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Abstract: The main difference between multi-objective optimization and single-
objective optimization is that the first one has more than one target function and 
they need to optimize simultaneously. The solution of single-objective problems 
provides an optimal value in contrast to the multi-objective problems where a set 
of Pareto-optimal values can be found. That is why, one of most common 
approach for solving multi-objective problems is realize by transforming the multi 
objectives into a single objective. The simplest transformation is through an 
additive model, where a weighting factor is given on each objective. This research 
proposes a calculation procedure by which the LibreOffice Calc NLP Solver is 
used to generate solutions in the Pareto subset for multi-objective problems.  
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1. Introduction 
Multi-objective optimization is part of general optimization. It has great practical 
importance since a lot of real-world problems suites for modeling by multiple 
conflicting objectives (Naka & Guliashki, 2021; Arora, 2017, Abraham & Jain, 
2005). Some of the hard applications of multiple objective problems deals with 
job shop scheduling (Guliashki et al., 2019), staff scheduling (Borissova, 2015), 
transportation problems (Sudha & Ganesan, 2021), energy efficiency (Guliashki 
& Marinova, 2021), etc. A recent review of the developed multi-criteria decision-
making models and their applications is proposed in (Borissova, 2021). The most 
popular approach to solving such problems is primarily focused on transforming 
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multiple objectives into a single objective including also the problems of group 
decision-making (Borissova & Dimitrova, 2021, Korsemov & Borissova, 2018). 

Many practical optimization problems are admittedly defined as nonlinear 
problems having multiple conflicting objectives (Zitzler, et al., 2004). Because of 
the absence of proper solution techniques, these problems are mathematically 
transformed into a single-objective problem, and then well-known approaches for 
solving single-objective problems can be used. The complexity comes from the 
fact that multi-objective problems lead to a set of trade-off optimal solutions 
(Pareto-optimal set (Zitzler & Thiele, 1998)). In contrast, single-objective 
problems, in general cases, lead to a single optimum solution. The goal in multi-
objective optimization is to find as many Pareto-optimal solutions as possible. The 
availability of many Pareto-optimal solutions is important because each taken two 
by two constitutes a trade-off in the objectives. The decision-maker would have 
more options to select which objectives to compromise (Deb, 2014). 

In multi-objective optimization, there are two or more functions for which 
the optimal value is sought, for the same input vector. If the input vector is denoted 
by 𝑥𝑥, then its components can be denoted by {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛}. The presence of multiple 
functions for simultaneous optimization {𝑓𝑓1, … , 𝑓𝑓𝑚𝑚} (Emmerich & Deutz, 2018) 
leads to the appearance of two optimization spaces – the search space of variables 
and the search space of objectives (Deb et al., 2005). For the variables, lower and 
upper bounds may be imposed as possible values. In addition to the finite 
constraints, it is possible to specify linear and nonlinear equations/inequalities to 
be met. If only one objective or only one constraint has a nonlinear nature, then 
the problem becomes nonlinear. 

The most used scalarization (Miettinen & Makela, 2002) formula is the 
additive model. In this model, each objective has a weight associated with it 
(Marler & Arora, 2010). The weighted objectives are generalized as follows: 

𝑓𝑓 = 𝑤𝑤1𝑓𝑓1(𝑥𝑥) + ⋯ . +𝑤𝑤𝑚𝑚𝑓𝑓𝑚𝑚(𝑥𝑥)  (1) 

It should be mention that all of the objective functions need to be 
normalized to get a dimensionless value of the function (1). These normalizations 
can be done by using the different schemes as shown in (Marler & Arora, 2004).  

The weighted sum model is applied in the present study. In the general case, 
the minimum value of the function (Eq. 1) is seeking. A minimum value is sought 
also for each of the objectives. If a maximum is sought for any of the objectives, 
its weight participates as a negative value. 

Due to importance of multi-objective optimization for solving different 
real-life problems, it is of great importance to use on well-known software tools 
like MS Excel or LibreOffice. Such tools are already developed for determination 
of optimal scheduling when processing dependent details in MS Excel (Borissova 
et al, 2018; Borissova, 2008) and most recent tool in LibreOffice is related to 
incremental approximation of time series (Velichkova et al., 2021).  
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All of these determine the necessity of development a tool to solve multi-
objective problems by the weighted sum model. In this regard, the current study 
proposes a single-objective NLP Solver of LibreOffice Calc to be used for multi-
objective problems. The rest of this paper is organized as follows: Section 1 
introduces the problem with searching for Pareto optimal solutions; Section 2 
describes the way in which a single-objective solver can be used for multi-
objective problems; Section 3 reveals some practical experiments and related 
results; and Section 4 concludes with some suggestions for further work. 

2. LibreOffice Calc NLP Solver 
LibreOffice is free open source software that offers applications for the needs of 
small offices. The software consists mainly of the following modules: Writer (text 
processing), Calc (spreadsheets), Impress (presentations), Draw (vector graphics), 
Math (mathematical formulas), and Base (databases). In the spreadsheet module, 
it is possible to activate linear and nonlinear solvers (Tools->Solver) for 
optimization problems. Nonlinear optimization problems are of greater interest 
because they differ in complexity from linear problems. The NLP Solver 
submodule in LibreOffice Calc is implemented by a hybrid combination of 
Differential Evolution and Particle Swarm Optimization.  

