
37

BULGARIAN ACADEMY OF SCIENCES
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS • 2023 • Vol. 79, pp. 37-54

p-ISSN: 2738-7356; e-ISSN: 2738-7364
https://doi.org/10.7546/PECR.79.23.02

Redundancy Management in Dependable
Distributed Real-Time Systems

Edita Djambazova1, Rumen Andreev1

1 Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences, Sofia, Bulgaria
Emails: edita.djambazova@iict.bas.bg, rumen@isdip.bas.bg

Abstract: Dependable distributed real-time systems are usually deployed in
safety-critical applications. One of the major requirements for their operation is to
be fault-tolerant. Fault tolerance is achieved by using various techniques, most of
which are based on redundancy. Traditionally, redundancy in dependable
distributed real-time systems is applied at a component level and in
communication but it could take many forms. The presented survey investigates
the methods and techniques to realize redundancy in dependable distributed real-
time systems and attempts to systemize the variety of approaches to implement it.
Although redundancy is a well-studied fault-tolerance method, it deserves
attention in order to broaden the view on its application and seek opportunities for
optimized solutions.

Keywords: dependable distributed real-time systems, redundancy, replication,
fault-tolerance techniques, system design

1. Introduction
Dependable distributed real-time systems are often implemented in safety-critical
applications where the requirements for fault-tolerant operation are essential.
Incorporating fault tolerance means guarantees for error detection and removal.
Redundancy is a key method to achieving fault tolerance. As its name suggests, it
is something that the system could do without. Most systems operate correctly
without using additional elements. For dependable systems, however, where there
is a requirement for high system reliability even in the presence of faults, one of
the traditional techniques to apply redundancy is replication.

mailto:edita.djambazova@iict.bas.bg
mailto:rumen@isdip.bas.bg

38

Since introducing redundancy incurs excessive resources and hence
increased costs, it is implemented in systems that have to guarantee that no
catastrophic failure could occur. Examples of such systems are safety-critical
applications, high-reliability systems, mission-critical systems, automobiles, etc.
The additional costs of having redundant elements are justified by the potential
consequences of a system failure which could cause severe damage to equipment,
loss of critical functionality, or even injury or death of people. Researchers,
designers, and engineers seek ways of achieving the needed dependability at the
optimal price.

Dependable distributed real-time systems use replication techniques at
different levels. Since these systems are usually intended for safety-critical
applications, fault tolerance is integrated into their design. Distributed real-time
systems are built out of functional units that exchange messages with each other
through a communication channel in order to fulfill a common control task.
Replication is applied in the functional units, in the communication channel, in
the tasks, etc. Where to use replicated components is decided at the design stage
of the dependable system.

The paper discusses dependable distributed real-time systems. For the sake
of brevity, we will use the terms distributed systems and distributed real-time
systems equivalently throughout the text.

A distributed real-time system (Fig. 1) contains relatively autonomous
functional units (often called in the literature fault containment units – FCUs [14,
17, 23]) that exchange messages through a communication bus and execute a
common algorithm. We use the term components for the functional units
throughout the paper.

Fig. 1. Distributed real-time system

39

The system controls an industrial process called the object under control.
The components take inputs from the sensors of the object under control, run a
control program that calculates some results, and output these results to the
actuators of the object. To fulfill their task, they need to communicate with the
other components by exchanging data. System components are designed to have
safe behaviour, i.e., a fault should not reach the outputs of a component. Fault
containment is an important property of a component. It guarantees reliable
system operation. To achieve a fault-tolerant behaviour of the components, they
are built out of replicated modules [2, 3, 7, 9, 17]. Replication at the component
level can be hardware and software. Additional error detection means are also
applied in each module [15, 30, 33, 38]. The bus itself is often replicated [12, 15,
23, 39].

Our survey focuses on component redundancy. It studies the redundancy
methods and replication techniques applied at a component level in an attempt to
systemize their great variety and find out some possibilities for optimization.

The paper is organized into three sections studying the role and the place of
redundancy in distributed real-time system design. The system design from a
dependability perspective is discussed in Section 2 where the process of
incorporating means for fault tolerance is described. The methods and techniques
to implement redundancy in distributed real-time systems are surveyed in Section
3. The realization of redundancy in dependable distributed systems is discussed in
Section 4. Section 5 concludes the survey.

2. System design
The distributed system development cycle can be presented as an iterative process.
It considers the system from two viewpoints: practical and abstract. The practical
view of the system is its implementation. In its working environment, the system
is prone to various impairments that prevent it from correct operation. The abstract
view of the system is its model. The system model takes into account the system
specifications, the intended application, the desired functionality, and the system
architecture. To design it some theoretical knowledge is needed. These viewpoints
of the system have to exchange data with each other to achieve a complete system
model that can be validated and verified.

