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Abstract: Multilayer perceptron (MLP) and the backpropagation method are two 
fundamental components in the field of artificial neural networks (ANNs) that have 
gained significant attention and applications in various areas of computer science and 
machine learning. This article provides an overview of MLP and the backpropagation 
method, discussing their underlying principles and functioning. Initially, we provide 
a general overview of MLP and its architecture. MLP is a form of feedforward neural 
networks that includes one or more hidden layers between the input and output layers. 
Each neuron computation in MLP is performed in a forward pass, applying a nonlinear 
activation function to the weighted sum of inputs and neuron activations from the 
previous layer. Next, the backpropagation method, which is used for training MLP, is 
discussed. This method primarily relies on minimizing the error between the predicted 
and true outputs of the network using gradient descent. The error gradient is 
propagated backward through the network, updating the weights of each connection, 
contributing to its effectiveness and learning capability. Various alternative variations 
and enhancements of MLP and the backpropagation method are then explored, 
including the use of different activation functions, regularization, architectural 
modifications, and optimization methods. Significant research has been conducted in 
recent years to develop more efficient and powerful MLP models. In conclusion, we 
summarize the importance and applications of MLP and the backpropagation method. 
MLP and backpropagation are widely used tools for tasks such as classification, 
regression, function approximation, and others, and they continue to be the subject of 
active research and development in the field of machine learning and neural networks. 

Keywords: MultiLayer Perceptron, Backpropagation, Artificial Neural Networks, 
Machine Learning, MATLAB.  
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1. Introduction  
The MultiLayer Perceptron (MLP) and the Backpropagation method are 
fundamental concepts in the field of the Artificial Neural Networks (ANNs). MLP 
is a type of ANN architecture that utilizes multiple input and hidden layers for 
information processing. It is particularly useful in the areas of data classification 
and regression.  

Backpropagation is a training method for MLPs that employs the Stochastic 
Gradient Descent (SGD) algorithm to adjust the weights of the connections 
between neurons. This method utilizes the chain rule to compute gradients of the 
error function with respect to the network's weights. This allows the MLP to adapt 
and improve over time. 

The Hardware Description Language Coder (HDL) is a tool provided by 
MathWorks that enables the automatic generation of hardware description 
language code from MATLAB or Simulink models. This is especially useful for 
designing digital systems on programmable logic integrated circuits (FPGAs). 
The Field Programmable Gate Arrays (FPGA) module with AMD Artix™ 7 50T-
2I, TE0714-04-52I-7-B represents a specific hardware module based on FPGA 
technology. It utilizes an FPGA chip from the Artix™ 7 series by AMD and offers 
various capabilities for developing digital systems. This module can be used to 
implement MLPs or other digital systems generated by HDL Coder. 

2. Structure of a Multilayer Perceptron 
An example structure of a multilayer perceptron (MLP) is shown on Fig. 1. 
 

 
Fig. 1. Multilayer perceptron  
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The multilayer perceptron (MLP) consists of an input layer, hidden layers, 
and an output layer, [4, 5, 6]. The input layer receives the input data and passes 
the signals to the hidden layers. The hidden layers process the information by 
passing through an activation function. The output layer generates predicted 
outputs based on the information from the hidden layers. Each connection between 
neurons has associated weights that are updated during training.  

In the backpropagation algorithm for training neural networks, activation 
functions play a crucial role. They define the output of neurons in each layer of 
the network based on their input. In the following lines, I will explain how 
different types of activation functions used in the backpropagation algorithm 
work. 
Activation Functions: 

• Sigmoid Function: The sigmoid function has an S-shaped curve and is 
commonly used as an activation function in neural networks. The 
mathematical formula of the sigmoid function is: f(x) = 1 / (1 + exp(-x)). 
The output of a neuron with a sigmoid activation function is in the range 
(0, 1), making it suitable for tasks like binary classification. 

• Rectified Linear Unit (ReLU): ReLU is a simple and effective activation 
function that returns x for positive values and 0 for negative values. 
Mathematically, the ReLU function is f(x) = max (0, x). ReLU neurons 
are computationally efficient and help alleviate the vanishing gradient 
problem. 

