
39

BULGARIAN ACADEMY OF SCIENCES
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS • 2021 • Vol. 76, pp. 39-46

p-ISSN: 2738-7356; e-ISSN: 2738-7364
https://doi.org/10.7546/PECR.76.21.03

Differential Evolution and Particle Swarm Optimization
Efficiency According to Pseudo-Random
Number Generator Quality

Gergana Mateeva, Dimitar Parvanov, Todor Balabanov

Institute of Information and Communication Technologies at
Bulgarian Academy of Sciences
Acad. Georgi Bonchev Str., block 2, office 514, 1113 Sofia, Bulgaria
E-mails: gergana.mateeva@iict.bas.bg, dimitar.parvanov@iict.bas.bg,
 todor.balabanov@iict.bas.bg

Abstract: There are many evolutionary metaheuristics developed during the last
decades. Most of them are highly dependent on the quality of the random numbers
involved in calculations. When random numbers are generated with a true random
number generator, the problem with the quality of the numbers does not exist. In
most practical cases, random numbers are generated with pseudo-random number
generators. In such cases, the statistical quality of the generated numbers can
influence the optimization process a lot. In this research, the efficiency of
Differential Evolution and Particle Swarm Optimization is observed. Research is
done according to the quality of the pseudo-random number generated.

Keywords: Pseudo-random numbers, Differential evolution, Particle swarm
optimization

1. Introduction
The information technology (IT) nowadays are the base for every company to run
their businesses and to be competitive (Borissova et al., 2020). It should be
mention also the area of Internet-of-Things (IoT) where complex systems are to
be managed and huge amount of data are to be processed (Garvanov et al., 2021).
In this regard, the recent developments in ICT strongly recommend usage of

40

cryptography in order to improve the security of such information systems
(Trifonov et al., 2018). Many cryptographic algorithms need random numbers
used as keys and unique identifiers. Such problems related to the generation of
random numerical values is a relatively difficult task. Therefore, pseudo-random
number generators are often used (Koeune, 2005). One of the widely used
algorithms based on swarm intelligence is the Particle Swarm Optimization
(PSO), which is inspirited by nature, and its standard form and variants are
presented in (Yang, 2021). Differential Evolution (DE) is one of the powerful and
universal evolution optimizers for continuous parametric spaces, and an updated
survey is proposed (Das et al., 2016). Due the complexity of real problems, many
authors attempt to propose different techniques to cope with such complexities.
For example, it is proposed an algorithm that use the advantages of DE and
particle swarm optimization (PSO) that ensures the simple operation, easy
implementation, and fast convergence of DE (Huimin, et al., 2021). Different
characteristics of DE and PSO are used to determine a good point set to make the
initial data more uniform. Other authors rely on deep-zoom to improve the
pseudo-randomness properties (Machica & Bruno, 2017).

Metaheuristics for global optimization often depend heavily on random
numbers to make each run unique (Dillen et al., 2021). In many of these heuristics,
initial solutions are randomly generated (the initial population in Genetic
Algorithms, the initial population in Ant Colony Optimization, the initial values
in Simulated Annealing for example). Random numbers are involved not only
during initialization but also it is involved during the optimization process. For
example, in Genetic Algorithms, the crossover rate and mutation rate have
probabilistic nature (Guliashki et al., 2009). In Ant Colony Optimization, the
possible paths are investigated on a probabilistic principle. This study focuses on
a hybrid implementation of Differential Evolution and Particle Swarm
Optimization. The joint implementation of both heuristics is tested with two
different, as a statistical quality of the numbers, pseudo-random number
generators.

Differential Evolution is a floating point encoded evolutionary algorithm
for global optimization owing to a special kind of differential operator, which
invoked to create new offspring from parent chromosomes instead of classical
crossover or mutation. Easy methods of implementation and negligible parameter
tuning. Differential Evolution starts with a population of search variable vectors.
Vectors are referred in literature as genomes or chromosomes. For each search-
variable, there may be a certain range within which value of the parameter should
lie for better search results. At the very beginning, problem parameters or
independent variables are initialized somewhere in their feasible numerical range.