There are two approaches to the system design: top-down and bottom-up.
The top-down strategy takes the way from a high level of abstraction through the
application of certain requirements to a model relevant to the application. The
bottom-up strategy is to take some specific technical parameters of the system and
go all the way to the design and realization of a system to build a model to verify
and validate the system. The two approaches should meet in the design of a
system.

40

Initially, the bottom-up strategy defines the problem under consideration.
The problem is a practical issue that needs to be resolved. It usually has a real-
world origin, e.g. a system suffering from a malfunction. In the context of the
paper, the studied problem is dependability as a general concept (Fig. 2). The
designed system needs to be dependable since it will be operated in critical
applications. System engineers try to find a solution to that problem. Firstly, they
need to understand the issue, i.e., to see the structure of the problem. To achieve
the fault tolerance required by the application they have to decide which methods
are appropriate. System reliability is one of the attributes of dependability [1, 19,
20]. There are various means to obtain a certain level of reliability – fault
prevention, fault tolerance, fault removal, and fault forecasting [1, 19]. Fault
tolerance is the focus of the presented survey. It is mostly achieved through
redundancy. The types and modes of redundancy are discussed in Section 3.

System designers develop a strategy to reach the solution. In this effort,
they look for some basic knowledge. At this point, the research methods and
models may help find better solutions. Many fault-tolerance techniques are used
in distributed real-time systems. Most of them are based on redundancy, such as
N-modular redundancy, N-version programming, software diversity, recovery
blocks, etc.

To establish the strategy for problem resolution the developers also use
some specific properties of the operational environment of the system and its
context. The context is the application area of the system under consideration. It
influences those characteristics of the environment that are relevant to the
developed system. The result of this iterative process is a plan for the realization
of the system that is a solution to the initial problem.

In terms of redundancy, the described process looks as follows (Fig. 2). A
distributed system controls an industrial process, i.e. the distributed computing
environment. Along with the issues concerning communication among the
constituent components, the system is subject to faults. These faults disturb its
operation and threaten to harm the process under control leading to undesired
consequences. The problem with the system’s dependability becomes a design
issue: how to make the system fault-tolerant. Faults could have many causes and
could occur under various conditions, their instance is unknown. And they are
inevitable, they are always present in the systems. Since the faults are
unpredictable, the system should have the resources to deliver its intended service
even in the presence of faults. Redundancy is one of the strategies to resolve the
problem with the needed fault tolerance. The engineering issues with redundancy
implementation, such as coordination among the replicas, designing self-checking
tools, choosing a fault/failure mode, etc., have to be combined with the research
solutions, e.g., defining a system model, developing component models, studying
different operational scenarios with the models, fault-tolerance techniques,
reliability assessment, etc. We combine them under the name dependability

41

assessment. The models and their parameters depend on the application (e.g.,
cyber-physical systems, safety-critical systems, automobiles, etc.) and the
operational environment, i.e., the distributed computing environment. The
dependability attributes are determined based on the particular application. The
results obtained from the models’ investigation are used in the system’s design.
The appropriate replication technique is identified.

 Fig. 2. The process of applying redundancy.

Component replication can be viewed through the prism of the system

design strategy. After identifying the appropriate replication technique the design
process can enter the known schemes for system design. There are well-
established approaches to system design in general and the design of engineering
systems in particular. Our general approach gives a view to dependable system
design and helps see the opportunities to implement redundancy in a dependable
distributed system. It offers input knowledge to the process of system design
introducing the fault-tolerance perspective.

System design schemes help construct a system from the initial idea to the
final implementation [36]. The process is standardized and broadly applied to
develop systems with the desired properties. This is known as System
Development Life Cycle (SDLC). The SDLC is applied in the following design
stages: planning, analysis, design, implementation, and maintenance1. Many
models include the stage of testing before the implementation2 since it is an
important part of the process. During the planning stage, the concept and the

1 https://en.wikipedia.org/wiki/Systems_development_life_cycle
2 https://www.clouddefense.ai/blog/system-development-life-cycle

42

general system requirements are identified. As the process matures, the functional
requirements of the system are defined. Based on them, the system architecture is
developed. The development process enters into more detail and the system
hardware and software are designed. The system is ready for implementation but
it should go through component testing, integration testing, system testing, and
acceptance testing.

