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Abstract: The multilayer perceptron is one of the most used kinds of artificial 
neural networks. It has an organization in layers and in most cases, these layers 
are fully connected. The training of multilayer perceptron is a process of finding 
optimal values for the weights between the layers. When optimal values are 
desired, LibreOffice Calc has a module called Solver. For non-linear optimization, 
the Solver module uses a hybrid algorithm which is a combination of differential 
evolution and particle swarm optimization. For using LibreOffice Calc in 
multilayer perceptron training the model of the artificial neural network should be 
deployed into the working sheet. This paper proposes fast prototyping by 
multilayer perceptron model deployment in such a way in which differential 
evolution and particle swarm optimization optimizers to be used in the training 
process. 

Keywords: differential evolution, multilayer perceptron, particle swarm 
optimization.  

1. Introduction 
Financial time series forecasting has great importance in the modern world and 
the area of soft computing [1]. Many important decisions [2] are taken after 
analysis of the possible future changes in the financial instruments. When it comes 
to non-linear forecasting, artificial neural networks are one of the most discussed 
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approaches [3]. The autocorrelation approach in artificial neural networks 
forecasting splits the time series into a conditional past window and a conditional 
future window [4]. After normalization [5] (in most cases linear normalization), 
the conditional past window feeds the artificial neural network input. The 
normalized values [5] of the conditional future window are expected at the output 
of the artificial neural network. The key point of the artificial neural networks 
used as a forecasting tool is their training [6]. In the case of multilayer perceptron, 
training of the artificial neural network consists of finding optimal values for the 
weights in the network in such a way that the network has generalization 
(predicting) capabilities. For achieving such generalization capabilities, the input-
output examples are divided into three subsets: training set; validation set; testing 
set [7]. The training set is used in the process of optimal weight searching. The 
examples in the training set are used for weights values adjustment. The examples 
in the validation set are used for monitoring of generalization capabilities of the 
artificial neural network. These examples are not used for weights adjustment. 
These examples are used for training process stopping criteria when the 
generalization of the network drops down. The examples in the testing set are used 
as artificial neural network operational mode.  

Before real industrial implementation (for example software as a service [8]) 
of an artificial neural network, the process of fast prototyping is very relevant. 
There are many software instruments for fast prototyping like Matlab, R, 
NeuroSolutions, and others, but fast prototyping also can be done very efficiently 
in LibreOffice Calc. For achieving such prototyping, the topology of the 
multilayer perceptron should be deployed in Calc’s working sheet. The input layer 
usually has no calculating capabilities and it only repeats the input of the supplied 
example. Calculating formulas should be given for the hidden and output layer. 
Total network error should be calculated. This value is the exact objective for 
minimization. The process of minimization is done by changing a given range of 
cells which represent artificial neural network weights. Two common questions 
can be solved during fast prototyping in solving a particular forecasting problem: 
1. How many hidden layers are needed; 2. How many neurons are needed in each 
hidden layer?  

This paper proposes an application of the Solver module available in 
LibreOffice Calc, with its differential evolution and particle swarm optimizers, 
for artificial neural networks training.  

2. Model deployment 
Multilayer perceptron deployment in LibreOffice Calc sheet starts with feeling the 
most left column with values of the time series. Some parameters needed for the 
building of the model are given in the third column (Fig. 1).  
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Fig. 1. Given time series and model parameters 

 
For the linear scaling of the original time series, the minimum and maximum 

values are found by Calc formulas 𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴:𝐴𝐴) and 𝑀𝑀𝐴𝐴𝑀𝑀(𝐴𝐴:𝐴𝐴). Input values sent 
to the artificial neural network are scaled in the specified range. The topology of 
the three-layer perceptron is also given. The counting of the total number of 
available values in the time series is done by Calc formula 𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝐶𝐶(𝐴𝐴:𝐴𝐴). The 
size of the time series is needed because splitting the values in training examples 
is done according to this size. Model deployment is done with a specially written 
Python script [9]. Scripting languages can perform pretty slow and because of this, 
a separate Calc cell is devoted to keeping track of the model deployment progress.  

Linear scaling of the time series values in column 𝐸𝐸 is the first operation 
done by the script. 

