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Abstract: The process of generating random numbers involves creating a series 
of numbers that possess randomness, devoid of any recognizable pattern or 
predictability. Typically, algorithms or physical processes, known as Random 
Number Generators (RNGs), are employed to produce these numbers. These 
generated random numbers are seldom used in their original form; instead, they 
undergo various scaling or mapping procedures. These transformations can 
potentially impact the generated random numbers' uniformity, distribution, and 
statistical attributes. If the scaling process is executed incorrectly or introduces 
bias, it can compromise the overall randomness and quality of the resulting 
numbers. Industries like gambling heavily rely on random numbers, and in certain 
regions such as Italy, the quality of the scaled numbers is required to match that 
of the raw random numbers. This stringent requirement raises a fundamental 
question: To what degree does the scaling of random numbers influence their 
statistical properties? Instances of poor-quality scaled numbers have been well-
documented. To address this, the current study employs the Mersenne Twister 
pseudo-random number generator and a hardware true random number generator 
to produce raw random numbers. After this, a series of scaling operations are 
applied to these raw numbers, enabling a comparison of the statistical 
characteristics of the scaled results. 
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1. Introduction 
Digital transformation requires the transformation of various business processes 
and models, which is also related to the introduction of new information systems 
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with authorized access [1, 2]. That is why many authors involve proper schemes 
to protect the users [3, 4]. To provide such kind of authorized access for secure 
identification and encryption, random number generation techniques are often 
applied [5]. Random numbers find applications across diverse fields such as 
statistics, cryptography [6, 7], simulations and detection [8], gaming [9], 
information systems access [10], scientific inquiry [11], etc. Randomness is an 
important issue for the Internet of Things to generate suitable random numbers for 
IoT devices due to the limited resources and cryptographic protocols [12, 13]. The 
generation of random numbers involves two primary methodologies: 

A. Pseudo-Random Number Generators (PRNGs) 
PRNGs deploy deterministic algorithms to produce sequences of numbers with 
statistical attributes akin to genuine randomness. They necessitate an initial seed 
and employ mathematical operations to generate successive numbers. PRNGs can 
cycle through their sequences after a certain cycle, termed the period length. 
Prominent PRNG algorithms encompass the Mersenne Twister [14] and the 
Linear Congruential Generator [15]. 

B. True Random Number Generators (TRNGs) 
TRNGs generate random numbers by exploiting inherently unpredictable physical 
processes. They draw upon external sources of entropy like atmospheric noise, 
radioactive decay, or electronic noise. TRNGs confer a heightened level of 
randomness compared to PRNGs but might necessitate specialized hardware or 
sensors for capturing the random sources. 

Scaling of Random Numbers 
Scaling raw random numbers involves metamorphosing the generated numbers 
from their original range into an alternative range or adapting their attributes in 
line with specific requisites. Some prevalent techniques for scaling encompass: 

o Linear Scaling: This technique entails mapping the raw random numbers 
onto a desired range through linear transformations. 

o Non-linear Scaling: Non-linear scaling entails applying mathematical 
functions or transformations to the raw random numbers for modifying 
their distribution or attributes. Familiar functions used for non-linear 
scaling include logarithmic, exponential, or trigonometric functions. 
These functions can be harnessed to create specific distributions, like the 
normal distribution (via the Box-Muller transform) or the exponential 
distribution (using the inverse transform method). 
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Scaling for Specific Objectives: On certain occasions, scaling may be 
executed to adhere to particular requirements or constraints. For instance, in 
cryptography, random numbers might necessitate scaling to align with the key size 
or to fit within a specific modular arithmetic range. 

The selection of a scaling technique hinges on the desired attributes and 
scope of the scaled numbers. It is of paramount importance to ensure that the 
scaling process does not instill bias, correlation, or other anomalies that could 
jeopardize the randomness or statistical traits of the random numbers. 
Furthermore, rigorous testing and analysis should be performed to validate the 
quality and randomness of the scaled numbers. 

Overview of Research 
This study undertook a sequence of number scaling operations on sequences 
generated by both PRNGs and TRNGs. The raw random numbers underwent 
assessment through the ENT [16] statistical test, available in the Linux operating 
system. Subsequently, a comparative analysis was executed to discern the 
influence of scaling on the Entropy parameter gauged by the ENT tool. 