In [25], the process of reliable systems development, called Design for
Reliability (DfR), is presented in six engineering activities: identify, design,
analyze, verify, validate, and control. It aligns with the described general process
of problem solving (Fig. 2).

The described process of determining the replication technique taking into
consideration many aspects (Fig. 2) can be used as a prerequisite to the SDLC
scheme or be incorporated into it, thus specifying dependability requirements.

3. Redundancy in dependable distributed real-time systems
As already outlined, redundancy is a functionality or a component of a computer
system that is not needed for the system to perform its normal operation but is
necessary in case of fault occurrence to guarantee system service delivery in these
exceptional circumstances. It is a method of implementing fault tolerance in
dependable computer systems and is in turn realized by replication techniques.

Redundancy can be structural, time, or functional [7, 10, 18, 34, 35].
Structural redundancy represents the introduction of additional elements
(hardware or software) to the system architecture to take over the function of the
failed ones. It can take different replication styles and degrees. Replication styles
define if the replication is active, passive, or a combination of them [8, 22]. Active
structural redundancy is realized through hot spare components that operate
concurrently with the primary one executing the same task and comparing their
results [34, 35]. Passive structural redundancy uses spare modules for the primary
module. One of the spares becomes active when the primary module fails [34, 35].
The replication degree [8, 22], determines the number of replicas of a component
– one, two, or three.

Time redundancy is realized through repetition. A control routine can be
executed twice and the results can be compared. In case of a detected fault, the
sending component can remain silent and try to recover. Another way to apply
temporal redundancy is to send a failed message again. Time redundancy has to
be applied carefully in real-time systems to preserve their correctness in the real-
time domain.

Functional redundancy means the replication of some functions with
different means, e.g. software diversity, acceptance tests, etc. Here, the replicas
are not identical but their functions are similar.

43

Information redundancy is used in the coding theory and is applied in
computing systems but is out of the scope of this paper.

The redundancy types are described in more detail in the next subsections.

3.1. Replication style
The replication style defines the way the replicated components perform their
operation. The fault-tolerant components have replicated modules and only one of
them, called primary, issues the output result. The other replicates are secondary.
Depending on the replication style the redundancy can be passive or active.

Sparing
Sparing is a passive form of redundancy [7, 10, 20]. Only the primary module
executes the application, and the other replicas are its spares. Spare modules are
added to the primary one in order to take over its functions in case of its fault. In
hardware, this is implemented as a standby sparing. The standby module is
identical to the active unit but does not perform in the system operation until the
primary module fails. In that case, it becomes active and the failed module can be
diagnosed and eventually repaired. Sparing can be applied in two ways depending
on how the state of the primary module is transferred to the spare. In cold sparing,
a spare can take the functions of the primary only when it crashes and then
retrieves the state from a log saved on shared storage. In warm sparing, the spares
are in standby mode and periodically receive state updates from the primary.

Replication
Replication means that identical modules execute the same functions on the same
inputs, and compare their results [7, 10, 20, 34, 35]. The replicas could work as
active or passive spares (see Sparing). The active spares work together
concurrently but only the primary component issues the result to the object under
control.

Replication techniques can be implemented at different parts of the
dependable system’s architecture. They can be realized in the hardware, the
software, the communication, and the time-dependent elements of the designed
system. Passive and active redundancy can be applied together making many
combinations.

3.2 Replication degree
The replication degree determines the number of modules in a component.
Depending on the importance of a component for the system operation, it can have
one or more replicates, or not be replicated at all.

In hardware, the replication takes the form of N-modular redundancy
(NMR) [7, 18, 20, 34, 35]. It is mostly applied as dual modular redundancy (DMR)

44

and triple modular redundancy (TMR). In DMR, the two replicas compare their
results and, in case of discrepancy, the component does not issue any result,
remaining fail-silent. Usually, the modules have additional fault-tolerance
mechanisms (called self-checking units) to decide which module is faulty. In
TMR, there are three active modules and a voter. Voting over the results allows
for the masking of one fault. Depending on the failure mode, the component can
continue operating with two (or even one) non-faulty modules equipped with self-
checking tools.

The replication in software is realized as recovery blocks (RB) [31, 32] and
N-version programming (NVP) [31]. In the RB approach, two alternates are
produced from a common service specification and an acceptance test decides
whether the result is correct. The acceptance test is applied sequentially to the
results of the alternates. If the results of the primary alternate do not pass the
acceptance test, the second alternate is executed. The RB approach corresponds
to the stand-by sparing in hardware.

