
39 

BULGARIAN ACADEMY OF SCIENCES 

PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS • 2020 • Vol. 73, pp. 39-46 
p-ISSN: 2738-7356; e-ISSN: 2738-7364
https://doi.org/10.7546/PECR.73.20.04 

Developing Monte Carlo Simulator of Reinforcement 
Learning Type 

Georgi Tsochev1 
1 Laboratory of Telematics – BAS, Sofia, Bulgaria 
Emails: gtsochev@cc.bas.bg 

Abstract: Monte Carlo methods are a way to solve the reinforcement learning 
problem based on average test results. To ensure that well-defined results are 
available, Monte Carlo methods are used only for episodic tasks. The Monte Carlo 
term is often used more widely in any valuation method whose operation involves 
significant participation on a random basis. Here it is specifically used for methods 
based on the average of full results (as opposed to methods that are learned from 
incomplete results). The paper describes a simulator for estimating raindrops in a 
specific area using the package matlib. 

Keywords: Monte Carlo, reinforcement learning, simulation, matlib, python 

1. Introduction
The Monte Carlo method is extremely useful in designing businesses, technologies, 
planning changes in an organization. Instead of costly experiments in kind, a variety 
of organizational work and equipment can be experimented on a computer. In a 
number of cases, computer modelling is the only way to get information about the 
behaviour of the system. Surely the estimates do not come in freely [1]. There is no 
universal solution to choose from the “magic” software menu that returns the result 
as soon as you complete your assignment. A good model of the system to be explored 
should be created to produce results of practical value. It is necessary to thoroughly 
examine the actual flow of requests, to carry out a time measurement for the operation 
of the individual nodes, and so on. When the system is in the design phase and does 
not yet exist, design parameters and technological boundaries are used. In general, it 
is necessary to know the probability laws of functioning of the individual parts of the 

mailto:gtsochev@cc.bas.bg


40 

system, which model the way their work fluctuates around the project values. Then 
the Monte Carlo method allows calculating the probability laws of the entire system, 
taking into account the interconnection between the parts and parts, no matter how 
complex it is. 

It can be said that human interaction with the environment is the primary way 
of perceiving new knowledge, which is the essence of learning. From an early age, 
movement and contemplation are a form of learning without the intervention of a 
direct teacher. Causal investigative connections that are created during the game 
provide information about the consequences of actions. Throughout life, learning 
about the external environment and one's own self is influenced by daily activities. 
From conversational skills to learning to drive a car, etc. we learn how our decisions 
and follow-up lead to different results. According to many theories, interactive 
learning plays a major role in educational activities [2]. In this regard, different 
approaches to interactive learning have been proposed. For example, some of them 
are focused on the design and development of an interactive multimedia e-learning 
system for the purposes of engineering training [3]. Others are focused on the process 
of teaching and learning complex algorithms that are hard to understand [4] or 
building e-learning applications for their effective use [5]. There is also an integrated 
framework that except the necessary course materials including corresponding tests 
and exercises provides an integrated environment where learners could test the 
written programming codes [6]. It should be mention that the latest approaches in 
interactive learning involve gamification too [7]. 

Reinforcement Learning is learning what to do – how to deal with situations 
with such actions to get the maximum digital signal of reward. The learner is not told 
what action to take, but instead has to find alone which actions give the greatest 
reward by trying them out. Each action affects the subsequent/final rewards, as well 
as the nearest direct reward in some interesting and challenging actions. For trial and 
error reinforcement training, aggregate and delayed remuneration are the most 
important characteristics [8]. 

Anyone who has owned a pet and trained it has most likely used an approved 
training form. What is the standard way to get a pet – such as a dog – to carry out 
certain commands? We give the command to the dog and if he responds in the way 
we expect, we give him a reward. If he does not answer/react correctly – we do not 
give him a reward. After a certain number of attempts and rewards on our part, the 
dog should start responding to our commands only with the right reactions, expecting 
a reward every time – when he hears “sit” – to sit down. We can say that he has 
learned to associate certain voice commands and their respective actions with a 
reward. Reinforcement Learning is both: 1) Class solution methods that work well on 
а problem, 2) the field that studies problems and the methods for solving them. 

It is convenient to use the same name for the three parts, but at the same time 
it is important to keep the three concepts separate. In fact, the difference between 
problems and solution methods is very important in Reinforcement Learning. The 



41 

inability to make this distinction is a source of much confusion. One of the interesting 
methods that we will consider and use to develop the Reinforcement training type 
simulator is the Monte Carlo method. 

