

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ • BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 70
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 70

София • 2018 • Sofia

An approach to weights distribution of requests in two algorithms
for non-conflict scheduling

Kiril Kolchakov, Vladimir Monov

Institute of Information and Communication Technologies 1113 Sofia
Email: kkolchakov@iit.bas.bg

Abstract: The paper presents an approach for determining the weights of requests
in the connection matrix of a crossbar switch node. We consider two algorithms for
non-conflict scheduling: Adaptive algorithm for management by weight coefficient
of the traffic in crossbar commutator (AAM) and Optimum adaptive algorithm for
management by weight coefficient of the traffic in crossbar commutator (AAMO).
In both algorithms the weights are positioned from top to bottom and right to left.
In this way each request has a constant weight and hence a constant priority in the
execution. Here we present an alternative determination of weights improving the
execution of requests.

Key words: crossbar commutator, algorithms for non-conflict scheduling

1. Introduction

In the ccrossbar commutator, N number of sources of packet massages are
associated with N number receivers of packet messages through the so-called T
connection matrix with dimensions N x N. In matrix T, an element value is equal to

 21

mailto:kkolchakov@iit.bas.bg

1 when a request for transmission of packet message is available (Tij = 1, when
source i wants to transmit a packet message to receiver j). Two types of conflict
situations are available:

1. when two or more sources of packet mеssages want to send messages to
one and the same receiver (the unities in any column of T are more than one).

2. when one source of packet mеssages wants to transmit to two or more
packet message receivers (the unities in any raw of T are more than one) [1,2,4,6].

There is a great number of algorithms for a conflict-free schedule by which these
conflicts are avoided. Two of these are Adaptive algorithm for management by
weight coefficient of the traffic in Crossbar commutator (AAM) and Optimum
adaptive algorithm for management by weight coefficient of the traffic in Crossbar
commutator (AAMO) [3].

2. Weights distribution and results

Figure 1 shows how the weight factors are determined, namely from top to bottom
and from left to right in the case of a connection matrix T with size N=4.

1 0 1 1
1 0 1 1
0 0 1 0
1 1 0 1

Each request is executed in time, according to the weight coefficient. We assume
conditionally that orders with a lower weight coefficient are executed earlier.
The new approach for weight definition is bottom-up and right-to-left.
Figure 2 presents this approach of determining the weights for the same connection
matrix T of Figure 1.

1 0 1 1
1 0 1 1
0 0 1 0
1 1 0 1

From Figure 3 it is seen that the sum of the respective weight factors for each
request is constant and equal to 11 for this specific example.

1 0 5 8
2 0 6 9
0 0 7 0
3 4 0 10

10 0 6 3
9 0 5 2
0 0 4 0
8 7 0 1

 T N=4 W1
Figure 1. Weight factors assigned from top to bottom and left to right

 T N=4 W2
 Figure 2. Weight factors assigned from bottom to top and right to left

 22

 Applied to both AAM and AAMO algorithms, the new approach represents an
alternative weighting (top to bottom and left to right or bottom to top and right to
left) for each new connection matrix.

Determining the weights from top to bottom and from left to right is performed by
means of the software model SMRIGHT, Figure 4. Determining the weights from
bottom to top and from right to left is performed by the software model SMBACK,
e.g., see Figure 5.

The software models SMRIGHT and SMBACK are written in MATLAB language
and our experiments are performed on a computer configuration Dell OPTIPLEX
745 (Core 2 Duo E6400 2,13GHz, RAM 2048).

Figure 4. Software model SMRIGHT

1 0 5 8
2 0 6 9
0 0 7 0
3 4 0 10

10 0 6 3
9 0 5 2
0 0 4 0
8 7 0 1

11 0 11 11
11 0 11 11
0 0 11 0
11 11 0 11

tic;
 T = randsrc(N,N,[0,1])
B = sparse(T)
C = ones(N)
p = 0
for i = 1: N
 for j = 1: N
if B(i,j) = = 1
C(i,j) = C(i,j) + p % request - weight coeffitsient.
 p = p + 1
else C(i,j)= 0
end
end
end
T,C
toc

 W1 W2 W = W1+W2
Figure 3. Sum of the weight factors

 23

 Figure 5. Software model SMBACK.

Table 1 shows the results of the study of SMRIGHT and SMBACK software
models with respect to the performance and memory required for different sizes N
of the T connection matrix. It is seen that for values of N from N = 4 to N = 32 the
results are almost identical. For N = 64, there is a difference of 24% for
performance and 0.5% for memory, while for N = 128 the difference is 4% for
performance and there is almost no memory difference.

Table 1 Performance and memory required of models SMRIGHT and SMBACK

 N SMRIGHT,
S[Sec.]

SMBACK,
S[Sec.]