In the N-version programming, there are N (N≥2) variants of the software
that are executed simultaneously, and their results are compared. The variants are
software routines that are written by different programming teams and possibly
using different algorithms. This is supposed to avoid the common errors that
programmers tend to do. The results of the software versions are voted upon and
the majority result is issued. The hardware equivalent of the NVP is the NMR.

N Self-Checking Programming (NSCP) [31] is another approach to
redundancy applied in software. In the NSCP approach, N self-checking software
components are executed; one of them is considered as acting and the other self-
checking components are considered as hot spares. Upon failure of the acting
component, the operation is switched to a spare self-checking component.

3.3. Time redundancy.
Time redundancy requires additional time to be allocated to the task execution [7,
18, 34, 35]. The control routine is executed twice and the results are compared
[15] in order to override the effect of a transient fault. In case of a difference, the
component remains silent. Another form of temporal redundancy in dependable
distributed systems is to send a message again if a fault is reported before the first
transmission [15, 34, 35].

The fault in the message is detected by some embedded mechanisms such
as CRC code, comparison with the results of the other components, etc. Time
redundancy has lower overhead compared to structural redundancy but it may
impact the system’s performance and should obey the real-time constraints.

45

3.4. Functional redundancy.
Functional redundancy is implemented in the software. In [10], it is defined as
qualifying the system’s behaviour relative to its inputs/outputs relationships.
According to the definition given in [10], a system has functional redundancy in
three cases: (i) if some theoretically possible input values are not applicable
according to the system’s specifications; (ii) if some theoretically possible output
values are not produced according to the system’s specifications; and (iii) if some
theoretically possible input/output values never occur according to the system’s
specifications. Functional redundancy is useful in error detection.

4. Redundancy realization
The described forms of redundancy can be applied in combination and/or at
different system levels [37]. In dependable distributed systems, the components
are physically replicated (hardware redundancy), the software modules are
allocated at different processors (software redundancy), the communication
channels could also be replicated, and time redundancy is often applied.

Some systems use a kind of redundancy hierarchy. They define the levels
of importance of their elements and introduce a communication procedure among
the levels. In [28], integrity and criticality levels are determined.

Dependability in distributed real-time systems for safety-critical
applications became a part of their design. All parameters and system components
that are important for the fault-tolerant system operation are included in the
SDLC. The system design point of view on structural redundancy is illustrated in
Fig. 3.

Fig. 3. Applying SDLC in structural redundancy for dependable distributed systems

46

Introducing structural redundancy involves the definition of the critical
elements, the important system parameters, and the criticality levels (if they are to
be included). The components of the distributed system control different
parameters of the object under control with different significance for the fault-
tolerant operation. At the stage of defining the requirements in SDLC, the
controlled parameters should be defined and the criticality levels should be
outlined. The components controlling the important parameters will receive a high
criticality level and need to be fault-tolerant. At the stage of system design, the
replication degree and style should be determined. The replication degree defines
if SMR (single modular redundancy), DMR, or TMR will be applied. The
replication style chosen determines whether active or passive replication will be
used. Modules in system components can be evenly distributed, i.e., all
components can have an equal number of modules, or can use mixed redundancy.
The actual building stage of the SDLC implements the decided system
architecture, e.g., GUARDS [28, 29], versatile dependability [8, 22], or adjustable
reliability [5], as shown in Fig. 3.

Replication is rarely applied in pure types in dependable distributed
systems. There is always a mixture of replication styles at various system levels.
In hardware, the system’s components can be replicated identically or depending
on their criticality. Software components can also have a different number of
copies on different components/processors to achieve better use of system
resources. In the scheduling of dependable distributed systems, approaches for
mixed criticality are implemented that meet the fault-tolerance and real-time
requirements [4, 13].

4.1. Implementing different replication degrees
Equal redundancy for all components
The most straightforward way of applying redundancy is to replicate the active
components and compare their results. In distributed systems, the nodes can be
built out of two or three identical modules executing the same task (Fig. 4).

The results of the replicas are compared (as in [11, 15, 31, 38]) or voted in
the case of TMR (as in [14, 17]). If no discrepancy is shown, the presumably
correct result is issued to the object under control. In case of a mismatch, the result
is not issued and the node is put in a safe state according to the system conventions.

The system’s hardware components have equal replication degrees but the
software components (execution tasks) may have different redundancy. For
example, there are three tasks in Fig. 4 – A, B, and C; task A has three replicates,
task B has one, and task C has two. The replicates may reside on different system
components, thus allowing for error isolation.