41

In each generation (or one iteration of the algorithm) to change each population
member, a donor vector is created. In DE/rand/1 scheme, to create donor vector
three other parameter vectors are chosen in a random fashion from the current
population. A scalar number scales the difference of any two of the three vectors
and the scaled difference is added to the third one whence the donor vector is
obtained. To increase the potential diversity of the population a crossover scheme
comes to play (exponential or binomial) (Tanabe & Fukunaga, 2014). The donor
vector exchanges its body parts with the target vector. To keep the population size
constant over subsequent generations, selection is done to determine which one of
the target vector and the trial vector will survive in the next generation. If the new
trial vector yields a better value of the fitness function, it replaces its target in the
next generation. Otherwise the target vector is retained in the population. Hence
the population either gets better remains constant but never deteriorates (Das et
al., 2008).

Particle Swarm Optimization is a multi-agent parallel search technique.
Particles are conceptual entities, which fly through the multi-dimensional search
space (Mirjalili et al., 2014). At any particular instant, each particle has a position
and a velocity. The position vector of a particle with respect to the origin of the
search space represents a trial solution of the search problem. At the beginning, a
population of particles is initialized with random positions marked by vectors and
random velocities. The population of such particles is called a swarm. Each
particle has two state variables, its current position and its current velocity
(Mohais et al., 2005). It is also equipped with a small memory comprising its
previous best position (one yielding the highest value of the fitness function found
so far), personal best experience and the best all particles, the best position found
so far in the neighborhood of the particle. Once the particles are all initialized, an
iterative optimization process begins, where the positions and velocities of all the
particles are altered by recursive equations. After having calculated the velocities
and position for the next step, the iteration of the algorithm is completed.
Typically, this process is iterated for a certain number of time steps, or until some
acceptable solution has been found (Das et al., 2008).

When differential evolution and particle swarm optimization are used with
a true random number generator, the statistical quality of the random number is
guaranteed. In real practice, a true random number generator is rarely available.
In such a situation, different pseudo-random number generators are used.
Different pseudo-random number generators have different statistical qualities of
the numbers generated. In this research, the influence of the two different quality
pseudo-random number generators is investigated in a hybrid implementation of
differential evolution and particle swarm optimization.

42

The rest of this paper is organized as follows: Section 1 introduces the
problem with the statistical quality in pseudo-random numbers, which are used in
population-based optimization; Section 2 describes the way in which pseudo-
random number generators are compared; Section 3 reveals some practical
experiments and related results; and Section 4 concludes with some suggestions
for further work.

2. Practical Uses Pseudo-Random Number Generators
Particular pseudo-random number generators are widely used in practice. The
most popular of them is the Linear Congruent Generator (LCG) (Class Random.
Java SE Documentation, 2021). The experimental part in this study is done with
Java source code, part of LibreOffice Calc NLP Solver (NLP Solver. LibreOffice
Calc, 2021). The standard distribution of Java comes with the LCG (Class Random.
Java SE Documentation, 2021) and SecureRandom generators (Class
SecureRandom. Java SE Documentation, 2021). For this reason, a comparison is
made between the two.

The mathematical formula of LCG is pretty simple:

X(m+1) = (aX(m) + b) mod c (1)

Each subsequent value is functionally dependent on the previous one. It is
extremely important that the initial value 𝑋𝑋(0) is random and as difficult to predict
as possible. The different implementations of LCG differ only in the choice of the
constants 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐. Due to its simplicity, LCG is very fast. In contrast to the
performance is the compromise with the statistical quality of the generated
numbers. It is proven that LCG should not be used for anything important.

On the other side, the secure random generator in Java varies in different
Java Virtual Machine implementations. It minimally should comply with the
statistical random number generator tests specified in FIPS 140-2, Security
Requirements for Cryptographic Modules (Class SecureRandom. Java SE
Documentation, 2021). It must produce non-deterministic output. When it is
possible, entropy is being gathered from sources like /dev/random on various
Unix-like operating systems.

The main difference between the two generators is their performance. Tests
done on Intel Core i5 2,3 GHz, Single CPU with 2 cores, 8GB RAM, macOS High
Sierra 10.13.6, Java SE 11.0.2 machine shows that the SecureRandom is 25 times
slower than Random. Performance is the price of getting random numbers with
better statistical qualities. The main question that arises from this difference in

43

performance is whether statistically better numbers can compensate for speed and
lead to faster converging optimization.

