
23 

BULGARIAN ACADEMY OF SCIENCES  
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS • 2022 • Vol. 78, pp. 23-34 

p-ISSN: 2738-7356; e-ISSN: 2738-7364 
https://doi.org/10.7546/PECR.78.22.03 

 
 
 
 
 
Reliable Service-Oriented Architecture  
for Nasa’s Mars Exploration Rover Mission 
 
 
 
Puhiza Iseni1, Festim Halili1 
 
Author addresses:  
1 Department of Informatics, Faculty of Natural Sciences and Mathematics,  
University of Tetovo, North Macedonia 
Email: p.iseni211545@unite.edu.mk  
 
Abstract: 
The Collaborative Information Portal (CIP) was created by NASA's Ames 
Research Center and Jet Propulsion Laboratory (JPL) for NASA's Mars 
Exploration Rover (MER) mission. Both MER and CIP have performed beyond 
their expectations. Mission managers, engineers, scientists, and mission 
researchers conduct CIPs within JPL mission control, and scientists conduct CIPs 
in their laboratories, homes, and offices. Users are securely connected through the 
internet. Since the mission took place at the time of Mars, the CIP displayed 
current time in different time zones of the planet Mars and Earth and introduced 
staff and event schedules with Martian time scales. In this paper, we present the 
MER and CIP mission summaries. We show how the CIP helped to meet some of 
the mission needs and how people used it. We discuss the criteria for choosing its 
architecture, web services (current time ratio between planet Earth and planet 
Mars, conversion of Martian (Sol) and Earth Day, and direct connection to planet 
Mars) and describe how developers made the software so reliable. CIP reliability 
did not come by chance, but was the result of several key design decisions. 

Keywords: SOA, JPL, MER, NASA, CIP, Rover, Web Services. 

1. Introduction  
In January 2004, the Mars Exploration Rover (MER) mission successfully 
deployed two robotic geologists – Spirit and Opportunity. Rovers are equipped 

mailto:p.iseni211545@unite.edu.mk


24 

with powerful cameras and scientific instruments that send data and photos back 
to Earth, where they are processed and stored on file servers by ground-based 
computers. After analyzing the files, NASA scientists have concluded that liquid 
water existed on the surface of Mars in the distant past. 

The mission is not just about rovers and data. On Earth, humans manage 
missions, send commands to rovers, and analyze downloaded information. 
NASA’s Ames Research Center scientists and engineers collaborated closely with 
mission management at the Jet Propulsion Laboratory (JPL) to develop mission-
supporting applications. The Collaborative Information Portal (CIP) assisted 
mission personnel in carrying out their day-to-day tasks, regardless of whether 
they were working within the mission control or in the scientific areas of the JPL, 
or in their homes, schools, or offices. 

With a three-tier, service-oriented architecture (SOA) – client, middleware, 
and data warehouse – built using Java, industry standards, and commercial 
software, CIP provides secure access to mission and service schedules. data and 
images downloaded from Mars. Users may execute CIP client tools on Windows, 
Unix, Linux, and Macintosh platforms, and it met JPL's mission criteria for 
capability, scalability, and stability [1, 2, 3]. 

2. Related Work 
The literature research has revealed many scientific papers related to NASA's 
Mars Rover Exploration Service Oriented Architecture. I will introduce some of 
them, related to our project. 

Ronald Mack, Joan Walton, Leslie Keely, Dennis Heher and Louise Chan 
present MER and CIP mission summaries. Demonstrate how the CIP aided in 
meeting some of the mission's needs and how it was used. Criteria for choosing 
its architecture and describe how the developers made the software so reliable. 
CIP reliability did not come by chance, but was the result of several key design 
decisions [1]. 

The study by Youssef Bassil describes a service-oriented architecture for 
distributed multi-robot systems based on web services for remote control and 
manufacturing message specification (MMS) to exchange data between modules 
of the systems. Its purpose is to monitor and control software design using the 
concepts of Unified Modeling Language (UML) and MMS [4]. 