47

Fig. 4. Dependable distributed real-time system

The two historically established directions in dependable distributed

systems are to build an open architecture as in Delta-4 [27, 30] or a strictly
determined architecture as in MARS [15]. The Delta-4 project defines a real-time
computer architecture that uses replicated software components allocated at
different host computers. Host computers are fault-tolerant (hardware replication).
A homogeneous set of fault-tolerance techniques is determined that allows
building various systems and applications with different dependability and
performance requirements to be configured without redesigning the software
components.

In MARS [15], the aim is to build a predictably dependable distributed real-
time system based on hard real-time constraints. The system is designed to
preserve its functionality even in peak-load conditions. System components use
active redundancy and self-checking, the communication bus is also duplicated,
and time redundancy is used for the tasks. The active redundancy is physically
applied by DMR, i.e., two components execute the same tasks. The time
redundancy is achieved by sending each message twice. The MARS components
have self-checking mechanisms that guarantee their fail-stop behaviour.

Many dependable distributed systems are built to offer re-usability of the
components, lower design costs, and introduce flexibility to the application
requirements. The DEAR-COTS system [26, 38] is an approach to reducing
design costs by implementing commercial off-the-shelf (COTS) components into
dependable distributed systems. The system is built using distributed nodes to
execute hard real-time applications. The hard real-time subsystem (HRTS) of
DEAR-COTS is based on the software integration of hardware COTS
components. One hard real-time application is divided into several tasks, which

48

execute in different nodes of the HRTS. Each node has its own COTS kernel and
hardware and the HRTS support software provides the application distribution and
replication management. Active replication of dissimilar replicated task sets is
used in DEAR-COTS.

The use of COTS components also lies in the architecture of GUARDS
[29]. The generic fault-tolerant computer architecture is defined along three
dimensions of fault containment: integrity levels, lanes, and channels. Fault
tolerance and integrity management are software-implemented, with a minimum
of specialized hardware. Integrity levels are intended to prevent design faults from
propagation outside a containment region. The aim is to protect critical
components from errors due to design faults in less-critical components. The
integrity level reflects the degree to which an application object is trustworthy.
The GUARDS architecture uses multiple processors or lanes to detect and
diagnose physical faults within a channel. Channels are the ultimate line of
defence against physical faults in a single channel. Fault tolerance is achieved
through active replication of application tasks over the set of channels.

The Time-Triggered Architecture (TTA) [14, 16, 21] extends the MARS
approach to give a way of building dependable distributed real-time systems. A
TTA component is a fault-containment unit. Fault-tolerant units are built out of
replicated components to mask arbitrary faults in components. TTA components
interact with the environment solely by the exchange of messages. They have
message-based linking interfaces that are independent of the implementation
technology of the components. The TTA architecture provides a globally
synchronized time base. The message exchange among the modules runs over two
replicated channels. The smallest replaceable unit (SRU) [16, 17] consists of a
host subsystem and a communication subsystem. The host subsystem executes the
application software and the communication subsystem is responsible for
communication protocol execution. One or more SRUs can form a fault-tolerant
unit.

Different redundancy for the components
Some systems use different degrees of replication for their components. Some of
the controlled system parameters or some system components are more important
for the system’s operation than others. The importance of such components is
defined by the consequences of their failure. If the system cannot afford to lose
some of its functionality because that would lead to a catastrophic failure, the
component is considered critical.

In GUARDS [29], there are integrity levels and criticality levels. The
integrity levels are defined according to the degree to which a system component
can be trusted – the more trustworthy a component is, the higher its integrity level
[28]. The degree of trust placed on a component depends on its criticality. Critical
components are considered those whose failure consequences are severe. Such

49

components have a higher degree of integrity. Integrity levels are a part of the
integrity policy that prevents flows of information from low to high integrity
levels. Criticality levels are related to integrity levels but address different issues.
Integrity levels, through the integrity policy, define the allowed data flows
between the levels and resource utilization by the components of different levels.
Criticality levels define the critical system components in terms of the potential
consequences of failures of components at each level [29].

The DEAR-COTS model of replication [26, 38] allows for defining the
replication degree of specific parts of the real-time application accordingly to the
reliability of the components and the desired level of reliability for the application.
An N-replicated component is defined. There is a Replica Manager layer to
provide the resources for communication between the distributed tasks and
replicated components. A deterministic replica execution must be guaranteed.