2. Monte Carlo Methods 
Monte Carlo methods require only experimentation – testing a series of states, actions 
and rewards from actual or simulated interactions with the environment. This 
teaching is a result of real experience and is astonishing because it does not require 
prior knowledge of the dynamics of the environment, but it can still achieve optimal 
behaviour. Training from simulated experience is also strong. Although a model is 
needed, the model only has to generate test states rather than the full probability 
distribution of all possible states that are required for dynamic programming. In 
surprisingly many cases, it is easy to generate an experience taken in accordance with 
the desired probability distribution, but it is impossible to obtain a full-scale 
distribution [9]. 

Monte Carlo methods are based on averaged outcomes of a problem, which 
can specifically enhance learning. To obtain well-defined results, this method is 
applied to episodic tasks. In these cases, an experience is divided into several 
completed episodes, regardless of the chosen actions. When a completed episode is 
present, the values of the behaviour and the rows can change. Therefore, for step-by-
step (online) activities, the method is not used, but may have partial applications in 
the context of episodicity. In an estimation method whose operation involves 
significant random participation, the term Monte Carlo is more widely used. Here we 
use it specifically for methods based on the average of the complete results (as 
opposed to methods that are learned from incomplete results) [2]. 

There are several states, each acts as a different problem (such as associative 
search) and the various problems are interrelated. This means that post-performance 
compensation in one state depends on the actions taken at a later stage in the same 
episode. Since all selections of actions are subject to learning, the problem becomes 
unsettled from an earlier point of view. 

To do this, we adapt the idea of repeating the common line of behaviour (GPI) 
developed in Dynamic Programming. While in Dynamic Programming we have 
calculated value functions of the Markov Process, Monte Carlo learns the value 
functions of the test results using the Markov Process. The value functions and their 
respective lines of behaviour continue to interact to achieve optimality in the same 
way. In Dynamic Programming, we first look at the predicted problem (calculating 
𝑣𝑣𝑣𝑣 and 𝑞𝑞𝑣𝑣 for a fixed random line of behaviour 𝜋𝜋), then improving the line of 
behaviour, and finally the controlled problem and its solution through the GPI. Each 
of these ideas, taken from dynamic programming, extends to the Monte Carlo case in 
which we have only an exemplary experience. 

In principle, Monte Carlo methods can be used to solve any problem. Under 
the law of large numbers, integrals described with an expected value of any random 



42 

variable, the result can be approximated by taking the empirical value independently 
of the specified variable. When the probability distribution of the variable is 
parameterized, mathematicians often use the Markov Monte Carlo collection 
(shortly: MCMC). The main idea is to create a model of the Markov chain of 
described joint probability distribution. 

The name of the method is chosen for the glory of the capital of Monaco as a 
European gambling centre. Since this great project first uses computer and the theory 
of random trajectories to obtain a probable solution to a complex physical problem. 
This type of mathematical experiments is called Monte Carlo methods. McCracken 
in 1955 in introducing the early Monte Carlo methods in Scientific American 
magazine writes: “The Monte Carlo method is primarily used to solve problems that 
are determined in some important way probability - tasks in which the physical 
experiment is unfeasible and the creation of exact formula is impossible”. The 
American Mathematicians John Neumann and S. Ullam – 1949, are the creators of 
the method. 

Let’s illustrate the capabilities of the method with a geometric example of 
defining an area of complexity (Fig 1).  

 
Fig. 1. Geometric example of defining an area of complexity [8] 

 
The square shown in the figure has area 1. Look for the area of the complex 

figure in the square. Apply 𝑁𝑁 random points in the square. The points in the figure 
are 𝑁𝑁′ in number. It is obvious geometrically that the area 𝑆𝑆 =  𝑁𝑁′/ 𝑁𝑁. The more 𝑁𝑁 
points the greater the accuracy. In the example of Fig. 1 𝑁𝑁 =  40, and 𝑁𝑁′ =  11. The 
calculated area is 𝑆𝑆 =  11/40 =  0.275, with the actual area being 0.28. 

The Monte Carlo method is not used to determine two-dimensional areas. This 
is why more precise methods are applied. But when determining areas and volumes 
of bodies in the Monte Carlo multi-dimensional space, the method is the only option 
to solve the problem [10]. The advantages of Monte Carlo methods over dynamic 



43 

programming are several. For example, without a model of environmental dynamics, 
optimal behaviour can be found directly from the interaction with it. Trial episodes 
can also be simulated using the methods in question using simulation or sample 
models. Monte Carlo methods also allow focusing and evaluating a small part of the 
conditions without the need to study the overall picture.  