RP Bonasso, D. Kortenkamp, DP Miller and MG Slack introduced one of 
the earliest models is the 3T robotic design which consists of three independent 
communication layers: The first layer is the reactive capabilities layer which 
consists of a set of behaviors reactive handled by a skills manager who is 
responsible for initiating and stopping specific skills based on several input 



25 

sensors. The second layer is the ranking layer which is responsible for generating 
a set of skill requirements for the reactive skill layer. The third layer is the 
discussion layer which is responsible for generating plans based on the mission 
requirements. The 3T software architecture was created to control the effect of 
autonomous systems in a flexible and robust way [5]. 

Eric Colon, Hichem Sahli and Yvan Baudoin describe the control robots 
from CORBA known as CoRoBa, a platform designed to allow the integration of 
distributed robotic control, sensors and computing components. It is basically 
based on CORBA (Common Object Request Mediation Architecture) which 
provides a standard medium program for connecting object-oriented components 
regardless of their internal technologies [6]. 

The study conducted by the iRobot company describes another CORBA-
based software architecture for building and integrating distributed object systems 
built using different languages [7]. 

M. Quiqley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, 
R. Wheeler, and A. Ng Their study describes ROS (Robot Operating System) as 
an open-source architecture that supports modular and distributed software 
components for robotic software. The ROS architecture contains the interaction 
between entities, the transmission of messages and the concepts of services. The 
ROS design does not contain a central middle program to coordinate between 
different nodes of the system [8]. 

The study conducted by Ivar Jørstad, Schahram Dustdar and Do Van Thanh 
describes the use of SOA for building collaborative services. The paper describes 
the Service Oriented Architecture and then the collaboration services. A general 
model of a collaborative service is analyzed to identify the basic functions of 
collaboration [9]. 

Elias Sinderson, Vish Magapu, and Ronald Mac present our approach to 
mitigating the challenges faced by robots on Mars, concluding with a brief 
overview of mid-range and web services for the Rovers Mission Collaborative 
Information Portal. NASA Mars Exploration [10]. 

3. Service-Oriented Architecture (SOA) 
Service-oriented architecture (SOA) is a model for system development based on 
a loosely integrated set of services that can be used within multiple business areas. 
SOA also presents an approach and practice for building IT software systems 
using interoperable services. These services are loosely connected software 
components that summarize functionality and are available to be accessed 
remotely from client applications over a network or the Internet. Web services and 
Enterprise Service Bus (ESB) form the foundation of SOA [4]. 



26 

3.1. Web Services 
W3C defined, a web service is a component of software designed to support 
interoperable machine-to-machine interaction over a network. Uses SOAP, an 
XML-based protocol to communicate over HTTP. Characteristics of web services 
are three key elements: Web service description language (WSDL) is an XML-
based description of the web service's operations and functions. It dictates the 
protocol connections and message formats needed to connect and interact with a 
web service; Universal Description, Discovery and Integration (UDDI) which is 
a registry for storing web services WSDLs and a mechanism for registering and 
localizing web services on the Internet; and the SOAP communication protocol 
which defines the structure and format of messages exchanged between the 
customer-represented service provider and the service provider represented by the 
current web service provider. A client application that needs a specific feature 
from a service provider, and the service provider is usually a server that hosts and 
runs the web service.  

Figure 1 illustrates how a SOAP-based web service works. There are other 
types of styles for web services, such as REST, RPC, RMI, .NET Remoting, 
CORBA, and Network Socket [4]. 
 

 
Fig. 1. Typical SOAP-Based Web Service 

 

3.2. Enterprise Service Bus (ESB) 
ESB represents the interoperability between its components, SOA often has 
interoperability between its components, SOA often uses an Enterprise Service 
Bus (ESB). Essentially, ESB is a piece of software that lies between the various 



27 

components of an SOA, primarily between the service provider and the service 
provider to enable transparent and seamless communication. Also acts as an 
intermediary software and a messaging intermediary between different 
communication parties in the SOA architecture. The main task of the ESB is to 
support messages routing and to provide a better orchestration and interaction 
between different interconnected web services built possibly using different 
technologies, platforms, standards and programming languages [4]. 