The NLP Solver itself is written in Java for the current stable release. The 
development team plans to rewrite this submodule in C++, but this is a medium 
to а long-term task. At this stage, the NLP Solver in LibreOffice Calc is designed 
to seek solutions to single-objective tasks only. This means that the user is offered 
only a single solution. It is like this even when the task is multimodal and it has 
more than one global optimum. The heuristic nature of both algorithms in the 
solver determines that the proposed solutions do not guarantee global optimality. 
Usually, solutions are close to the global optimum or one of the global optimums 
when there is more than one. 

If someone wants the NLP solver to be used for multi-objective tasks, it is 
not impossible to add the necessary software functionality in the seventh Java code 
of the solver. Although possible, such work is too complex and would take a long 
time, even for top software professionals. The presence of scripting languages, 
such as Python, in LibreOffice, allows a much easier approach to solving multi-
objective tasks with a single-objective solver. The first step in performing this 
calculation is to assign a weighting factor for each objective, as shown in Eq. 1. 
The second step is related to the fact that the solver provides only a single solution. 
In order to calculate solutions, close to the Pareto front, the solver must be started 
multiple times. Different weighting coefficients of the objectives are selected for 
each start of the solver. The difference in the coefficients symbolizes the 
possibility for the decision-maker to determine the different importance of the 
individual objectives. Having an initial set of solutions, the decision-maker can 
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manually change the coefficients of the objectives and manually start the solver 
to generate new solutions close to the Pareto front.  

3. Searching Pareto Points for Binh and Korn Function 
The following Binh and Korn function (Maghawry, et al., 2021) is used as a 
benchmark:  

𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓1(𝑥𝑥,𝑦𝑦) = 4𝑥𝑥2 + 4𝑦𝑦2   (2) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓2(𝑥𝑥,𝑦𝑦) = (𝑥𝑥 − 5)2 + (𝑦𝑦 − 5)2  (3) 

𝑔𝑔1(𝑥𝑥,𝑦𝑦) = (𝑥𝑥 − 5)2 + 𝑦𝑦2 ≤ 25   (4) 

𝑔𝑔2(𝑥𝑥, 𝑦𝑦) = (𝑥𝑥 − 8)2 + (𝑦𝑦 + 3)2 ≥ 7.7  (5) 

0 ≤ 𝑥𝑥 ≤ 5,0 ≤ 𝑦𝑦 ≤ 3  (6) 

The Pareto front of the Binh and Korn function based on the formulation 
(Eq. 2-6) is shown in Fig. 1.  
 

 
Fig. 1. Binh and Korn function 

 
It is obvious from the chart that coefficients for 𝑓𝑓1 should be much lower in 

order for some of the Pareto points to be generated. Experiments are done on Intel 
Core i5 2,3 GHz, Single CPU with 2 cores, 8GB RAM, macOS High Sierra 
10.13.6, Java SE 11.0.2, LibreOffice 7.0.6.2. Python script and optimization 
model are publicly available (Balabanov, 2021). 

Before starting the macro, it is important to set the optimization model in 
the solver dialog box (Fig. 2).  
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Fig. 2. Optimization model setup 

 
It is possible to set the parameters of the model through the solver’s API. It 

has some complexity and is therefore omitted in this study. When generating 100 
points, the boundaries of the emerging Pareto front are clearly visible (Fig. 3).  
 

 
Fig. 3. Set of near Pareto optimal solutions 

 
The points are not located exactly on the Pareto front. This is because 

heuristic optimization gives close to optimal but not guaranteed optimal solutions. 
The other very obvious thing is that there is a lack of the right side of the 
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theoretical Pareto front. The lack of part of the front is due to the fact that points 
in this area can be obtained at too large values for one coefficient and too small 
values for the other coefficient. The most important part of multi-objective 
optimization is the way in which scaling coefficients are selected. With the 
exception of randomly generated coefficients, a list of predefined values can be 
used. Very large or very small values can be included in such a list. The 
experiments are performed with Binh and Korn function, but any other benchmark 
or real function can be taken. 

4. Conclusion 
This research examines the capabilities of a single-objective solver to be applied 
to multi-objective problems. By giving random weights for the objectives, various 
solutions are provided close to the Pareto front. The stochastic nature of the solver 
does not allow the proposed solutions to be on the front itself, and they are 
positioned close to it. From a mathematical point of view, this is not acceptable, 
but in real practice, even decent solutions are preferable in the absence of any 
solutions. 

The application of random coefficients does not always give a good 
distribution of the points around the Pareto front. It would be interesting to apply 
some strategy for a wider study of the possible values for the coefficients. 
Although it is possible to change the coefficients manually, some form of 
automation would significantly speed up the process of finding an acceptable 
solution. 
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