The subsequent sections of the paper are structured as follows: Section 2 
delineates the statistical tools utilized, Section 3 presents the experiments and 
resultant outcomes, and the concluding section wraps up the paper while 
proffering recommendations for future research endeavors. 

2. Statistical Tools 
In this research, the tools employed for statistical analysis include the Mersenne 
Twister pseudo-random number generator, the TrueRNG v3 hardware random 
number generator, and the ENT tool for evaluating random number sequences. 

2.1. Mersenne Twister 
The Mersenne Twister stands as a widely utilized pseudo-random number 
generator algorithm. Its conception dates back to 1997, credited to Makoto 
Matsumoto and Takuji Nishimura, and it boasts an extended period and 
commendable statistical attributes. The name "Mersenne" is derived from its 
foundation on Mersenne primes, which are prime numbers representable as  
(2^p – 1). 

Operating as a linear feedback shift register (LFSR) generator, the 
Mersenne Twister engages a shift register and bitwise operations to yield random 
numbers. It showcases a substantial period, specifically (2^19937 – 1), signifying 
its capability to generate a sequence of (2^19937 – 1) distinct numbers prior to 
repetition. 
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Central to the Mersenne Twister is the notion of employing a considerable 
internal state comprising 624 32-bit integers to yield the pseudo-random sequence. 
These integers undergo deterministic updates using a recurrent relationship, 
yielding the appearance of randomness. The transitions of the state rely on 
modular arithmetic, bitwise operations, and non-linear transformations. 

To generate a pseudo-random number using the Mersenne Twister, a subset 
of the internal state is harnessed to compute a value, subsequently adjusted to fit 
within the desired range. This transformation usually involves shifting, masking, 
and scaling operations to ensure alignment with the desired output range. 

An advantage of the Mersenne Twister lies in its protracted period, resulting 
in a considerable time span before the sequence repeats. This renders it suitable 
for applications necessitating numerous independent random values, such as 
simulations, statistical sampling, and cryptography. 

It is worth noting, however, that the Mersenne Twister is a deterministic 
algorithm, implying that given the same internal state, it unfailingly generates the 
same sequence of pseudo-random numbers. Depending on the context, this 
attribute can be both beneficial and disadvantageous. For cryptographic 
applications where unpredictability is critical, alternative algorithms like 
cryptographic-strong PRNGs are generally recommended. 

2.2. TrueRNG v3 
The TrueRNG v3, introduced in 2013, is a hardware-based true random number 
generator conceived by ubld.it [17]. Diverging from pseudo-random number 
generators reliant on deterministic algorithms, TRNGs derive random numbers 
from inherently unpredictable physical processes, such as electronic noise or 
radioactive decay. 

TrueRNG v3 adopts a hardware architecture that captures atmospheric 
noise via an avalanche diode [18]. This diode engenders random fluctuations in 
voltage due to the uncertain nature of quantum processes. These voltage 
fluctuations undergo amplification and digitization to yield a stream of random 
bits. 

Functioning as a peripheral device, TrueRNG v3 interfaces with computers 
via a USB connection. It generates real-time random numbers as long as it remains 
powered and linked to a compatible computer. Access to the generated random 
data is facilitated through standard interfaces like USB. 

TrueRNG v3 encompasses various features to ensure the quality and 
security of the random numbers it produces: 

o Entropy: True randomness emerges from the capture of entropy sourced 
from physical origins. The harnessed entropy seeds a random number 
generator within the device, yielding high-quality random numbers. 
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o Noise Source Conditioning: Employing conditioning techniques, the 
captured noise undergoes processing to eliminate biases or patterns. This 
enhances the quality of the generated random numbers. 

o Bit Rate: TrueRNG v3 boasts a high bit rate, typically generating random 
data at rates of several megabits per second. This is suitable for 
applications necessitating a substantial volume of random numbers. 

o Compliance: The device conforms to various standards and protocols, 
ensuring compatibility with diverse operating systems and applications. 

o Open Source: The open-source design of TrueRNG v3 permits users to 
scrutinize and validate both the hardware and firmware for transparency 
and security. 

TrueRNG v3 is widely employed in applications demanding authentic 
randomness, including cryptography, scientific simulations, and gaming. It 
presents a dependable source of random numbers capable of enhancing the 
security and performance of diverse systems and applications. 

2.3. Scaling of Random Numbers 
The ENT tool, a software package tailored for assessing the entropy of files and 
byte sequences, finds common usage in evaluating data's randomness and 
informational content, encompassing random number sequences. 