4. Proposed Model Architecture 
This section introduces a service-oriented (SOA) architecture for building robotic 
rover machines for space exploration which uses components of web-based 
service software. Introduces a distributed model made of loosely interoperable 
web services and a central enterprise service bus (ESB) which is not located inside 
the current rover but in an isolated location, possibly a ground control center or 
space station in low earth orbit. Communication between the rover and Internet 
services is two-way and is performed remotely using the HTTP protocol with the 
help of ESB acting as an intermediary program. The way communication is 
accomplished is by calling the method in which the rover calls or remotely calls 
the various web services procedures to be executed on the host system and to 
return the results to the rover. These procedures are known as methods or 
functions containing the logic and programming instructions that provide the basic 
functions of the rover. 

Basically, the architecture that was proposed consists of three basic levels: 
The first level is the client represented by the rover tool which calls the internet 
services methods to perform operations such as mineral examination, geological 
environment analysis, study and evaluation of rock composition, and capturing 
and processing images for a variety of applications. The second level is the server 
represented by the web services which are disconnected from the rover hardware 
and are cut and executed on server machines located on the ground or at a nearby 
space station. Web services provide the current code base and rover logic. They 
contain the algorithm, implementation, and programming instructions needed to 
provide the rover with its basic operations and functionalities. The third level is 
the intermediate program represented by ESB, which provides a standard interface 
and a unified data path for both client and server levels that interact efficiently and 
exchange data regardless of their platforms. incompatible and implementation 
technologies, for example, technologies such as REST, SOAP, RPC etc.  

Figure 2 illustrates the proposed SOA architecture [4]. 



28 

 
Fig. 2. Tiers of the proposed SOA architecture 

4.1. Design Specifications 
As discussed earlier, the proposed architecture comprises three tiers: The client, 
the middleware, and the server tier. 

4.1.1. The Client Tier 
Actually, the client is the robotic rover vehicle. It has an onboard computer that 
can discover external web services using the ESB interface, which explains the 
various functions wrapped within linked web services. In order to communicate, 
the rover has to bind to the ESB interface. This binding authenticates the rover 
(requester) and allows it to send requests to the ESB (provider) using the remote 
procedure invocation approach. The ESB then forwards the rover’s request to the 
intended web service. The results that are returned by the web service are first 
received by the ESB then forwarded to the rover. The provider does all of the 
work, and the requester only gets the results. Communication between requester 
and provider is done solely using the HTTP protocol through the Deep Space 
Network (DSN) that relays transmission between the earth where the provider is 
located and the outer space where the rover is located.  

Figure 3 illustrates the sequence of interactions between the rover client and 
the rest of the entities [1, 4]. 
 



29 

 
Fig. 3. The Rover’s Sequence of Interactions 

4.1.2. The Middleware Tier 
The ESB acts as a conduit for data between the rover unit and the various web 
services. It serves as a data transmission medium, simulating a messaging 
middleware that connects the rover on one side and the various distributed services 
on the other, allowing them to send and receive data back and forth. It also 
automates inbound and outbound communications between all parties involved, 
organizes their activities, and provides for message storage, routing, and 
transformation during inter-system interactions. 

The proposed ESB is cross-platform and cross-network, allowing the rover 
to send requests and receive responses from multiple types of web services, some 
of which may be incompatible, and which are constructed using different 
platforms, standards, technologies, and programming languages.  

Figure 4 displays the planned ESB's design as well as its inner workings 
[4]. 

The ESB actually has two public interfaces: The rover’s first interface 
provides a unified single SOAP-based end-point through which the rover can 
communicate with the ESB. The second interface comes from the web services 
side, which offers a set of adapters that serve as end-point connectors for various 
web services [4]. 