• Tanh Function: The tanh function is similar to the sigmoid function but 
has an output range of (-1, 1). Mathematically, the tanh function is f(x) = 
(exp(x) - exp(-x)) / (exp(x) + exp(-x)). The tanh function is continuous and 
differentiable, making it suitable for training neural networks. 

• Softmax Function: The Softmax function is used in the last layer of neural 
networks for multi-class classification. The Softmax function takes a 
vector of neuron outputs and generates probabilities for the classes. 
Mathematically, the Softmax function for an input vector x is defined as 
f(x) = exp(x_i) / sum (exp(x_j)), where i is the index of the class, and j 
iterates over all classes. 

• Linear Activation Function: The linear activation function performs 
simple scaling operations on the input data. It returns an output that is 
linearly proportional to the sum of the input data. Mathematically, the 
linear activation function can be expressed as f(x) = wx + b, where f(x) is 
the output of the activation function, x is the input or input data, w is the 
weight or scaling coefficient of the input, and b is the bias or function 
offset. The linear activation function lacks nonlinearity or changes in the 
output value. This means that the function performs only linear scaling 
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operations on the input. So, if the input is multiplied by a constant or a 
constant is added, the output is proportionally increased or shifted. 

It is important to note that the linear activation function is not suitable for 
neural networks with more than one hidden layer. This is because the combination 
of multiple linear functions remains linear and cannot model complex nonlinear 
relationships. 

These are just some of the most popular activation functions used in the 
backpropagation algorithm. The choice of activation function depends on the 
nature of the problem being solved and the specific requirements of the network 
architecture. It is important to select an appropriate activation function that will 
ensure stable and effective training of the neural network. 

3. Backpropagation Algorithm for MLP Training 
The backpropagation algorithm is a training algorithm for MLP (multilayer 
perceptron), [5, 6]. It consists of two phases: forward propagation and backward 
propagation. In forward propagation, the input data is passed through the network, 
and predictions are generated. Then, the error between the predictions and the 
desired outputs is calculated. In backward propagation, the error is propagated 
back through the network, and gradients of the error with respect to the weights 
are computed. These gradients are used to update the weights using an 
optimization method such as stochastic gradient descent. 

The process of forward and backward propagation is repeated for multiple 
iterations until the desired level of accuracy is achieved. The backpropagation 
algorithm is one of the most popular algorithms for training neural networks. It is 
used to adjust the weights of the connections in the network, minimizing the error 
between the predicted outputs of the network and the desired outputs. 
The basic steps in the backpropagation algorithm are as follows: 

• Weight Initialization: The initial weights of the connections in the 
network are initialized to random values. The weights determine the 
strength of the connections between neurons and their influence on the 
predicted outputs of the network. 

• Forward Propagation: The input data is passed through the network, and 
the outputs of each neuron in all layers are computed. This is done 
sequentially from the input layer to the output layer. 

• Error Calculation: After obtaining the predicted outputs from the 
network, the error between the predicted outputs and the desired outputs 
is calculated. The error can be measured using different error functions, 
such as mean squared error (MSE). 

• Backward Propagation: The error is propagated back through the 
network, and the error for each neuron in each layer is computed. This is 
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done using the chain rule from differential calculus, which allows the 
calculation of the gradient of the error with respect to the weights. 

• Weight Update: After computing the gradients of the error with respect to 
the weights, the weights of the connections are updated in a direction that 
reduces the error. This is done using optimization methods such as 
stochastic gradient descent or its variations. 

• Iteration: The above steps are repeated multiple times (called epochs) for 
the entire training dataset. During the iterations, the weights of the 
connections are updated, reducing the error, and the network adapts to the 
provided data. 

These are the basic steps in the backpropagation algorithm. It allows the 
neural network to learn the representations and interconnections in the data, 
leading to achieving the desired outputs when predicting or classifying new data. 

4. Data Applications of Multilayer Perceptron 
The Multilayer Perceptrons (MLPs) have wide applications in various fields, 
including computer vision, speech recognition, natural language processing, 
classification and prediction, and signal processing [14-18]. 