SMRIGHT,
M[B]

SMBACK,
M[B]

 4 0,0438 0,0408 524 508
 8 0,1438 0,1218 1956 1988
 16 1,5126 1,5126 7856 7900
 32 19,0970 19,2438 30768 30944
 64 392,0600 486,4200 123572 122980
 128 4955,8000 4769,1000 493728 493736

tic;
 T = randsrc(N,N,[0,1])
B = sparse(T)
C = ones(N)
L = sum(sum(T))%total number of requests.
p = L - 1
for i = 1: N
 for j = 1: N
if B(i,j) = = 1
C(i,j) = C(i,j) + p % request - weight coeffitsient.
 p = p - 1
else C(i,j)= 0
end
end
end
T,C
toc

 24

From these results we can conclude that the alternative application of software
models SMRIGHT and SMBACK in the determination of the weight coefficients
is equivalent in terms of performance and memory required. Also the alternative
application of these models enables us to avoid the attachment of permanent
weights to the requests.

The weight factor determines when to run the corresponding request for the AAM
and AAMO algorithms. The alternative application of models SMRIGHT and
SMBACK in determining the weigh factors is a prerequisite for evenly over time
executing of the requests as long as they are not assigned to one and the same
weight factors.

In Table 2, we have denoted by w the number of weights for software models
SMAAM and SMAAMO corresponding to algorithms AAM and AAMO for
different values of N. It is important to note that for AAMO the number of weights
is smaller for one and the same T-connections matrix (Table 2) because the
requests in one and the same diagonal are of equal weight, i.e. they are non-conflict
to one another [3].

Table 2 Weights for software models SMAAM and SMAAMO

N w

SMAAM
w
SMAAMO

 4 9 6
 8 26 12
 16 133 28
 32 502 63

3. Conclusion

From this study, it can be concluded that the alternative application of SMRIGHT
and SMBACK in weight factor determination is equivalent in terms of
performance and memory required and from this perspective it will not slow the
performance of AAM and AAMO. However, as a result of this alternative weight
determination we can avoid the attachment of constant weights to requests and it is
possible to achieve comparative equalization with respect to their execution.

R e f e r e n c e s

1. K. Kolchakov, V. Monov. Hardware acceleration of a scheduling algorithm for crossbar
switch node via decomposition of the connection matrix. Problems of Engineering
Cybernetics and Robotics, 69, Prof. Marin Drinov Academic Publishing House, 2018,
ISSN:Print 0204-9848 , Online 1314-409X, 83-90.

 25

2. Kolchakov K., V. Monov. An approach for algorithm optimization of non-conflict
schedule by diagonal connectivity matrix activation. Proceedings of the International
Conference Automatics and Informatics`2017, Bulgaria, Sofia, October 4-6, 2017,
Federation of the scientific engineering unions, John Atanasoff Society of Automatics
and Informatics, 2017, ISSN:Proceedings ISSN 1313-1850, CD ISSN 1313-1869, 161-
164

3. Kolchakov K., Monov V. Adaptive Algorithm for Management by Weight Coefficients
of the Traffic in Crossbar Commutator, International Journal “ Information Models and
Analyses” Vol.4, № 1, pp. 53-60. http://www.foibg.com/ijima/vol04/ijima04-01-
p05.pdf

4. Tashev, T. , Atanasova, T. Computer Simulation of MIMA Algorithm for Input Buffered
Crossbar Switch. International Journal "Information Technologies & Knowledge",
Volume 5, Number 2, 2011. ITHEA® , Sofia, Bulgaria. Pages 183-189.

5. Kim D., K. Lee and H. Yoo, A Reconfigurable Crossbar Switch with Adaptive
Bandwidth Control for Networks-on-Chip, IEEE International Symposium on Circuits
and Systems, 2005.

6. Tashev T. Computering simulation of schedule algorithm for high performance packet
switch node modelled by the apparatus of generalized nets. Proceedings of the 11th
International Conference CompSysTech’2010, 17-18 June 2010, Sofia, Bulgaria. ACM
ICPS, Vol.471, pp.240-245.

Подход к весовому распределению запросов в двух
алгоритмах для бесконфликтного расписания

Кирил Колчаков, Владимир Монов

Институт информационных и коммуникационных технологии

Резюме

В статье представлен подход для определения весов запросов в матрице
соединений перекрестного коммутатора. Мы рассматриваем два алгоритма
для вычисления бесконфликтного расписания коммутации : Адаптивный
алгоритм управления по весовому коэффициенту трафика в перекрестном
коммутаторе (ААМ) и Оптимальный адаптивный алгоритм управления по
весовому коэффициенту трафика в перекрестном коммутаторе (ААМО). В
обоих алгоритмах веса располагаются сверху вниз и справа налево. Таким
образом, каждый запрос имеет постоянный вес и, следовательно,
постоянный приоритет при выполнении. Здесь мы приводим альтернативное
определение весов, улучшающиее выполнение запросов.

 26

http://www.foibg.com/ijima/vol04/ijima04-01-p05.pdf
http://www.foibg.com/ijima/vol04/ijima04-01-p05.pdf