 



30 

 
Fig. 4. The Architecture of the proposed ESB [4] 

 

4.1.2. The Server Tier: 
The server tier is where the web services are performed. It consists mainly of 
several large computer servers located either in the ground control centers or in a 
space station in low earth orbit. These servers are tasked with delivering online 
services, processing rover requests, executing business logic, and performing 
intensive calculations on behalf of the rover. Web services can be: protocols or 
versions and they interact with the ESB. Whenever a new web service is integrated 
into the system, it publishes its WSDL on the ESB, which stores it inside an 
internal registry along with other important details. The ESB then exposes the 
WSDL to the rover vehicle allowing it to remotely call all available functions. 
Web services can provide all kinds of functionality, including computer vision 
functions that analyze captured images and recognize objects within those images; 
navigation functionalities that allow the rover to move and move over the planet's 
surface; sensory functionalities that measure the atmospheric properties 
surrounding the rover; microscopic functionalities to analyze and inspect the 
nature of rocks and soils and their structure, and scanning functionalities to detect 
the presence of certain elements within the planetary terrain [4]. 



31 

5. Implementations 
A robotic rover simulation software was built capable of performing various 
actions. Besides, it is capable of sending requests to and reading results from the 
ESB using the SOAP protocol. The software is a web application built using C# 
ASP.NET. Figure 5 depicts the GUI interface of the rover simulation software. 
Additionally, three web services were developed. SOAP-based web services built 
using C# ASP.NET with a .asmx file extension and is responsible for performing 
functionalities: the current time ratio between planet Earth and planet Mars, the 
calculation and conversion of the Martian (Sol) and Earth Day, and the direct 
connection to planet Mars (by the Rover robot). 
 

 
Fig. 5. Rover’s GUI interface 

 
ESB was built to act as a middleware between the rover and the different 

web services. As the ESB is the service broker, it is responsible for exposing the 
different functionalities of the web services to the rover [4]. Figure 6 delineates 
the list of functionalities exposed by the ESB and originally implemented in the 
web services. 
 

 
Fig. 6. Web Services 



32 

6. Reliability 
The CIP was extremely reliable. During the first seven months of the nominal and 
extended rover missions, its medium program stayed on for over 99.9% of the 
time and operated non-stop for up to 77 days at a time. Some of the industry 
standards were followed and COTS software was used. 

The application server contributed to the reliability by constantly 
monitoring the behavior of the EJBs and did automatic repetition or error recovery 
whenever necessary. On development servers, extensive mid-program stress 
testing is done before deploying CIP and even during mission. CIP usage patterns 
had a sharp rise, as many users became very active immediately after rovers 
downloaded new data and images. Stress testing showed us how the secondary 
program would behave during such increases and noted performance barriers. they 
were able to adjust the system settings accordingly to enable the intermediate 
program to better handle heavy loads. It was developed as an independent, 
interactive tool to perform stress testing by simulating any number of users 
performing various client functions, such as accessing schedules or downloading 
files (see Fig. 7). 

 

 
Fig. 7. The Middleware Stress Tester [1] 

 
An important measure of software reliability is how long it stays on and 

running. An application may crash suddenly, or system administrators may 
remove it for maintenance. Reconfiguring a service to suit a change in an 
operational parameter, such as the time it took for a signal to travel from Earth to 
Mars, was a frequent maintenance procedure for CIP (the time of one-way light). 
Dynamic reconfiguration was a key feature that allowed the CIP to stay in 



33 

operation and operate for long periods without scheduled server maintenance 
interruptions. 

The CIP secondary software design and application server allowed 
individual services to be “set hot”: that we could add, remove, replace, or restart 
a service while the rest of the secondary program (and CIP as a whole) continues 
to function. To reconfigure a service, a system administrator first edited the 
service configuration file and then redistributed the service. When the service 
resumed, it read in its new configuration. Restoring the service usually takes a few 
seconds and often users did not notice any interruptions [1].  