Feedforward neural networks, such as MLPs, can be used for noise filtering 
in amplitude-modulated signals. Noise filtering is a common task in signal 
processing, and neural networks can be a powerful tool for performing this task. 
One possible architecture of a neural network for noise filtering is shown on Fig. 
2 and may include the following layers: 

1. Input Layer: The input data could be the amplitude-modulated signal, 
including the noise you want to filter. 

2. Hidden Layers: After the input layer, you may have one or more hidden 
layers. These layers can learn complex dependencies and correlations 
between the signal and the noise, allowing the network to separate the 
identification of the noise from the desired signal. 

3. Output Layer: The output layer of the network represents the filtered 
signal without noise. This layer generates the results of the signal 
processing by the network. 

The process of training the network involves preparing a training set that 
contains the amplitude-modulated signal and the corresponding noise. The 
network is trained to understand the relationship between this data and generate 
the filtered signal by minimizing the difference between the filtered signal and the 
desired outcome. 
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Fig. 2. Neural Network Architecture 

5. Stochastic Gradient Descent  
Stochastic Gradient Descent (SGD) is an optimization algorithm used for training 
neural networks and other machine learning models, [6, 7]. It is a variation of 
gradient descent, which is used to find the minimum of the error function. 

The main idea behind SGD is to use a random subset of training data (a 
single instance or a small batch) to compute the gradients of the error function and 
update the model parameters. This allows for efficient parameter updates at each 
step of the training process. 

Here are the basic steps of the stochastic gradient descent algorithm: 
1. Parameter initialization: Start with random or predefined values for the 

model parameters. 
2. Random sample selection (or small batch): Choose a random instance or 

a small batch of instances from the training set (also known as a 
“minibatch”). 

3. Pass through the model: Feed the selected samples through the model to 
obtain predictions. 

4. Compute gradients: After obtaining the predictions, compute the gradients 
of the error function with respect to the model parameters. This is done 
using the chain rule to calculate partial derivatives. 

5. Parameter update: Once the gradients are computed, update the model 
parameters using a formula similar to the one used in gradient descent: 
𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝 =  𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝 −  𝑜𝑜𝑛𝑛𝑝𝑝𝑝𝑝𝑛𝑛𝑙𝑙𝑛𝑛𝑙𝑙_𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 ∗  𝑙𝑙𝑝𝑝𝑝𝑝𝑜𝑜𝑙𝑙𝑛𝑛𝑛𝑛t. 
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6. Repeat the process: Repeat the above steps multiple times for all instances 
in the training set or for a certain number of epochs until the optimal 
solution is reached. 

The advantages of stochastic gradient descent include faster training and 
lower memory requirements compared to full gradient descent. It is particularly 
useful for large datasets and when training needs to be performed in real-time. 

6. Chain Rule 
The chain rule is a fundamental rule in differential calculus used for calculating 
the derivative of a composition of functions, [8]. If we have two functions, for 
example, 𝑓𝑓(𝑥𝑥) and 𝑙𝑙(𝑥𝑥), and their composition, ℎ(𝑥𝑥)  =  𝑓𝑓(𝑙𝑙(𝑥𝑥)), the chain rule 
allows us to calculate the derivative of h(x) with respect to x in terms of the 
derivatives of f and g. 

Formally, if 𝑦𝑦 =  𝑓𝑓(𝑢𝑢) and 𝑢𝑢 =  𝑙𝑙(𝑥𝑥), then according to the chain rule, 
the derivative of y with respect to 𝑥𝑥 (𝑜𝑜𝑦𝑦/𝑜𝑜𝑥𝑥) is expressed as: 𝑜𝑜𝑦𝑦/𝑜𝑜𝑥𝑥 =  𝑜𝑜𝑦𝑦/𝑜𝑜𝑢𝑢 ∗
 𝑜𝑜𝑢𝑢/𝑜𝑜𝑥𝑥. In other words, the derivative of 𝑦𝑦 with respect to 𝑥𝑥 is calculated as the 
product of the derivative of 𝑦𝑦 with respect to 𝑢𝑢 and the derivative of 𝑢𝑢 with respect 
to 𝑥𝑥. The chain rule is of crucial importance in backpropagation in neural networks 
as it allows us to compute the gradient of the error with respect to the weights in 
the network. Therefore, we can update the weights using the gradient obtained 
using the chain rule. 

