
24

BULGARIAN ACADEMY OF SCIENCES

PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS • 2020 • Vol. 74, pp. 24-32
p-ISSN: 2738-7356; e-ISSN: ISSN: 2738-7364

https://doi.org/10.7546/PECR.74.20.03

Local Search, Brute-Force and Recursion for Selection Operator

Petar Tomov, Iliyan Zankinski, and Victor Danev

Institute of Information and Communication Technologies - Bulgarian Academy of Sciences
Acad. Georgi Bonchev Str., block 2, office 514, 1113 Sofia, Bulgaria
Emails: p.tomov@iit.bas.bg, iliyan@hsi.iccs.bas.bg, victor_danev@abv.bg

Abstract: Genetic algorithms are heuristics inspired by the processes in the
biological evolution. They have a main application in the field of global optimization.
The optimization process is organized into three common operations – crossover,
mutation, and selection. The crossover and the mutation are used for recombination
and do produce new individuals to the population. Selection is used for appointing
better parents during the reproduction process [1]. Many different selection operators
are well described in the literature. In the group of the most used are: Proportional
Selection, Tournament Selection, Rank-Based Selection, Boltzmann Selection, Soft
Brood Selection, Disruptive Selection, Nonlinear Ranking Selection, and
Competitive Selection. This study proposes an improvement to recursive brute-force
selection by the addition of local search on the level of the brute-force. In every level
of recursive descent, all local individuals are recombined with each other (brute-
force) as many times as there is an improvement (local search). Only the best-found
individual after that is sent to the population of the higher level.

Keywords: Local search, brute-force, recursion, selection operator

1. Introduction
In the field of meta-heuristic global optimization, genetic algorithms are well known
and widely applied. Genetic algorithms have stochastic nature because random or
pseudo-random numbers are extensively used in common operators like crossover,
mutation, and selection. Finding global optimum is rarely possible and, in most cases,
genetic algorithms give sub-optimal solutions. Because of the stochastic nature found
solutions can differ between different runs of the optimization process. At the same
time, the possibilities for different runs are great option for parallel or distributed
computing. Mechanisms in natural evolution have inspired the ideas involved in

25

genetic algorithms. Meta-heuristics are most useful for optimization problems in
multidimensional spaces with a high degree of non-linearity. A point in
multidimensional space (for genetic algorithms it is the solutions space) is presented
as vector of values. The set of vectors in the solutions space forms a population of
individuals in terms of genetic algorithms. The size of the population is very problem
dependent, and it is estimated empirically by trial and error approach [2]. The target
function is applied to every one of the population. The result of this calculation gives
the individual’s fitness value. The fitness value gets better with approaching the
optimum. Individuals with better fitness have better chances to mate and to form a
new generation. The mating process consists of two common operators – crossover
and mutation. Crossover contributes to the exploration of the solutions space when
mutation contributes to the exploitation of the solutions space. Genetic algorithms are
heavily researched in the last few decades, but there are still directions for
improvements. Such direction is the selection operator. This research focuses on
searching for optimum to set of benchmark functions by the addition of local search
[3] in brute-force procedure when it is applied in recursive descent [4].

Selecting parents for mating can be done according many different strategies.
The most important target of successful mating is to select as better individuals as
possible more often with the hope that they will produce even better offspring.
Selecting parents at random will lead to a very slow convergence of the optimization
process [5]. The proportional selection [6] is one of the first improvements in the
selection process. The idea behind it is that everyone receives a crossover chance
proportional to its fitness value. Tournament selection [7] is another selection strategy
in which by competition between a subset of individuals only winners are nominated
for mating. Rank selection [8] on the other side uses ranking of individuals in order
to determine their chances for mating. Boltzmann selection [9] uses simulated
annealing. In this strategy, winners are nominated after a predetermined number of
Boltzmann experiments.

There are many hybrid implementations of the above listed selection strategies.
This research proposes a local search extension of the brute-force element in the
recursive selection proposed by Tomov, Zankinski, and Balabanov [10]. A hierarchy
of sub-generations is generated, and the best-fitted individuals are selected with
recursive descent. On each level of recursion single brute-force searching is applied
and only one individual is promoted to a higher level. The newly proposed
modification applies brute-force search as many times as there is an improvement of
the findings, which in fact is a local search extension.

The rest of the paper is organized as follows: After the introductory part
proposition for local search extension to recursive brute-force selection operator is
presented; Some experiments and results are presented after that; Paper concludes
with a summary of the research and with some directions for a further work.

