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Abstract: There are many evolutionary metaheuristics developed during the last 
decades. Most of them are highly dependent on the quality of the random numbers 
involved in calculations. When random numbers are generated with a true random 
number generator, the problem with the quality of the numbers does not exist. In 
most practical cases, random numbers are generated with pseudo-random number 
generators. In such cases, the statistical quality of the generated numbers can 
influence the optimization process a lot. In this research, the efficiency of 
Differential Evolution and Particle Swarm Optimization is observed. Research is 
done according to the quality of the pseudo-random number generated. 
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1. Introduction 
The information technology (IT) nowadays are the base for every company to run 
their businesses and to be competitive (Borissova et al., 2020). It should be 
mention also the area of Internet-of-Things (IoT) where complex systems are to 
be managed and huge amount of data are to be processed (Garvanov et al., 2021). 
In this regard, the recent developments in ICT strongly recommend usage of 
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cryptography in order to improve the security of such information systems 
(Trifonov et al., 2018). Many cryptographic algorithms need random numbers 
used as keys and unique identifiers. Such problems related to the generation of 
random numerical values is a relatively difficult task. Therefore, pseudo-random 
number generators are often used (Koeune, 2005). One of the widely used 
algorithms based on swarm intelligence is the Particle Swarm Optimization 
(PSO), which is inspirited by nature, and its standard form and variants are 
presented in (Yang, 2021). Differential Evolution (DE) is one of the powerful and 
universal evolution optimizers for continuous parametric spaces, and an updated 
survey is proposed (Das et al., 2016). Due the complexity of real problems, many 
authors attempt to propose different techniques to cope with such complexities. 
For example, it is proposed an algorithm that use the advantages of DE and 
particle swarm optimization (PSO) that ensures the simple operation, easy 
implementation, and fast convergence of DE (Huimin, et al., 2021). Different 
characteristics of DE and PSO are used to determine a good point set to make the 
initial data more uniform. Other authors rely on deep-zoom to improve the 
pseudo-randomness properties (Machica & Bruno, 2017).  

Metaheuristics for global optimization often depend heavily on random 
numbers to make each run unique (Dillen et al., 2021). In many of these heuristics, 
initial solutions are randomly generated (the initial population in Genetic 
Algorithms, the initial population in Ant Colony Optimization, the initial values 
in Simulated Annealing for example). Random numbers are involved not only 
during initialization but also it is involved during the optimization process. For 
example, in Genetic Algorithms, the crossover rate and mutation rate have 
probabilistic nature (Guliashki et al., 2009). In Ant Colony Optimization, the 
possible paths are investigated on a probabilistic principle. This study focuses on 
a hybrid implementation of Differential Evolution and Particle Swarm 
Optimization. The joint implementation of both heuristics is tested with two 
different, as a statistical quality of the numbers, pseudo-random number 
generators. 

Differential Evolution is a floating point encoded evolutionary algorithm 
for global optimization owing to a special kind of differential operator, which 
invoked to create new offspring from parent chromosomes instead of classical 
crossover or mutation. Easy methods of implementation and negligible parameter 
tuning. Differential Evolution starts with a population of search variable vectors. 
Vectors are referred in literature as genomes or chromosomes. For each search-
variable, there may be a certain range within which value of the parameter should 
lie for better search results. At the very beginning, problem parameters or 
independent variables are initialized somewhere in their feasible numerical range. 
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In each generation (or one iteration of the algorithm) to change each population 
member, a donor vector is created. In DE/rand/1 scheme, to create donor vector 
three other parameter vectors are chosen in a random fashion from the current 
population. A scalar number scales the difference of any two of the three vectors 
and the scaled difference is added to the third one whence the donor vector is 
obtained. To increase the potential diversity of the population a crossover scheme 
comes to play (exponential or binomial) (Tanabe & Fukunaga, 2014). The donor 
vector exchanges its body parts with the target vector. To keep the population size 
constant over subsequent generations, selection is done to determine which one of 
the target vector and the trial vector will survive in the next generation. If the new 
trial vector yields a better value of the fitness function, it replaces its target in the 
next generation. Otherwise the target vector is retained in the population. Hence 
the population either gets better remains constant but never deteriorates (Das et 
al., 2008). 

Particle Swarm Optimization is a multi-agent parallel search technique. 
Particles are conceptual entities, which fly through the multi-dimensional search 
space (Mirjalili et al., 2014). At any particular instant, each particle has a position 
and a velocity. The position vector of a particle with respect to the origin of the 
search space represents a trial solution of the search problem. At the beginning, a 
population of particles is initialized with random positions marked by vectors and 
random velocities. The population of such particles is called a swarm. Each 
particle has two state variables, its current position and its current velocity 
(Mohais et al., 2005). It is also equipped with a small memory comprising its 
previous best position (one yielding the highest value of the fitness function found 
so far), personal best experience and the best all particles, the best position found 
so far in the neighborhood of the particle. Once the particles are all initialized, an 
iterative optimization process begins, where the positions and velocities of all the 
particles are altered by recursive equations. After having calculated the velocities 
and position for the next step, the iteration of the algorithm is completed. 
Typically, this process is iterated for a certain number of time steps, or until some 
acceptable solution has been found (Das et al., 2008). 