The DECOS project [11, 24] proposes an integrated distributed architecture
to support mixed-criticality systems. Mixed-criticality systems consist of
distributed application parts with different criticality levels on top of the same
physical hardware. The DECOS system is based on the principles of “strong fault
encapsulation, fault tolerance by means of replication and redundancy, and
separation of safety-critical from non-safety-critical functionality [11].” The
functional distribution following these principles leads to the structure with a
number of Distributed Application Subsystems (DASs) and jobs. The system
service is executed by clusters that are sets of distributed node computers
interconnected by a time-triggered network. The node computers provide the
protected execution environment for the jobs through encapsulated partitions.
According to the federated approach, application parts with different criticality
levels are implemented as self-contained units with their own processing and
input/output systems. In DECOS, the non-interference of the encapsulated
partitions allows the nodes to host multiple jobs belonging to different DASs, with
different levels of criticality.

Versatile dependability [8, 22] is an approach to building dependable
software architectures considering three important aspects – fault tolerance,
performance, and resources. It provides a set of tools, called “knobs”, for tuning
the trade-offs between these aspects. The versatile dependability framework
distinguishes between low-level and high-level knobs. The internal fault-tolerance
properties, such as the replication style, the minimum number of replicas, the
checkpointing intervals, the fault monitoring intervals, etc., are the low-level
knobs. The high-level knobs correspond to the external properties of the system,
e.g., scalability and availability. The versatile dependability framework is based
on fault-tolerant middleware specifications. A distributed asynchronous system is
assumed. A special software module, a replicator, manages groups of client and
server replicas. The replication is implemented at the process level, since a process

50

may contain several objects that have to be recovered in case of a process crash.
The replicator supports active and passive replication styles.

Most of the dependable distributed real-time systems follow the
architectural style depicted in Fig. 4. They employ equally replicated physical
components and mixed redundancy of the software components. There are
approaches that propose different degrees of replication of the hardware
components (Fig. 5), as in the dependable distributed system with adjustable
reliability [5].

Fig. 5. Dependable distributed real-time system with adjustable reliability

The system with adjustable reliability [5] applies modules with different

replication degrees – single modules, modules with dual modular redundancy, and
modules with triple modular redundancy. Modules are self-contained units
according to dependability terminology, i.e., no fault can propagate from one
component to another. The replication degree is determined according to the total
reliability required by the application. Using the approach of adjustable reliability,
the module redundancy distributions that satisfy the application requirements are
identified. The necessity to have components with different replication degrees is
related to their criticality. Unlike the approaches implementing mixed criticality
of the software application parts executed over evenly replicated hardware, the
reliability adjustment approach proposes a component’s redundancy degree to be
determined according to its criticality at the design stage and the fault-containment
components to operate with mixed redundancy. Although this approach may not
offer the flexibility of the software-implemented dependability solutions the
results of its simulation modelling [6] show that there are redundancy distributions
that achieve the total system reliability required by the application.

51

5. Conclusion
Implementing redundancy is an essential technique to achieve fault tolerance in
dependable distributed real-time systems. Different forms of replication are used
to guarantee fault containment, error detection, and safe operation of the system.
Dependable distributed real-time systems use redundant hardware and software
components, replicate communication channels, and apply time redundancy. The
extensive use of various forms of redundancy renders the systems complex and
resource-consuming and affects their performance. Many approaches have been
proposed to building highly reliable distributed systems that make efficient use of
their resources, satisfy the dependability requirements of a real-time application,
and allow to relax the design efforts.

We have presented the process of redundancy implementation from the
perspective of the system design cycle. Identifying the replication technique is a
process that considers both the realization specifics and the theoretical knowledge
about the designed system. The engineering perspective includes the requirements
of the application, the real system context, the fault-tolerance techniques, etc. The
abstract point of view proposes the system model that takes into account the
dependability attributes and assumptions relevant to the system, i.e., reliability,
availability, the fault/failure mode, the system reliability assessment, the possible
fault scenarios, etc. The chosen replication technique as a result of that effort can
then be included in the system design cycle.

Various forms of redundancy implementation were developed to suit the
intended system applications. To render the dependable distributed systems more
flexible and effective from the performance viewpoint mixed replication styles
and replication degrees are incorporated. They reflect the criticality levels
determined for the fault-containment components. Using different degrees of
replication in dependable distributed real-time systems allows the efficient use of
system resources without sacrificing the dependability requirements dictated by
the application.

Acknowledgment
This research is supported by the Bulgarian FNI fund through the project
“Modelling and Research of Intelligent Educational Systems and Sensor
Networks (ISOSeM)”, contract КП-06-Н47/4 from 26.11.2020.

References
1. Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C.: Basic concepts and

taxonomy of dependable and secure computing, IEEE Transactions on Dependable
and Secure Computing 1(1), 11–33 (2004), DOI: 10.1109/TDSC.2004.2.

