
5

BULGARIAN ACADEMY OF SCIENCES
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS • 2021 • Vol. 75, pp. 5-14

p-ISSN: 2738-7356; e-ISSN: 2738-7364
https://doi.org/10.7546/PECR.75.21.02

Multilayer Perceptron Fast Prototyping with
Differential Evolution and Particle Swarm Optimization
in LibreOffice Calc

Petar Tomov

Institute of Information and Communication Technologies
at the Bulgarian Academy of Sciences
Acad. Georgi Bonchev Str., block 2, office 514, 1113 Sofia, Bulgaria
petar.tomov@iict.bas.bg

Abstract: The multilayer perceptron is one of the most used kinds of artificial
neural networks. It has an organization in layers and in most cases, these layers
are fully connected. The training of multilayer perceptron is a process of finding
optimal values for the weights between the layers. When optimal values are
desired, LibreOffice Calc has a module called Solver. For non-linear optimization,
the Solver module uses a hybrid algorithm which is a combination of differential
evolution and particle swarm optimization. For using LibreOffice Calc in
multilayer perceptron training the model of the artificial neural network should be
deployed into the working sheet. This paper proposes fast prototyping by
multilayer perceptron model deployment in such a way in which differential
evolution and particle swarm optimization optimizers to be used in the training
process.

Keywords: differential evolution, multilayer perceptron, particle swarm
optimization.

1. Introduction
Financial time series forecasting has great importance in the modern world and
the area of soft computing [1]. Many important decisions [2] are taken after
analysis of the possible future changes in the financial instruments. When it comes
to non-linear forecasting, artificial neural networks are one of the most discussed

mailto:author@boulder.nist.gov

6

approaches [3]. The autocorrelation approach in artificial neural networks
forecasting splits the time series into a conditional past window and a conditional
future window [4]. After normalization [5] (in most cases linear normalization),
the conditional past window feeds the artificial neural network input. The
normalized values [5] of the conditional future window are expected at the output
of the artificial neural network. The key point of the artificial neural networks
used as a forecasting tool is their training [6]. In the case of multilayer perceptron,
training of the artificial neural network consists of finding optimal values for the
weights in the network in such a way that the network has generalization
(predicting) capabilities. For achieving such generalization capabilities, the input-
output examples are divided into three subsets: training set; validation set; testing
set [7]. The training set is used in the process of optimal weight searching. The
examples in the training set are used for weights values adjustment. The examples
in the validation set are used for monitoring of generalization capabilities of the
artificial neural network. These examples are not used for weights adjustment.
These examples are used for training process stopping criteria when the
generalization of the network drops down. The examples in the testing set are used
as artificial neural network operational mode.

Before real industrial implementation (for example software as a service [8])
of an artificial neural network, the process of fast prototyping is very relevant.
There are many software instruments for fast prototyping like Matlab, R,
NeuroSolutions, and others, but fast prototyping also can be done very efficiently
in LibreOffice Calc. For achieving such prototyping, the topology of the
multilayer perceptron should be deployed in Calc’s working sheet. The input layer
usually has no calculating capabilities and it only repeats the input of the supplied
example. Calculating formulas should be given for the hidden and output layer.
Total network error should be calculated. This value is the exact objective for
minimization. The process of minimization is done by changing a given range of
cells which represent artificial neural network weights. Two common questions
can be solved during fast prototyping in solving a particular forecasting problem:
1. How many hidden layers are needed; 2. How many neurons are needed in each
hidden layer?

This paper proposes an application of the Solver module available in
LibreOffice Calc, with its differential evolution and particle swarm optimizers,
for artificial neural networks training.

2. Model deployment
Multilayer perceptron deployment in LibreOffice Calc sheet starts with feeling the
most left column with values of the time series. Some parameters needed for the
building of the model are given in the third column (Fig. 1).