At its core, the ENT package features a command-line tool named ENT, 
which calculates various statistical metrics pertaining to randomness and entropy. 
This tool subjects input data to a battery of tests, analyzing the distribution of byte 
values and other characteristics. Outputs include entropy measurements, results 
from chi-square tests, mean values, and assorted statistical parameters. 

Primarily oriented toward evaluating the statistical attributes and entropy 
of data, the ENT tool proves valuable in gauging the quality of random number 
generators, encryption algorithms, compression methodologies, and other 
applications reliant on randomness and information density. The ENT tool focuses 
on five statistical parameters: 

o Entropy: Measuring the unpredictability of a byte sequence, entropy 
quantifies the information contained within the data. In the realm of 
random number generators, higher entropy signifies a sequence of 
numbers exhibiting greater randomness and diminished predictability. 

o Chi-square Test: Employed to discern significant deviations between 
anticipated and observed data distributions, the chi-square test determines 
whether byte values within input data follow a uniform distribution or 
display biases and patterns. 
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o Arithmetic Mean: This computes the average value of a number set. 
Within the context of the ENT tool, it calculates the mean of byte values 
in input data, offering insights into the dataset's center or typical value. 

o Monte Carlo Value for Pi: Employing the Monte Carlo method, the ENT 
tool estimates the value of Pi (π) by generating random points within a 
unit square and assessing their distribution within a unit circle. This 
estimation indicates the randomness of the input data. 

o Serial Correlation Coefficient: Reflecting the correlation between 
consecutive sequence values, the serial correlation coefficient measures 
the intensity and direction of this correlation. In the context of the ENT 
tool, it computes the serial correlation coefficient for byte values in input 
data. Values near zero denote minimal correlation, while values 
approaching (+1) or (– 1) signify strong positive or negative correlations, 
respectively. 

These parameters furnish insights into randomness, distribution, and 
statistical attributes of input data. By assessing these metrics, the ENT tool aids in 
evaluating the quality and randomness of random number generators, encryption 
algorithms, and other applications where randomness and information density 
hold significance. 

3. Experiments & Results 
The empirical data, each consisting of 1MB, originates from two distinct sources. 
The initial dataset is derived from the Mersenne Twister implementation within 
the NumPy library, while the subsequent dataset is procured from the TrueRNG 
v3 hardware generator. The primary objective of this study is to discern the impact 
of scaling on raw random numbers with regard to entropy measurement for both 
pseudo and authentic random numbers. This rationale underscores the 
investigation of two separate raw data collections. 

The raw data undergo a scaling process that transforms their range from 
(0 − 1) to a (0 − 32) span. This particular range holds widespread usage within 
the domain of the gambling industry. Post the execution of the scaling operation, 
the ENT tool is invoked, thereby yielding measured parameters that are 
subsequently recorded. 

Fig. 1 and Fig. 2 illustrate the variations in entropy as influenced by the 
scaling range. In both test sets, it is evident that entropy measurements are notably 
more impacted by scaling in smaller ranges compared to larger ones. The 
outcomes distinctly indicate that employing conventional tools such as ENT 
yields reduced efficacy in assessing randomness when random number scaling is 
implemented. 
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Fig. 1. Mersenne Twister entropy 

 

 
Fig. 2. TrueRNG v3 entropy 

 
Fig. 3 depicts the disparity between the two entropy curves. This 

discrepancy is relatively minor and remains within the scope of statistical 
fluctuations. 
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Fig. 3. Entropy difference 

 

4. Conclusions 
This study tackles the challenge of scaling raw random numbers, particularly in 
the context of gambling regulations that emphasize the scaling and mapping of 
these numbers. However, the empirical findings do not substantiate these legal 
apprehensions. 

The constraints of limited research time and resources have hindered a more 
extensive exploration of various scaling ranges. As a future avenue of 
investigation, it would be beneficial to significantly expand the scope of scaling 
ranges. Additionally, relying solely on 1MB of raw data imposes limitations on 
the representativeness of the samples. In forthcoming experiments, the exploration 
of larger binary files could be pursued. 

The analysis conducted using the ENT tool is circumscribed by its statistical 
capabilities. Future analyses could consider employing more robust tools, such as 
Dieharder [19], to enhance the depth of statistical assessment. While this paper 
delves into the intricacies of the scaling problem, the related mapping challenge 
remains unaddressed. 
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