When differential evolution and particle swarm optimization are used with 
a true random number generator, the statistical quality of the random number is 
guaranteed. In real practice, a true random number generator is rarely available. 
In such a situation, different pseudo-random number generators are used. 
Different pseudo-random number generators have different statistical qualities of 
the numbers generated. In this research, the influence of the two different quality 
pseudo-random number generators is investigated in a hybrid implementation of 
differential evolution and particle swarm optimization. 
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The rest of this paper is organized as follows: Section 1 introduces the 
problem with the statistical quality in pseudo-random numbers, which are used in 
population-based optimization; Section 2 describes the way in which pseudo-
random number generators are compared; Section 3 reveals some practical 
experiments and related results; and Section 4 concludes with some suggestions 
for further work. 

2. Practical Uses Pseudo-Random Number Generators 
Particular pseudo-random number generators are widely used in practice. The 
most popular of them is the Linear Congruent Generator (LCG) (Class Random. 
Java SE Documentation, 2021). The experimental part in this study is done with 
Java source code, part of LibreOffice Calc NLP Solver (NLP Solver. LibreOffice 
Calc, 2021). The standard distribution of Java comes with the LCG (Class Random. 
Java SE Documentation, 2021) and SecureRandom generators (Class 
SecureRandom. Java SE Documentation, 2021). For this reason, a comparison is 
made between the two.  

The mathematical formula of LCG is pretty simple: 

X(m+1) = (aX(m) + b) mod c     (1) 

Each subsequent value is functionally dependent on the previous one. It is 
extremely important that the initial value 𝑋𝑋(0) is random and as difficult to predict 
as possible. The different implementations of LCG differ only in the choice of the 
constants 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐. Due to its simplicity, LCG is very fast. In contrast to the 
performance is the compromise with the statistical quality of the generated 
numbers. It is proven that LCG should not be used for anything important. 

On the other side, the secure random generator in Java varies in different 
Java Virtual Machine implementations. It minimally should comply with the 
statistical random number generator tests specified in FIPS 140-2, Security 
Requirements for Cryptographic Modules (Class SecureRandom. Java SE 
Documentation, 2021). It must produce non-deterministic output. When it is 
possible, entropy is being gathered from sources like /dev/random on various 
Unix-like operating systems.  

The main difference between the two generators is their performance. Tests 
done on Intel Core i5 2,3 GHz, Single CPU with 2 cores, 8GB RAM, macOS High 
Sierra 10.13.6, Java SE 11.0.2 machine shows that the SecureRandom is 25 times 
slower than Random. Performance is the price of getting random numbers with 
better statistical qualities. The main question that arises from this difference in 
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performance is whether statistically better numbers can compensate for speed and 
lead to faster converging optimization. 

3. Training ANN with LibreOffice Calc NLP Solver 
The actual stable release version of LibreOffice at the moment of current writing 
is 7.0.6.2. All conducted experiments are performed with a development version 
of the product (7.3.0.0.alpha0+). The development version of the product is used, 
as the functionality for random number generators is not yet part of the release 
version of the product. A separate flag has been added to the Calc’s NLP Solver 
settings dialog so that the LCG and SecureRandom generators can be switched 
(Fig. 1).  

 
Fig. 1. The user interface for switching random number generators 

 
As a benchmark model, training of feed-forward artificial neural network 

is used. The artificial neural network is trained to do forecasting of financial time 
series (Tomov, 2021). Dataset used in publicly available at (Balabanov, 2021). The 
artificial neural network has three layers (input, hidden, and output) with a total 
number of weights of 555 (Experiment-26-Mar-2021-2.ods).  

Experiments show that LCG gives only slightly weaker results than the 
SecureRandom generator. LCG achieves a target value of 0.021592 in 5340 
seconds (Fig. 2), while SecureRandom achieves a target value of 0.0212213 in 
5280 seconds (Fig.3). This difference in the third decimal place shows that both 
generators give practically good results. 
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Fig. 2. Optimization convergence with Linear Congruential Generator 

 

 
Fig. 3. Optimization convergence with SecureRandom generator 

 
These results clearly show that the use of a generator with statistically 

higher quality numbers is fully justified in LibreOffice Calc for the NLP Solver 
module. Such use does not affect the performance. In some cases, even improves 
the convergence of optimization.  

4. Conclusion 
This research examines the influence of the quality that pseudo-random numbers 
have on heuristic optimization algorithms. A hybrid implementation of 
Differential Evolution and Particle Swarm Optimization is chosen for the 
experiments. The source code is written in Java and is part of the NLP Solver 
module of LibreOffice Calc. Newly added random number generator selection 
functionality allows experiments to be performed. The conclusion from the 
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performed tests is that better quality generators do not slow down the 
performance, but in some models, they lead to faster convergence of the 
optimization process. 

Possibilities for more thorough testing of the various generators can be 
mentioned as guidelines for future research. It is essential to monitor the behavior 
of the SecureRandom generator in different operating systems and different 
hardware. It is also important to study different optimization models with different 
levels of complexity and nonlinearity. 
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