Monte Carlo methods operate on an exemplary experience, and this can be 
used for direct learning without the need for a model. They also do not update their 
valuation value based on other valuation values. 

3. Algorithm for Rain Drops   
Problem solving using the Monte Carlo method is based on statistical measurements. 
In the most general form, if an event will occur under certain conditions (probability 
𝑃𝑃), the generation of the same conditions by a computer can be performed repeatedly. 
The number of times the event occurs divided by the number of conditions generated 
should be approximately equal to 𝑃𝑃 [1]. 

The idea is to simulate random (𝑥𝑥,𝑦𝑦) points in a 2-D plane with domain as a 
square of side 1 unit. Imagine a circle inside the same domain with same diameter 
and inscribed into the square. Then, we calculate the ratio of number points that lied 
inside the circle and total number of generated points. 

The proposed algorithm is composed of the following ten steps: 

1. Initialize 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑣𝑣𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝, 𝑝𝑝𝑞𝑞𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐_𝑣𝑣𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 and interval to 0. 
2. Generate random point 𝑥𝑥. 
3. Generate random point 𝑦𝑦. 
4. Calculate 𝑑𝑑 =  𝑥𝑥 ∗ 𝑥𝑥 +  𝑦𝑦 ∗ 𝑦𝑦. 
5. If d <= 1, increment circle points. 
6. Increment square points. 
7. Increment interval. 
8. If increment < NO_OF_ITERATIONS, repeat from 2. 
9. Calculate 𝑣𝑣𝑐𝑐 =  4 ∗ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑣𝑣𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝/𝑝𝑝𝑞𝑞𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐_𝑣𝑣𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝). 
10. Terminate. 

4. Simulation and Results 
To show clearer results from the simulator, several different simulations will be done 
with a different number of rain drops. The obtained results from the simulations 
presented below, besides the python source code compiler, used also Matplotlib.  

The obtained results in the case of 100 drops by using the proposed simulator 
are illustrated in Fig. 2. 

 



44 

    
Fig. 2 a) 100 raindrops, b) π estimate against number of raindrops 

 
The results in Fig. 3 represent the simulation of 500 drops. 

 

     
Fig. 3 a) 500 raindrops; b) π estimate against number of raindrops 

 
The corresponding results when simulated 100000 drops are shown in Fig. 4. 

 

  
Fig. 4. a) 100000 raindrops; b) π estimate against number of raindrops 

 
Increasing the number of drops up to 1000000 leads to the results as shown in 

Fig. 5. 
 



45 

  
Fig. 5. a) 1000000 raindrops; b) π estimate against number of raindrops 

 
The results show the applicability of Monte Carlo for the purpose of 

calculating raindrops in a given area. 
The example given is not complicated but illustrates how the Monte Carlo 

method of Reinforcement is applied. The calculation of decision-making features and 
state-of-the-art optimal strategies is easily achievable through the demonstrated 
algorithms and methods, provided we have access to the dynamics of the environment 
– we know the transit function and the instant prize function. In the real world, this 
is quite honest information that the agent does not have access to while studying.  

The results of the Monte Carlo simulation are only approximate to the actual 
value and are far less accurate. The Monte Carlo method in combination with 
reinforcement learning and agent based technology can be used for cybersecurity 
[11]. Agents have a table of ordered pairs: status and possible action, along with 
estimated reward values. After each game, agents update the rewards values for 
selected ordered pairs (status and action). Monte Carlo training updates every 
condition that the agent has gone through with the same reward value. An agent 
benefiting from reinforcement learning has the following dilemma: choosing between 
an action that is considered the best (exploitation) or choosing other actions to see if 
any of these actions is better (exploration). For the Monte Carlo approach, four 
different research algorithms are used to attempt to address this problem in cyber 
security, namely e-greedy, Softmax, Upper Confidence Bound 1 and Discounted 
Upper Confidence Bound [12]. 

5. Conclusion  
Simulation is a type of tool that helps to make analytical decisions. The simulation 
software provides an opportunity to compare and reasonably evaluate various 
alternative projects, plans and policies. It finds a particularly valuable application 
when there is a high level of uncertainty as to the end result of an alternative that is 
under consideration. The simulation model generates a number of probability 
scenarios, thus accumulating a quantitative statistical sample of the expected end 
result, which helps to find a solution to this uncertainty.  