7

Fig. 1. Given time series and model parameters

For the linear scaling of the original time series, the minimum and maximum

values are found by Calc formulas 𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴:𝐴𝐴) and 𝑀𝑀𝐴𝐴𝑀𝑀(𝐴𝐴:𝐴𝐴). Input values sent
to the artificial neural network are scaled in the specified range. The topology of
the three-layer perceptron is also given. The counting of the total number of
available values in the time series is done by Calc formula 𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝐶𝐶(𝐴𝐴:𝐴𝐴). The
size of the time series is needed because splitting the values in training examples
is done according to this size. Model deployment is done with a specially written
Python script [9]. Scripting languages can perform pretty slow and because of this,
a separate Calc cell is devoted to keeping track of the model deployment progress.

Linear scaling of the time series values in column 𝐸𝐸 is the first operation
done by the script.

Python script for input scaling follows:

for t in range(1, total_values + 1):

sheet.getCellRangeByName("E"+str(t)).setValue(sheet.getCellR
angeByName("C4").getValue()+
 (sheet.getCellRangeByName("C5").getValue() -
sheet.getCellRangeByName("C4").getValue())*
 ((sheet.getCellRangeByName("A"+str(t)).getValue()-
sheet.getCellRangeByName("C1").getValue())/
 (sheet.getCellRangeByName("C2").getValue() -
sheet.getCellRangeByName("C1").getValue())))

Each layer has bias represented in the model as dummy neurons constantly

emitting one as value.

8

Python script for biases setup follows:

sheet.getCellRangeByName("G" + str(x)).setValue(1)
sheet.getCellRangeByName("G" + str(x)).CellBackColor =
(255 << 16 | 255 << 8 | 0)
sheet.getCellRangeByName("H" + str(x)).setValue(1)
sheet.getCellRangeByName("H" + str(x)).CellBackColor =
(255 << 16 | 255 << 8 | 0)
sheet.getCellRangeByName("I" + str(x)).setValue(1)
sheet.getCellRangeByName("I" + str(x)).CellBackColor =
(255 << 16 | 255 << 8 | 0)
sheet.getCellRangeByName("J" + str(x)).setValue(1)
sheet.getCellRangeByName("J" + str(x)).CellBackColor =
(255 << 16 | 255 << 8 | 0)

For each training example, all three layers of the artificial neural network

are formed (Fig. 2).

Fig. 2. Artificial neural network topology

The input layer only transfers the scaled values of the time series but for the

hidden layer and the output layer incoming signals are multiplied by the weights
and the sum is passed to the activation function. The expected values are taken
just as they were scaled.

Python script for input data loading follows:

for i in range(1, input_size + 1):
 sheet.getCellRangeByName("G" + str(x +
i)).setValue(sheet.getCellRangeByName("E" +
 str(t + i)).getValue())

9

 sheet.getCellRangeByName("G" + str(x + i)).CellBackColor =
(255 << 16 | 0 << 8 | 0)
''' Expected data loading. '''
for e in range(1, output_size + 1):
 sheet.getCellRangeByName("J" + str(x +
e)).setValue(sheet.getCellRangeByName("E" +
 str(t + e + input_size)).getValue())
 sheet.getCellRangeByName("J" + str(x + e)).CellBackColor =
(0 << 16 | 127 << 8 | 0)

''' Setup hidden layer. '''
wih = 1
for h in range(1, hidden_size + 1):
 sum = ""
 for i in range(0, input_size + 1):
 sum = sum + "G" + str(x + i) + "*Q" + str(wih)
 wih = wih + 1
 if i < input_size:
 sum = sum + " + "
 sheet.getCellRangeByName("H" + str(x +
h)).setFormula("=TANH(" + sum + ")")
 sheet.getCellRangeByName("H" + str(x + h)).CellBackColor =
(0 << 16 | 0 << 8 | 255)

''' Setup output layer. '''
who = 1
for o in range(1, output_size + 1):
 sum = ""
 for h in range(0, hidden_size + 1):
 sum = sum + "H" + str(x + h) + "*S" + str(who)
 who = who + 1
 if h < hidden_size:
 sum = sum + " + "
 sheet.getCellRangeByName("I" + str(x + o)).setFormula
("=TANH(" + sum + ")")
 sheet.getCellRangeByName("I" + str(x + o)).CellBackColor =
(0 << 16 | 255 << 8 | 0)

The error for each training example is calculated between the artificial

neural network output and the expected values. The total mean-square error of the
artificial neural network is calculated by the usage of all training examples errors.