3. Training ANN with LibreOffice Calc NLP Solver
The actual stable release version of LibreOffice at the moment of current writing
is 7.0.6.2. All conducted experiments are performed with a development version
of the product (7.3.0.0.alpha0+). The development version of the product is used,
as the functionality for random number generators is not yet part of the release
version of the product. A separate flag has been added to the Calc’s NLP Solver
settings dialog so that the LCG and SecureRandom generators can be switched
(Fig. 1).

Fig. 1. The user interface for switching random number generators

As a benchmark model, training of feed-forward artificial neural network

is used. The artificial neural network is trained to do forecasting of financial time
series (Tomov, 2021). Dataset used in publicly available at (Balabanov, 2021). The
artificial neural network has three layers (input, hidden, and output) with a total
number of weights of 555 (Experiment-26-Mar-2021-2.ods).

Experiments show that LCG gives only slightly weaker results than the
SecureRandom generator. LCG achieves a target value of 0.021592 in 5340
seconds (Fig. 2), while SecureRandom achieves a target value of 0.0212213 in
5280 seconds (Fig.3). This difference in the third decimal place shows that both
generators give practically good results.

44

Fig. 2. Optimization convergence with Linear Congruential Generator

Fig. 3. Optimization convergence with SecureRandom generator

These results clearly show that the use of a generator with statistically

higher quality numbers is fully justified in LibreOffice Calc for the NLP Solver
module. Such use does not affect the performance. In some cases, even improves
the convergence of optimization.

4. Conclusion
This research examines the influence of the quality that pseudo-random numbers
have on heuristic optimization algorithms. A hybrid implementation of
Differential Evolution and Particle Swarm Optimization is chosen for the
experiments. The source code is written in Java and is part of the NLP Solver
module of LibreOffice Calc. Newly added random number generator selection
functionality allows experiments to be performed. The conclusion from the

45

performed tests is that better quality generators do not slow down the
performance, but in some models, they lead to faster convergence of the
optimization process.

Possibilities for more thorough testing of the various generators can be
mentioned as guidelines for future research. It is essential to monitor the behavior
of the SecureRandom generator in different operating systems and different
hardware. It is also important to study different optimization models with different
levels of complexity and nonlinearity.

Acknowledgment
This research is funded by Velbazhd Software LLC and it is partially supported
by the Bulgarian Ministry of Education and Science (contract D01–
205/23.11.2018) under the National Scientific Program “Information and
Communication Technologies for a Single Digital Market in Science, Education
and Security (ICTinSES)”, approved by DCM # 577/17.08.2018.

References
1. Balabanov, T.: LibreOffice Calc Three Layers Perceptron Builder.

https://github.com/VelbazhdSoftwareLLC/LibreOffice-Calc-Three-Layers-
Perceptron-Builder, last accessed 2021/08/04.

2. Borissova, D., Dimitrova, Z., Dimitrov, V.: How to support teams to be remote
and productive: Group decision-making for distance collaboration software
tools. Information and Security. Digital Transformation, Cyber Security and
Resilience, vol. 46, pp. 36-52, 2020. https://doi.org/10.11610/isij.4603.

3. Class Random. Java SE Documentation, Oracle Corporation,
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html, last
accessed 2021/08/02.

4. Class SecureRandom. Java SE Documentation, Oracle Corporation,
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html,
last accessed 2021/08/02.

5. Das, S., Abraham, A., Konar, A.: Particle Swarm Optimization and Differential
Evolution Algorithms: Technical Analysis, Applications and Hybridization
Perspectives. Advances of Computational Intelligence in Industrial Systems,
Studies in Computational Intelligence, vol. 116, 1-38, (2008).
https://doi.org/10.1007/978-3-540-78297-1_1.

6. Das, S., Mullick, S., Suganthan, P.: Recent advances in differential evolution –
An updated survey. Swarm and Evolutionary Computation, vol. 27, 1-30
(2016). https://doi.org/10.1016/j.swevo.2016.01.004.

