. Conclusion 
The use of amplitude modulation and demodulation in combination with neural 
networks provides a powerful tool for wireless data transmission and decoding. 
This technique allows us to transmit and recover data with high accuracy even in 
noisy and distorted conditions. By utilizing neural networks, we can train the 
system to handle various data transmission scenarios and achieve better results. 
This article presented the fundamental idea and implementation of wireless data 
transmission and decoding using neural networks. In real-world applications, 
additional optimizations and improvements can be performed based on specific 
requirements and conditions. It is possible to convert the MATLAB script into 
VHDL or Verilog for implementation on programmable logic integrated circuits 
(FPGAs). I hope this article provides useful information and inspiration for further 
research and applications in the field of wireless data transmission and neural 
networks. 
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APPENDIX 1 
MATLAB SCRIPT 
% Signal Parameters 
Fs = 100e6; % Sampling frequency  
N = 1024; % Number of samples  
dt = 1/Fs; % Time step  
A1 = 5; % Carrier signal amplitude A 
2 = 3.3; % Modulating signal amplitude  
 fc = 13.56e6; % Carrier frequency  
t = 0:dt:(N-1)*dt; % Time axis 
carrier = A1cos(2pifct); % Carrier wave 
 
% Modulating signal  
bits = '01101101 01100001 01100111 01101110 01101001 01110100 
'; % magnit 
modulated_data = []; % Initialize empty array  
bits = strrep(bits, ' ', ''); % Remove spaces from the string  
% Generate modulating signal for each character  
for i = 1:length(bits) if bits(i) == '1'  
modulated_signal = A1 * cos(2pifc*t); % Modulating signal for 
'1'  
else  
modulated_signal = zeros(size(t)); % Modulating signal for '0' 
end modulated_ 
data = [modulated_data modulated_signal]; % Add modulating 
signal to the array  
end 
 
% Amplitude modulation  
carrier_replicated = repmat(carrier, 1, length(modulated_data) 
/ length(carrier));  
modulated_signal = carrier_replicated .* (1 + (A2/A1) * 
modulated_data); % Formula  
t = 0:dt:(length(modulated_signal)-1)*dt; % Update the length 
of the t vector 
 
% White Gaussian noise generation 
SNR = 10; % Signal-to-noise ratio (dB) 
noisy_signal = awgn(modulated_signal, SNR, 'measured'); 
 
% Generate data for the neural network 
input_data = noisy_signal; % Noisy amplitude-modulated signal  
target_data = modulated_signal; % Clean amplitude-modulated 
signal (message) 
 
% Create a neural network  
hidden_units = 100; % Number of hidden neurons  
net = feedforwardnet(hidden_units);  
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net.layers{1}.transferFcn = 'logsig'; % Activation function for 
the first hidden layer net.layers{2}.transferFcn = 'tansig'; % 
Activation function for the second hidden layer 
 
% Set training parameters  
net.trainParam.epochs = 100; % Number of epochs  
net.trainParam.lr = 0.01; % Learning rate 
 
% Train the neural network  
net = train(net, input_data, target_data); 
predicted_signal = sim(net, target_data); 
 
% Demodulation  
demodulated_signal = (predicted_signal ./ carrier_replicated - 
1) * A1/A2; 
 
% Decoding the network output  
decoded_bits_predicted = ''; for i = 
1:length(predicted_signal)/N  
chunk_predicted = predicted_signal((i-1)N+1:iN);  
average_amplitude_predicted = mean(abs(chunk_predicted)); 
 if average_amplitude_predicted > 0.5 * A1 
 decoded_bits_predicted = [decoded_bits_predicted '1'];  
else  
decoded_bits_predicted = [decoded_bits_predicted '0']; 
 end  
end 
 
 
 
APPENDIX 2 
RESULTS 
1. Decoding the network output:  
decoded_message_predicted = 
char(bin2dec(reshape(decoded_bits_predicted, 8, []).')); 
disp('Decoded network output:');  
disp(decoded_message_predicted); 
 Output: Decoded network output: m a g n i t  
The goal has been achieved. The modulated message has been 
correctly recognized. 
 
2. Time characteristics of the signals:  
The carrier wave, the modulating signal and the modulated signal are shown on 
Fig. 1. 
figure(1);  
subplot(3, 1, 1);  
plot(t, carrier_replicated);  
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title('Carrier Wave'); xlabel('Time'); ylabel('Amplitude'); 
 subplot(3, 1, 2); 
 stem(t, modulated_data);  
title('Modulating Signal'); xlabel('Time'); 
ylabel('Amplitude');  
subplot(3, 1, 3);  
plot(t, modulated_signal); 
 title('Modulated Signal'); 
xlabel('Time');ylabel('Amplitude'); 
 

 
Fig. 1. Signal modulation 

 
3. Time characteristics of the signals:  
The real modulated signal and noisy modulated signal are shown on Fig. 2. 
figure(2); 
 subplot(2, 1, 1); 
 plot(t, modulated_signal); 
 title('Modulated Signal');  
xlabel('Time');  
ylabel('Amplitude'); 
subplot(2, 1, 2); 
 plot(t, noisy_signal); 
 title('Noisy Modulated Signal');  
xlabel('Time'); 
 ylabel('Amplitude'); 
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Fig. 2. Noise modulation  

 
4. Time characteristics of the signals:  
The results for real modulated signal, noisy modulated signal and output signal 
from a neural network are shown on Fig. 3. 
figure(3); 
 subplot(3, 1, 1);  
plot(t, modulated_signal); 
 title('Modulated Signal'); xlabel('Time'); 
ylabel('Amplitude'); 
subplot(3, 1, 2);  
plot(t, noisy_signal); 
 title('Noisy Modulated Signal'); xlabel('Time'); 
ylabel('Amplitude'); 
subplot(3, 1, 3); 
 plot(t, predicted_signal);  
title('Output Signal from the Neural Network'); 
xlabel('Time'); ylabel('Amplitude'); 
 

 
Fig. 3. Output signal 
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