46 

The article shows the use of Monte Carlo methods to calculate raindrops in an 
area. Limitations of the presented simulation are explained. The main reason to use 
the Monte Carlo method is the possibility to get a quicker response to a question that 
usually takes a lot of time to resolve. Of course, the method also has its drawbacks. 
It is not yet generally accepted whether Monte Carlo can be used to simulate systems 
that are not in equilibrium (i.e. a transient state). Another drawback is that in order to 
use the Monte Carlo simulation a large number of samples must be generated and this 
may take a long time to achieve the desired results, since only one sample cannot be 
generated and immediately used in simulation, and it is necessary to make many 
samples and get their average value. 

References  
1. Monte-Carlo Simulation, https://brilliant.org/wiki/monte-carlo/, last accessed 2020/04/10 
2. Sutton, R. S., Barto, A. G.: Introduction to Reinforcement Learning (1st. ed.). MIT Press, 

Cambridge, MA, USA (1998). 
3. Borissova, D., Mustakerov, I.: E-learning tool for visualization of shortest paths algorithms. 

Trends Journal of Sciences Research 2(3), 84–89 (2015). 
4. Borissova, D., Mustakerov, I.: A Framework of Multimedia E-Learning Design for 

Engineering Training. In: International Conference Advances in Web Based Learning – ICWL 
2009, Marc Spaniol, Qing Li, Ralf Klamma, Rynson W.H. Lau (Eds.), Springer, Lecture Notes 
in Computer Science, vol. 5686, pp. 88-97 (2009). 

5. Yoshinov, R, Arapi, P., Christodoulakis, S., Kotseva, M.: Supporting personalized learning 
experiences on top of multimedia digital libraries. International Journal of Education and 
Information Technologies 10, 152–158, (2016). 

6. Mustakerov, I., Borissova, D.: A framework for development of e-learning system for 
computer programming: Application in the C programming language. Journal of e-Learning 
and Knowledge Society 13(2), 89–101 (2017). 

7. Borissova, D., Keremedchiev, D., Tuparov, G.: Multi-criteria model for questions selection in 
generating e-education tests involving gamification. TEM JOURNAL – Technology, 
Education, Management, Informatics 9(2), 779–785 (2020). 

8. Othman, A.: Enhancing the Performance of Flexible AC Transmission Systems (FACTS) by 
Computational Intelligence. Doctoral Dissertations, Aalto University publication series, 174 
pages, 2011, http://lib.tkk.fi/Diss/2011/isbn9789526041766/isbn9789526041766.pdf 

9. Monte Carlo Method, https://en.wikipedia.org/wiki/Monte_Carlo_method, last accessed 
2020/05/01. 

10. Petrov, T.: The Monte Carlo Method – Basics And Application In Risk And Reliability 
Evaluation and Forecasting, 
http://www.mgu.bg/drugi/proekti/MONTE%20CARLO/Petrov%20T%20-
%20SAFERELNET%2005_Monte%20Carlo%20Application%20in%20Safety.pdf, last 
accessed 2020/05/20 

11. Gaidarski, I., Minchev, Z., Andreev, R.: Model driven architectural design of information 
security system. In: Madureira A., Abraham A., Gandhi N., Silva C., Antunes M. (eds) Proc. 
of Tenth International Conference on Soft Computing and Pattern Recognition (SoCPaR 
2018). Advances in Intelligent Systems and Computing, vol. 942, pp. 349-359, (2020), 
https://doi.org/10.1007/978-3-030-17065-3_35.  

12. Elderman, R., Pater, L.J.J., Thie, A.S., Drugan, M.M., Wiering M.M.: Adversarial 
reinforcement learning in a cyber security simulation, In: Proc. International Conference on 
Agents and Artificial Intelligence (ICAART 2017), pp. 559-566 (2017). 

https://brilliant.org/wiki/monte-carlo/
http://lib.tkk.fi/Diss/2011/isbn9789526041766/isbn9789526041766.pdf
https://en.wikipedia.org/wiki/Monte_Carlo_method
http://www.mgu.bg/drugi/proekti/MONTE%20CARLO/Petrov%20T%20-%20SAFERELNET%2005_Monte%20Carlo%20Application%20in%20Safety.pdf
http://www.mgu.bg/drugi/proekti/MONTE%20CARLO/Petrov%20T%20-%20SAFERELNET%2005_Monte%20Carlo%20Application%20in%20Safety.pdf
https://research.tue.nl/en/publications/adversarial-reinforcement-learning-in-a-cyber-security-simulation
https://research.tue.nl/en/publications/adversarial-reinforcement-learning-in-a-cyber-security-simulation

	1. Introduction
	2. Monte Carlo Methods
	3. Algorithm for Rain Drops
	4. Simulation and Results
	5. Conclusion
	References