26

2. Local Search Proposition
The selection operator described in [10] consists of recursive descent and brute-force.
There is a predefined depth of recursion levels. On each level of recursion, there is a
genetic algorithm sub-population. The size of sub-populations is equal, and it is also
predefined. All individuals in the leaves of the recursive tree are randomly generated.
The brute-force part of the algorithm consists of the fact that each individual mate
with each other in the sub-population. Only the best-found individual is promoted to
go in the higher sub-population. Each higher sub-population is fulfilled with
individuals promoted from the lower levels.

The proposed improvement in this selection procedure states that brute-force
should be returned as many times as there is an improvement of the best-found
individual (Fig. 1).

Fig. 1. Local search extended algorithm

27

The advantage of the proposed modification is that a much better investigation
of the neighboring area of the search space is done. In this way, individuals with
better properties are selected to mate in the evolutionary process.

Table 1 shows time consumption for achieving the results with a recursive
level of 7 and population size at each recursive node of 11 individuals.

Table 1. Calculation time [ms] for recursion level of 7 and population size of 11.

Function
Algorithm

Michalewicz Ackley Schwefel Rastrigin Griewank

Local Search 1062492546 531027435 533232986 507650704 592370933
Brute-Force 403141211 166733879 175069174 159862955 218428047

Table 2 shows the number of fitness value calculation for achieving the results
with a recursive level of 7 and population size at each recursive node of 11
individuals. Those numbers are not predefined, because the usage of brute-force
procedure can vary in the number of new individuals created.

Table 2. Number of fitness calculations for recursion level of 7 and population size of 11.

Function
Algorithm

Michalewicz Ackley Schwefel Rastrigin Griewank

Local Search 641125639 641024362 640914978 641092606 640830762
Brute-Force 235794757 235794757 235794757 235794757 235794757

3. Experiments and Results
All experiments are done in 10000-dimensional solutions space. As benchmark
functions are selected five very well-known functions: Michalewicz, Ackley,
Schwefel, Rastrigin, and Griewank. Algorithms are tested with levels of recursive de-
scent from 2 to 7 and with population size from 2 to 11. Table 1 shows the calculation
time used in both algorithms for the configuration of recursive descent 7 and
population size 11. Table 2 shows the total number of individuals evaluation (fitness
value calculation) in both algorithms for the configuration of recursive descent 7 and
population size 11. The exact numbers achieved in the experiments can be found at
this URL (https://github.com/TodorBalabanov/FedCSIS-Conference-on-Computer-
Science-and-Information-Systems-2020/tree/master/Local-Search-Brute-Force-and-
Recursion-for-Selection-Operator).

Suboptimal values achieved by both algorithms are presented in Fig. 2 and Fig.
3. The presented information includes all experimental combinations of recursive
descent levels and population sizes.

28

Fig. 2. Michalewicz, Ackley, Schwefel, Rastrigin,

Griewank Local Search – Suboptimal Values

Fig. 3. Michalewicz, Ackley, Schwefel, Rastrigin,

Griewank Brute Force – Suboptimal Values

Fig. 4 and Fig. 5 illustrates the used of computational time. The graphs show
that computation time rises with rising the size of the local node population size or
the level of recursive descent. Such an increase is logical because when the local node
population rises it means that much more brute-force recombinations will be possible.
Also with deeper recursive descent, there would be much more local node
populations to be evolved, which takes extra computation time.

29

Fig. 4. Michalewicz, Ackley, Schwefel, Rastrigin,

Griewank Local Search – Local Search – Time [ms]

Fig. 5. Michalewicz, Ackley, Schwefel, Rastrigin,

Griewank Brute Force – Time [ms]

Fig. 6 and Fig. 7 show number of evaluations done during optimization
process. Graphs show that local search has a deterministic predefined number of local
node population number of individuals’ evaluation. On the opposite side, brute-force
has more local node population of individuals’ evaluation, but better individuals are
promoted for mating in the upper levels of the recursive descent.

30

Fig. 6. Michalewicz, Ackley, Schwefel, Rastrigin,

Griewank Local Search – Fitness Evaluations

Fig. 7. Michalewicz, Ackley, Schwefel, Rastrigin,

Griewank Brute Force – Fitness Evaluations

In Table 3 are shown the suboptimal values found by both algorithms for the

configuration of recursive descent 7 and population size 11.

Table 3. Suboptimal values found for recursion level of 7 and population size of 11.