52

2. Barranco, M., Derasevic, S., Proenza, J.: An Architecture for Highly Reliable
Fault-Tolerant Adaptive Distributed Embedded Systems. Computer 53, 38–46
(2020), DOI: 10.1109/MC.2019.2944337.

3. Birman, K. P.: Reliable Distributed Systems Technologies, Web Services, and
Applications. Springer New York, NY (2005).

4. Burns, A. and Davis, R. I.: Mixed Criticality Systems – A Review. University of
York, UK (2022).

5. Djambazova, E.: A Fault-Tolerant Real-Time System with Adjustable Reliability,
ACM International Conference Proceeding Series, CompSysTech'21 - Ruse,
Bulgaria, Association for Computing Machinery (ACM), New York, USA, pp.
76–80 (2021), DOI: 10.1145/3472410.3472415.

6. Djambazova E.: Achieving System Reliability Using Reliability Adjustment,
ACM International Conference Proceeding Series, International Conference on
Computer Systems and Technologies 2022 (CompSysTech ’22), Ruse, Bulgaria,
ACM, New York, USA, pp. 64–68 (2022), DOI: 10.1145/3546118.3546129.

7. Dubrova, E.: Fault-Tolerant Design. Springer Science+Business Media New
York (2013), DOI: 10.1007/978-1-4614-2113-9.

8. Dumitras, T., Srivastava, D. and Narasimhan, P.: Architecting and Implementing
Versatile Dependability. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds)
Architecting Dependable Systems III. LNCS, vol. 3549 (2005), DOI:
10.1007/11556169_10.

9. Erciyes, K.: Distributed Real-Time Systems Theory and Practice. Computer
Communications and Networks Series, Springer Cham (2019), DOI:
10.1007/978-3-030-22570-4.

10. Geffroy, J.-C. and Motet, G.: Design of Dependable Computing Systems.
Springer Netherlands (2002), DOI: 10.1007/978-94-015-9884-2.

11. Herzner, W., Schlick, R., Schlager, M., Leiner, B. et al.: Model-Based
Development of Distributed Embedded Real-Time Systems with the DECOS
Tool-Chain, SAE Technical Paper 2007-01-3827 (2007), DOI: 10.4271/2007-01-
3827.

12. Isermann, R.: Fault Diagnosis Systems. An Introduction from Fault Detection to
Fault Tolerance. Springer, New York (2006), DOI: 10.1007/3-540-30368-5.

13. Islam, S., Lindstrom, R., and Suri, N.: Dependability driven integration of mixed
criticality SW components. In Ninth IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Computing (ISORC'06),
Gyeongju, South Korea, pp. 485-495 (2006), doi: 10.1109/ISORC.2006.26.

14. Kopetz, H. and Bauer, G.: The time-triggered architecture. In Proceedings of the
IEEE, 91(1), 112–126 (2003), DOI: 10.1007/0-306-47055-1_14.

15. Kopetz, H., Damm, A., Koza, C., Mulazzani, M., Schwabl, W., Senft, C.,
Zainlinger, R.: Distributed fault-tolerant real-time systems: The Mars approach.
IEEE Micro 9 (1), 25–40 (1989), DOI: 10.1109/40.16792.

16. Kopetz, H.: The time-triggered model of computation. In Real-Time Systems
Symposium (RTSS98). IEEE Press. Madrid, Spain. pp. 168–177 (1998), DOI:
10.1109/REAL.1998.739743.

17. Kopetz, H.: Real-Time Systems, Design Principles for Distributed Embedded
Applications. 2nd ed. Real-Time Systems Series, Springer (2011).

53

18. Koren, I. and Krishna, C. M.: Fault-Tolerant Systems (2nd ed.). Elsevier Inc.
(2021), DOI: 10.1016/C2018-0-02160-X.

19. Laprie, J.C.: Dependability: Basic Concepts and Terminology. Springer:
Berlin/Heidelberg, Germany (1992).

20. Lee, P. A., Anderson, T.: Fault tolerance: principles and practice, 2nd ed.
Springer, (1990).

21. Maier, R., Bauer, G., Stöger, G., and Poledna, S.: Time triggered architecture: A
consistent computing platform, IEEE Micro 22(4), 36–45 (2002), DOI:
10.1109/MM.2002.1028474.

22. Narasimhan, P., Dumitras, T. A., Paulos, A. M., Pertet, S. M., Reverte, C. F.,
Slember, J. G. and Srivastava, D.: MEAD: support for Real-Time Fault-Tolerant
CORBA. In Concurrency and Computation: Practice and Experience 17, 1527–
1545. Wiley InterScience (2005), DOI: 10.1002/cpe.882.