Python script for network output error and total network error follows:

for r in range(1, output_size + 1):
 sheet.getCellRangeByName("K" + str(x + r)).setFormula
("= (J" + str(x + r) + "-I" +
 str(x + r) + ") * (J" + str(x + r) + "-I" + str(x + r) + ")")
 sheet.getCellRangeByName("K" + str(x + r)).CellBackColor =
(0 << 16 | 255 << 8 | 255)

10

sheet.getCellRangeByName("M1").setFormula
("= SQRT(SUM(K:K) / COUNT(K:K))")
sheet.getCellRangeByName("M1").CellBackColor = 0

For each training example network topology is reproduced but all

reproductions are using the same cell regions given for the network weights. These
weights are part of the operational replication of the artificial neural network
topology (see Fig. 3).

Fig. 3. Operational topology of the artificial neural network

Python script for weights setup follows:

wih = 1
for h in range(2, hidden_size + 2):
 for i in range(1, input_size + 2):
 sheet.getCellRangeByName("Q" + str(wih)).CellBackColor
= (255 << 16 | 0 << 8 | 255)
 wih = wih + 1

who = 1
for o in range(2, output_size + 2):
 for h in range(1, hidden_size + 2):
 sheet.getCellRangeByName("S" + str(who)).CellBackColor
= (255 << 16 | 0 << 8 | 255)
 who = who + 1

 sheet.getCellRangeByName("U" + str(o)).setFormula
("=C1 + (C2 - C1) *
 ((T" + str(o) + " - C4) / (C5 - C4))")
 sheet.getCellRangeByName("U" + str(o)).CellBackColor =
(0 << 16 | 127 << 8 | 0)

11

The artificial neural network is trained with the Solver module and when a
new value appears in the time series the model is redeployed with the new value
taken into account. Such continuous training is very important because most of
the financial time series are not static but they are dynamic.

3. Experiments and results
All experiments are done on a single processor desktop machine - Intel Core i5,
2.3 GHz, 2 Cores, 8GB RAM with macOS High Sierra 10.13.6 and LibreOffice
7.0.5.2. As financial time series, publicly available rates of Bitcoin to USD is
taken on a daily interval. For artificial neural network topology, 30 input nodes
and 3 output nodes are chosen. It means that the past interval (the lag) is 30 days
and the forecast interval (the lead) is 3 days. The size of the hidden layer is taken
to be 15. It is almost half of the sum between input and output size. Hyperbolic
tangent is chosen as an activation function for the hidden and the output layers. It
is preferred because it is symmetric to the X-axis. The original time series values
are scaled in the range of -0.5 to +0.5. Such scaling uses around half of the slope
given by the hyperbolic tangent. All parameters of the DE-PSO optimizers are
kept to their default values (Fig. 4).

Fig. 4. Solver and optimizers parameters

Measurements of optimization performance are done on each 300

optimization cycle. On each 3000 optimizations cycle, a new value in the time
series appears (Fig. 5). With each new time series value, the artificial neural
network model in the LibreOffice Calc sheet is rebuilt. As it is shown in Fig. 5,
the initial training does greater convergence. With each new value in the time
series, convergence goes from a much lower value. Global non-linear
optimization is very sensitive to the initial starting point.

12

Fig. 5. Total artificial neural network error

In the experiments, 513 variables are subject to optimization (values of the

weights). The initial values are randomly selected near to zero value. The training
time goes up with the rise of the size in the time series as shown in Fig. 6.

Fig. 6. Training time usage

It is logical because when the time series is bigger, more cells with formulas

should be calculated. The experiments clearly show that the proposed prototyping
is efficient.