Function
Algorithm

Michalewicz Ackley Schwefel

Local Search -1484.7137949531716 21.09334816052046 3877924.0971615044

Brute-Force -1439.2296970724608 21.114702255301292 3919318.729777085

Function
Algorithm

Rastrigin Griewank

Local Search 170204.87849875208 259918.15469527297

Brute-Force 171780.33307271387 262621.61053178157

31

Values achieved with the local search extension are closer to the global
optimums. The results in Table 3 show that Local Search gives better suboptimal
solutions than the Brute-Force algorithm for all experimented functions. This
improvement comes at the price of the higher computational time used.

4. Conclusion
This research extends the brute-force part of the recursive descent procedure in
genetic algorithms selection operator with local search. The experimental results
show very good efficiency, but it comes with the price of higher computational time.
Because of the higher computational time, the proposed selection can be used for
tasks that have no strict time limitations.

The advantage of the proposed modification is that it gives a better individual
to be promoted for mating in the higher levels of the recursive descent, which
indirectly gives better sub-optimal solutions. The disadvantage of the proposed local
search modification is that it takes extra time and the number of local individuals’
evaluations is not deterministic. The proposed modification and the selection operator
as recursive descent may find application in a wide variety of combinatorial
optimization problems, which can be represented in the terms of the genetic
algorithms.

As further research, it will be interesting the same selection operator to be
implemented in algorithms like differential evolution [11] with different sizes of the
sub-populations [12] on different recursive levels like small sizes on low levels and
bigger sizes on higher levels.

Acknowledgment
This research is funded by Velbazhd Software LLC and it is partially supported by
the Bulgarian Ministry of Education and Science (contract D01–205/23.11.2018)
under the National Scientific Program “Information and Communication
Technologies for a Single Digital Market in Science, Education and Security
(ICTinSES)”, approved by DCM # 577/17.08.2018.

References
1. Matsui, K.: New selection method to improve the population diversity in genetic

algorithms. In: IEEE International Conference on Systems, Man, and Cybernetics, Japan,
https://doi.org/10.1109/ICSMC.1999.814164, (1999).

2. Alander, J.: On optimal population size of genetic algorithms. Computer Systems and
Software Engineering, https://doi.org/10.1109/CMPEUR.1992.218485, (1992).

3. Fellows, M., Fomin, F., Lokshtanov, D., Rosamond, F., Saurabh, S., Villanger, Y.: Local
search: Is Brute-Force avoidable. Journal of Computer and System Sciences 78(3), 707–
719, https://doi.org/10.1016/j.jcss.2011.10.003, (2012).

https://doi.org/10.1109/ICSMC.1999.814164
https://doi.org/10.1109/CMPEUR.1992.218485
https://doi.org/10.1016/j.jcss.2011.10.003

32

4. Gelfand, S., Mitter, S., Recursive stochastic algorithms for global optimization in Rd.
SIAM Journal on Control and Optimization, https://doi.org/10.1137/0329055, (1991).

5. Wang, Q.: The genetic algorithm and its application to calibrating conceptual rainfall-
runoff models. Water resources research 27(9), 2467–2471,
https://doi.org/10.1029/91WR01305, (1991).

6. Back, T.: Self-adaptation in genetic algorithms. In: Proc. of First European Conference
on Artificial Life, pp. 263–271, (1992).

7. Miller, B., Goldberg D.: Genetic algorithms, tournament selection, and the effects of
noise. Complex Systems 9, 193–212 (1995).

8. Grefenstette, J.: Rank-based selection. Evolutionary Computation, (2000).
9. Goldberg, D.: A note on Boltzmann tournament selection for genetic algorithms and

population-oriented simulated annealing. Complex Systems 4, 445–460 (1990).
10. Tomov, P., Zankinski, I., Balabanov, T.: Genetic algorithm selection operator based on

recursion and Brute-Force. In: 14th Annual Meeting of the Bulgarian Section of SIAM,
(2019).

11. Surender Reddy, S., Bijwe, P. R.: Differential evolution-based efficient multi- objective
optimal power flow. Neural Computing and Applications 31, 509–522,
https://doi.org/10.1007/s00521-017-3009-5, (2019).

12. Koumousis, V.K., Katsaras, C.P.: A saw-tooth genetic algorithm combining the effects
of variable population size and reinitialization to enhance performance. IEEE
Transactions on Evolutionary Computation 10(1), 19–28,
https://doi.org/10.1109/TEVC.2005.860765, (2006).

https://doi.org/10.1137/0329055
https://doi.org/10.1029/91WR01305
https://doi.org/10.1007/s00521-017-3009-5
https://doi.org/10.1109/TEVC.2005.860765

	1. Introduction
	2. Local Search Proposition
	3. Experiments and Results
	4. Conclusion
	Acknowledgment
	References