23. Obermaisser, R., Kopetz, H., Kuster, S., Huber, B., El Salloum, C., Zafalon, R.,
Auzanneau, F., Gherman, V., Kronlof, K., Waris, H., et al. GENESYS: A
Candidate for an ARTEMIS Cross-Domain Reference Architecture for Embedded
Systems, Suedwestdeutscher Verlag fuer Hochschulschriften (2009).

24. Obermaisser, R., Peti, P., Huber, B., and El Salloum, C.: DECOS: An integrated
time-triggered architecture. Elektrotech. Inftech. 123, 83–95 (2006), DOI:
10.1007/s00502-006-0323.

25. O'Connor, P. D. T., and Kleyner, A.: Practical Reliability Engineering. Fifth
Edition, John Wiley & Sons, Ltd (2011), DOI:10.1002/9781119961260.

26. Pinho, L. M., Vasques, F., and Wellings, A.: Replication management in reliable
real-time systems. Real-Time Systems 26, 261–296 (2004), DOI:
10.1023/B:TIME.0000018248.18519.46.

27. Powell, D. (Ed.): Delta-4: A Generic Architecture for Dependable Distributed
Computing, Springer: Berlin/Heidelberg, Germany (1991).

28. Powell, D. A Generic Fault-Tolerant Architecture for Real-Time Dependable
Systems, Springer: Boston, MA, USA (2001).

29. Powell, D., Arlat, J., Beus-Dukic, L., Bondavalli, A., Coppola, P., Fantechi, A.,
Jenn, E., Rabe´jac, C., and Wellings, A.: GUARDS: A Generic Upgradable
Architecture for Real-Time Dependable Systems, In IEEE Trans. Parallel and
Distributed Systems, special issue on dependable real-time systems, 10(6), 580–
599 (1999).

30. Powell, D., Bonn, G., Seaton, D., Verissimo, P., and Waeselynck, F.: The Delta-
4 Approach to Dependability in Open Distributed Computing Systems. In
Proceedings of the Eighteenth International Symposium on Fault-Tolerant
Computing. Digest of Papers, 246–251 (1988), DOI: 10.1109/FTCS.1988.5327.

31. Randell, B., Laprie, J.-C., Kopetz, H., and Littlewood, B.: Predictably dependable
computing systems. Springer (1995).

32. Randell, B. and Xu, J.: The evolution of the recovery block concept, in M. Lyu
(Ed.), Software Fault Tolerance, Wiley, 1995, pp. 1–21.

33. Rostamzadeh, B., Lonn, H., Snedsbol, R., and Torin, J.: DACAPO: A Distributed
Computer Architecture for Safety-Critical Control Applications. In Proceedings
of the Intelligent Vehicles’95. Symposium, 376–381 (1995), DOI:
10.1109/IVS.1995.528311.

54

34. Shooman, M. L.: Reliability of Computer Systems and Networks: Fault
Tolerance, Analysis, and Design. John Wiley & Sons, Inc. (2002).

35. Sorin, D. J.: Fault Tolerant Computer Architecture. Morgan and Claypool
Publishers (2009).

36. Stetter, R.: Fault-Tolerant Design and Control of Automated Vehicles and
Processes, Insights for the Synthesis of Intelligent Systems. Studies in Systems,
Decision, and Control 201, Springer Nature Switzerland AG (2020), DOI:
10.1007/978-3-030-12846-3.

37. Tanenbaum, A. S. and van Steen, M.: Distributed Systems: Principles and
Paradigms. 2nd ed. Pearson Prentice Hall (2017).

38. Veríssimo, P., Casimiro, A., Pinho, L. M., Vasques, F., Rodrigues, L., and Tovar,
E.: Distributed Computer-Controlled Systems: the DEAR-COTS Approach. In
IFAC Proceedings 33(30), 113–120 (2000), DOI: 10.1016/S1474-
6670(17)36739-3.

39. Veríssimo, P. and Rodrigues, L.: Distributed Systems for System Architects.
Springer, Boston, MA. (2001), DOI: 10.1007/978-1-4615-1663-7.

	1. Introduction
	2. System design
	3. Redundancy in dependable distributed real-time systems
	3.1. Replication style
	3.2 Replication degree
	3.3. Time redundancy.
	3.4. Functional redundancy.

	4. Redundancy realization
	4.1. Implementing different replication degrees

	5. Conclusion
	Acknowledgment
	References