7. Synthesis and Implementation 
The HDL code generated by HDL Coder can be used in a synthesis and 
implementation environment, such as Xilinx Vivado or Intel Quartus, [1, 2, 3, 9]. 
This process involves compiling the VHDL code, creating networks of logic 
elements, specifying timing constraints, and generating the physical configuration 
files (bitstreams) for programming the digital device, such as an FPGA, shown on 
Fig. 3 [10-13]. 

 
Fig. 3. Main board  
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1 step. MATLAB script  
% Generating data for a neural network  
input_data = noisy_signal; % Noisy amplitude-modulated signal  
target_data = modulated_signal;% Clean amplitude-modulated signal 
(message)  
% Creating a neural network  
hidden_units = 100; % Number of hidden neurons 
 net = feedforwardnet(hidden_units);  
net.layers{1}.transferFcn = 'logsig'; % Activation function for 
the first hidden  
layer net.layers{2}.transferFcn = 'tansig'; % Activation function 
for the second hidden layer  
% Setting training parameters  
net.trainParam.epochs = 100; % Number of epochs net.trainParam. 
lr = 0.01; % Learning rate net.trainParam. 
mu = 0.5; % Value of mu % Training the neural network  
net = train(net, input_data, target_data); 

2 step. Transfer MATLAB to VHDL. 
3 step. Bitstreams file. To create bitstreams for the code provided above, you will 
need an installation of a synthesis and implementation environment such as Xilinx 
Vivado or Intel Quartus. Here is an example of creating bitstreams using Xilinx 
Vivado: 

• Launch Xilinx Vivado and create a new project. 
• Select a directory for the project and give it a name. 
• When adding files to the project, include the HDL code that you wish to 

synthesize and implement. 
• Choose the target platform (FPGA) and configure the relevant settings for 

the target device. 
• Perform synthesis on the project. This will convert the HDL code into an 

internal representation of the logic elements on the target device. 
• Verify the synthesis results and ensure there are no errors or warnings. 
• Generate the bitstream file by executing the implementation and 

configuration process. 
• As a result, you will obtain a bitstream file that can be used to program 

the digital device (e.g., FPGA) and execute the desired functionality. 
4 step. FPGA module with AMD Artix™ 7 50T-2I, TE0714-04-52I-7-B by Trenz 
Electronic is an industrial FPGA module that integrates AMD/Xilinx Artix™ 7 
50T, 16 MByte QSPI Flash memory for configuration and operation, as well as 
powerful switching power supplies for all board voltages. The module features a 
large number of configurable input/output ports through robust high-speed 
connectors. All of this in a very small form factor, smaller than half a credit card, 
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and at a highly competitive price. All components are rated for an industrial 
temperature range of -40°C to +85°C. 
Specifications: 

• Rugged for high shock and vibration 
• 16 MB QSPI Flash memory 
• Differential MEMS oscillator for MGT clocking 
• MEMS oscillator for PL clocks (optional) 
• Plug-on module with 2 × 100-pin high-speed hermaphroditic strips 

• 138 FPGA I/O's (max 68 differential) +5 I/O's (QSPI or user I/O's) 
• XADC Analog Input 
• 4 GTP (high-performance transceiver) lanes 
• GT reference clock inputs 
• Optimized I/O and power pins for good signal integrity 

• On-board high-efficiency DC/DC converters 
• Power supply for all on-board components 
• eFUSE bit-stream encryption (AES) 
• One user configurable LED 
• Size 3 cm x 4 cm 

8. Conclusion 
The Multilayer perceptron and the backpropagation method are powerful tools in 
the field of artificial neural networks. They allow us to model complex 
relationships and perform classification and regression on data. By employing the 
gradient descent algorithm and the chain rule, we can train MLPs and adapt them 
to specific problems. HDL Coder and FPGA modules like the AMD Artix™ 7 
50T-2I, TE0714-04-52I-7-B provide the means to transform MLPs and other 
digital systems into real hardware solutions. This enables fast execution and 
efficient utilization of FPGA resources.  

The combination of multilayer perceptron, backpropagation, SGD, chain 
rule, HDL Coder, and FPGA modules offers a wide range of tools and possibilities 
for developing complex digital systems and solving various tasks in the field of 
machine learning and data processing. 
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