Python script for input scaling follows: 
 
for t in range(1, total_values + 1): 
    
sheet.getCellRangeByName("E"+str(t)).setValue(sheet.getCellR
angeByName("$C$4").getValue()+ 
    (sheet.getCellRangeByName("$C$5").getValue() - 
sheet.getCellRangeByName("$C$4").getValue())* 
    ((sheet.getCellRangeByName("A"+str(t)).getValue()-
sheet.getCellRangeByName("$C$1").getValue())/ 
    (sheet.getCellRangeByName("$C$2").getValue() - 
sheet.getCellRangeByName("$C$1").getValue()))) 

 
Each layer has bias represented in the model as dummy neurons constantly 

emitting one as value. 
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Python script for biases setup follows: 
 

sheet.getCellRangeByName("G" + str(x)).setValue(1) 
sheet.getCellRangeByName("G" + str(x)).CellBackColor = 
(255 << 16 | 255 << 8 | 0) 
sheet.getCellRangeByName("H" + str(x)).setValue(1) 
sheet.getCellRangeByName("H" + str(x)).CellBackColor = 
(255 << 16 | 255 << 8 | 0) 
sheet.getCellRangeByName("I" + str(x)).setValue(1) 
sheet.getCellRangeByName("I" + str(x)).CellBackColor = 
(255 << 16 | 255 << 8 | 0) 
sheet.getCellRangeByName("J" + str(x)).setValue(1) 
sheet.getCellRangeByName("J" + str(x)).CellBackColor = 
(255 << 16 | 255 << 8 | 0) 

 
For each training example, all three layers of the artificial neural network 

are formed (Fig. 2).  
 

 
Fig. 2. Artificial neural network topology 

 
The input layer only transfers the scaled values of the time series but for the 

hidden layer and the output layer incoming signals are multiplied by the weights 
and the sum is passed to the activation function. The expected values are taken 
just as they were scaled. 

Python script for input data loading follows: 
 

for i in range(1, input_size + 1): 
    sheet.getCellRangeByName("G" + str(x + 
i)).setValue(sheet.getCellRangeByName("E" +  
    str(t + i)).getValue()) 
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    sheet.getCellRangeByName("G" + str(x + i)).CellBackColor = 
(255 << 16 | 0 << 8 | 0) 
''' Expected data loading. ''' 
for e in range(1, output_size + 1): 
    sheet.getCellRangeByName("J" + str(x + 
e)).setValue(sheet.getCellRangeByName("E" +  
    str(t + e + input_size)).getValue()) 
    sheet.getCellRangeByName("J" + str(x + e)).CellBackColor =  
(0 << 16 | 127 << 8 | 0) 
 
''' Setup hidden layer. ''' 
wih = 1 
for h in range(1, hidden_size + 1): 
    sum = "" 
    for i in range(0, input_size + 1): 
        sum = sum + "G" + str(x + i) + "*Q" + str(wih) 
        wih = wih + 1 
        if i < input_size: 
            sum = sum + " + " 
        sheet.getCellRangeByName("H" + str(x + 
h)).setFormula("=TANH( " + sum + " )") 
        sheet.getCellRangeByName("H" + str(x + h)).CellBackColor = 
(0 << 16 | 0 << 8 | 255) 
 
''' Setup output layer. ''' 
who = 1 
for o in range(1, output_size + 1): 
    sum = "" 
    for h in range(0, hidden_size + 1): 
        sum = sum + "H" + str(x + h) + "*S" + str(who) 
        who = who + 1 
        if h < hidden_size: 
            sum = sum + " + " 
    sheet.getCellRangeByName("I" + str(x + o)).setFormula 
("=TANH( " + sum + " )") 
    sheet.getCellRangeByName("I" + str(x + o)).CellBackColor =  
(0 << 16 | 255 << 8 | 0) 

 
The error for each training example is calculated between the artificial 

neural network output and the expected values. The total mean-square error of the 
artificial neural network is calculated by the usage of all training examples errors. 

Python script for network output error and total network error follows: 
 
for r in range(1, output_size + 1): 
    sheet.getCellRangeByName("K" + str(x + r)).setFormula 
("= (J" + str(x + r) + "-I" +  
    str(x + r) + ") * (J" + str(x + r) + "-I" + str(x + r) + ")") 
    sheet.getCellRangeByName("K" + str(x + r)).CellBackColor =  
(0 << 16 | 255 << 8 | 255) 
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sheet.getCellRangeByName("M1").setFormula 
("= SQRT( SUM(K:K) / COUNT(K:K) )") 
sheet.getCellRangeByName("M1").CellBackColor = 0 

 
For each training example network topology is reproduced but all 

reproductions are using the same cell regions given for the network weights. These 
weights are part of the operational replication of the artificial neural network 
topology (see Fig. 3). 
 