7. Conclusion  
This paper introduced an architecture that enables the building of exploration 
robotic rover systems using distributed software components called web services. 
This architecture consists of three levels: the client level, the server level, and the 
ESB that acts as an intermediary program. The analyzes performed showed that 
this architecture is reliable, scalable, interoperable, reusable and maintainable, that 
can adapt to unforeseen circumstances and withstand various obstacles that may 
be encountered during their missions. 

References  
1. Mak. R., Walton. J., Keely, L., Heher, D., Chan, L.: A reliable service–oriented 

architecture for NASA’s Mars exploration rover mission. April (2005), 
https://www.researchgate. net/publication/ 4204299_Reli 
able_Service_Oriented_Architecture_for_NASA%27s_Mars_Exploration_Rove
r_Mission 

2. Mak, R., Walton, J.: The collaborative information portal and NASA’s Mars 
Rover Mission. IEEE Computer Society, January – February (2005) 

3. Ai-Chang, M., Bresina, J., Charest, L., Hsu, J., Jonsson, A. K., Kanefsky, B., 
Maldague, P., Morris, P., Rajan, K., Yglesias, J.: MAPGEN Planner: Mixed-
initiative activity planning for the Mars Exploration Rover mission. February 
2003, https://www.researchgate. net/publication/24157887_MAPGEN_Planner 
_Mixed-Initiative_Activity_Planning_for_the_Mars_Exploration 
_Rover_Mission 

4. Bassil, Y.: Service-oriented architecture for space exploration robotic rover 
systems. Int. Journal of Science & Emerging Technologies (IJSET) 3(2), 
http://ojs.excelingtech.co.uk/index.php/IJSET/article/download/426/239 (2012)  

5. Bonasso, R. P., Kortenkamp, D., Miller, D. P., Slack, M.G.: Experiences with an 
Architecture for Intelligent Reactive Agents. In: Proc. of the International Joint 
Conference on Artificial Intelligence (1995)  

http://ojs.excelingtech.co.uk/index.php/IJSET/article/download/426/239


34 

6. Colon, E., Sahli, H., Baudoin, Y.: CoRoBa, A multi mobile robot control and 
simulation framework. International Journal of Advanced Robotic Systems 3(1), 
(2006)  

7. iRobot, Mobility Integration Software User's Guide (2002)  
8. Quiqley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., 

Wheeler, R., Ng, A.: ROS: An open-source Robot Operating System. In 
International Conference on Robotics and Automation, Workshop on Open-
Source Robotics (2009)  

9. Jørstad, I., Dustdar, S., Do Van Thanh: A service-oriented architecture framework 
for collaborative services. 2005, Link: https:// 
www.researchgate.net/publication/4208018_A_service_oriented_architecture_fr
amew ork_for_collaborative_services 

10. Sinderson, E., Magapu, V., Mak, R.: Middleware and Web Services for the 
Collaborative Information Portal of NASA’s Mars Exploration Rovers Mission, 
October (2004), https://www.researchgate.net/publication/221461222 
_Middleware_and_Web_Services_for_the_Collaborative_Information_Portal_of
_NASA%27s_Mars_Exploration_Rovers_Mission 

https://www.researchgate.net/publication/221461222%20_Middleware_and_Web_Services_for_the_Collaborative_Information_Portal_of_NASA%27s_Mars_Exploration_Rovers_Mission
https://www.researchgate.net/publication/221461222%20_Middleware_and_Web_Services_for_the_Collaborative_Information_Portal_of_NASA%27s_Mars_Exploration_Rovers_Mission
https://www.researchgate.net/publication/221461222%20_Middleware_and_Web_Services_for_the_Collaborative_Information_Portal_of_NASA%27s_Mars_Exploration_Rovers_Mission

	1. Introduction
	2. Related Work
	3. Service-Oriented Architecture (SOA)
	3.1. Web Services
	3.2. Enterprise Service Bus (ESB)

	4. Proposed Model Architecture
	4.1. Design Specifications
	4.1.1. The Client Tier
	4.1.2. The Middleware Tier
	4.1.2. The Server Tier:

	5. Implementations
	6. Reliability
	7. Conclusion
	References