7. Dillen, W., Lombaert, G., Schevenels, M.: Performance assessment of
metaheuristic algorithms for structural optimization taking into account the
influence of algorithmic control parameters. Frontiers in Built Environment,
(2021). https://doi.org/10.3389/fbuil.2021.618851.

https://doi.org/10.11610/isij.4603
https://doi.org/10.1007/978-3-540-78297-1_1
https://doi.org/10.1016/j.swevo.2016.01.004
https://doi.org/10.3389/fbuil.2021.618851

46

8. Garvanov, I., Garvanova, M., Borissova, D., Vasovic, B., Kanev, D.: Towards
IoT-Based Transport Development in Smart Cities: Safety and Security
Aspects. Business Modeling and Software Design, Lecture Notes in Business
Information Processing. Springer, Cham, vol. 422, 392-398 (2021)
https://doi.org/10.1007/978-3-030-79976-2_27.

9. Guliashki, V., Toshev, H., Korsemov, C.: Survey of evolutionary algorithms
used in multiobjective optimization. Problems of Engineering Cybernetics and
Robotics, vol. 60, 42-54 (2009).

10. Huimin, L., Shuwen, X., Yanlong, Y., Chenwei, L.: Differential evolution
particle swarm optimization algorithm based on good point set for computing
Nash equilibrium of finite noncooperative game. AIMS Mathematics, vol. 6,
no. 2, 1309-1323 (2021). https://doi.org/10.3934/math.2021081.

11. Koeune, F.: Pseudo-random number generator. Encyclopedia of Cryptography
and Security, Springer, Boston, MA, (2005), https://doi.org/10.1007/0-387-
23483-7_330.

12. Machica, J., Bruno, O.: Improving the pseudo-randomness properties of
chaotic maps using deep-zoom. Chaos vol. 27, 053116 (2017).
https://doi.org/10.1063/1.4983836.

13. Mirjalili, S., Lewis, A., Sadiq, A.: Autonomous Particles Groups for Particle
Swarm Optimization. Arabian Journal for Science and Engineering, vol. 39,
4683-4697 (2014). https://doi.org/10.1007/s13369-014-1156-x.

14. Mohais, A., Mendes, R., Ward, C., Posthoff, C.: Neighborhood Re-structuring
in Particle Swarm Optimization. Advances in Artificial Intelligence, LNCS,
Springer, Berlin, Heidelberg, vol. 3809, 776-785 (2005).
https://doi.org/10.1007/11589990_80.

15. NLP Solver. LibreOffice Calc,
https://github.com/LibreOffice/core/tree/master/nlpsolver, last accessed
2021/08/02.

16. Tanabe, R., Fukunaga, A.: Reevaluating Exponential Crossover in Differential
Evolution. Parallel Problem Solving from Nature, Lecture Notes in Computer
Science, Springer, Cham, vol. 8672, 201-210 (2014).
https://doi.org/10.1007/978-3-319-10762-2_20.

17. Tomov, P.: Multilayer perceptron fast prototyping with differential evolution
and particle swarm optimization in LibreOffice Calc. Problems of Engineering
Cybernetics and Robotics 75, 5-14 (2021).
https://doi.org/10.7546/PECR.75.21.02.

18. Trifonov, R., Manolov, S., Yoshinov, R., Tsochev, G., Nedev, S., Pavlova, G.:
Operational cyber-threat intelligence supported by artificial intelligence
methods. In: Proc. of International Conference on Information Technologies,
20-21 (2018).

19. Yang, X.: Chapter 8 - Particle Swarm Optimization. Nature-Inspired
Optimization Algorithms (Second Edition), Academic Press, 111-121 (2021).
https://doi.org/10.1016/B978-0-12-821986-7.00015-9.

https://doi.org/10.1007/978-3-030-79976-2_27
https://doi.org/10.3934/math.2021081
https://doi.org/10.1007/0-387-23483-7_330
https://doi.org/10.1007/0-387-23483-7_330
https://doi.org/10.1063/1.4983836
https://doi.org/10.1007/s13369-014-1156-x
https://doi.org/10.1007/11589990_80
https://doi.org/10.1007/978-3-319-10762-2_20
https://doi.org/10.7546/PECR.75.21.02
https://doi.org/10.1016/B978-0-12-821986-7.00015-9

	1. Introduction
	2. Practical Uses Pseudo-Random Number Generators
	3. Training ANN with LibreOffice Calc NLP Solver
	4. Conclusion
	Acknowledgment
	References