 
Fig. 3. Operational topology of the artificial neural network 

 

Python script for weights setup follows: 
 
wih = 1 
for h in range(2, hidden_size + 2): 
    for i in range(1, input_size + 2): 
        sheet.getCellRangeByName("Q" + str(wih)).CellBackColor  
= (255 << 16 | 0 << 8 | 255) 
        wih = wih + 1 
 
who = 1 
for o in range(2, output_size + 2): 
    for h in range(1, hidden_size + 2): 
        sheet.getCellRangeByName("S" + str(who)).CellBackColor  
= (255 << 16 | 0 << 8 | 255) 
        who = who + 1 
 
    sheet.getCellRangeByName("U" + str(o)).setFormula 
("=$C$1 + ($C$2 - $C$1) *  
    ((T" + str(o) + " - $C$4) / ($C$5 - $C$4))") 
    sheet.getCellRangeByName("U" + str(o)).CellBackColor =  
(0 << 16 | 127 << 8 | 0) 
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The artificial neural network is trained with the Solver module and when a 
new value appears in the time series the model is redeployed with the new value 
taken into account. Such continuous training is very important because most of 
the financial time series are not static but they are dynamic.  

3. Experiments and results 
All experiments are done on a single processor desktop machine - Intel Core i5, 
2.3 GHz, 2 Cores, 8GB RAM with macOS High Sierra 10.13.6 and LibreOffice 
7.0.5.2. As financial time series, publicly available rates of Bitcoin to USD is 
taken on a daily interval. For artificial neural network topology, 30 input nodes 
and 3 output nodes are chosen. It means that the past interval (the lag) is 30 days 
and the forecast interval (the lead) is 3 days. The size of the hidden layer is taken 
to be 15. It is almost half of the sum between input and output size. Hyperbolic 
tangent is chosen as an activation function for the hidden and the output layers. It 
is preferred because it is symmetric to the X-axis. The original time series values 
are scaled in the range of -0.5 to +0.5. Such scaling uses around half of the slope 
given by the hyperbolic tangent. All parameters of the DE-PSO optimizers are 
kept to their default values (Fig. 4). 
 

 
Fig. 4. Solver and optimizers parameters 

 
Measurements of optimization performance are done on each 300 

optimization cycle. On each 3000 optimizations cycle, a new value in the time 
series appears (Fig. 5). With each new time series value, the artificial neural 
network model in the LibreOffice Calc sheet is rebuilt. As it is shown in Fig. 5, 
the initial training does greater convergence. With each new value in the time 
series, convergence goes from a much lower value. Global non-linear 
optimization is very sensitive to the initial starting point.  
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Fig. 5. Total artificial neural network error 

 
In the experiments, 513 variables are subject to optimization (values of the 

weights). The initial values are randomly selected near to zero value. The training 
time goes up with the rise of the size in the time series as shown in Fig. 6. 

 

 
Fig. 6. Training time usage 

 
It is logical because when the time series is bigger, more cells with formulas 

should be calculated. The experiments clearly show that the proposed prototyping 
is efficient.   

4. Conclusion 
In this paper, fast prototyping of artificial neural networks was proposed. Fast 
prototyping is done in LibreOffice Calc. The model of an artificial neural network 
is deployed into the LibreOffice Calc sheet with a specially written Python script. 
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Searching for optimal weights in the artificial neural network is done by the build-
in Solver. The Solver uses differential evolution and particle swarm optimizers. 
The experiments proved that proposed fast prototyping is very promising and can 
be used in artificial neural network design.  

As further research, artificial neural networks with a higher number of 
hidden layers to be implemented and hierarchical [10] training to be implemented. 
Human-computer interaction in modifying artificial neural networks weight is 
also an interesting aspect for research [11]. The Solver module in LibreOffice Calc 
has other optimizers different than DE-PSO. It will be interesting optimization to 
be done with them. LibreOffice Calc is open-source software that comes with 
some problems with quality. It is relevant additional quality validation [12] of the 
Solver to be done.  
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