4. Conclusion
In this paper, fast prototyping of artificial neural networks was proposed. Fast
prototyping is done in LibreOffice Calc. The model of an artificial neural network
is deployed into the LibreOffice Calc sheet with a specially written Python script.

13

Searching for optimal weights in the artificial neural network is done by the build-
in Solver. The Solver uses differential evolution and particle swarm optimizers.
The experiments proved that proposed fast prototyping is very promising and can
be used in artificial neural network design.

As further research, artificial neural networks with a higher number of
hidden layers to be implemented and hierarchical [10] training to be implemented.
Human-computer interaction in modifying artificial neural networks weight is
also an interesting aspect for research [11]. The Solver module in LibreOffice Calc
has other optimizers different than DE-PSO. It will be interesting optimization to
be done with them. LibreOffice Calc is open-source software that comes with
some problems with quality. It is relevant additional quality validation [12] of the
Solver to be done.

Acknowledgments
This research is funded by Velbazhd Software LLC and it is partially supported
by the Bulgarian Ministry of Education and Science (contract D01–
205/23.11.2018) under the National Scientific Program “Information and
Communication Technologies for a Single Digital Market in Science, Education
and Security (ICTinSES)”, approved by DCM # 577/17.08.2018.

References
1. Angelova, V.: Investigations in the area of soft computing targeted state of the art

report. Cybernetics and Information Technologies 9(1), 18-24 (2009).
2. Cvetkova, P., Pandulis, A., Borissova, D.: Application of information

technologies to support mathematically reasoned decisions. In: Knowledge
Society and 21st Century Humanism Proceedings, pp. 488-496, Academic
Publishing House Za Bukvite - O Pismeneh, Sofia (2020).

3. Dhamija, A., Bhalla, V.: Financial time series forecasting: Comparison of neural
networks and ARCH models. International Research Journal of Finance and
Economics 49, 194-212 (2010).

4. Flores, J., Engel, P., Pinto, R.: Autocorrelation and partial autocorrelation
functions to improve neural networks models on univariate time series
forecasting. In: International Joint Conference on Neural Networks (IJCNN'12)
Proceedings, pp. 1-8, IEEE, Rio de Janeiro, Brazil (2012).

5. Sola, J., Sevilla, J.: Importance of input data normalization for the application of
neural networks to complex industrial problems. IEEE Transactions on Nuclear
Science 44(3), 1464-1468 (1997).

6. Sideratos, G., Ikonomopoulos, A., Hatziargyriou, N.: A novel fuzzy-based
ensemble model for load forecasting using hybrid deep neural networks. Electric
Power Systems Research 178, 106025 (2020).

14

7. Kaastra, I., Boyd, M.: Designing a neural network for forecasting financial and
economic time series. Neurocomputing 10(3), 215-236 (1996).

8. Alexandrov, A., Monov, V.: Implementation of a service oriented architecture in
smart sensor systems integration platform. In: Third Int. Conf. on
Telecommunications and Remote Sensing Proceedings, vol. 1, pp. 114-120,
Science and Technology Publications, Luxembourg (2014).

9. Balabanov, T.: LibreOffice Calc Three Layers Perceptron Builder,
https://github.com/VelbazhdSoftwareLLC/LibreOffice-Calc-Three-Layers-
Perceptron-Builder , last accessed 18 Apr 2021.

10. Tashev, T., Hristov, H.: Hierarchical interconnection modeling in computer
systems. In: International Scientific Conference Communication, Electronic and
Computer Systems Proceedings, pp. 215-220, Sofia (2000).

11. Bakanova, N., Bakanov, A., Atanasova, T.: Modelling human-computer
interactions based on cognitive styles within collective decision-making.
Advances in Science, Technology and Engineering Systems Journal 6(1), 631-
635 (2021).

12. Dimitrov, W.: Software testing. Avangard, Sofia (2017).

	1. Introduction
	2. Model deployment
	3. Experiments and results
	4. Conclusion
	Acknowledgments
	References

