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Part I1. Dynamical Behavior of the Assembly Part after Its Separation
from the Intermediate Sleeve in the Mounting Head

1. Introduction

In this paperwork the researches are continued from [1]. The main task here is to
examine the motion of the assembly part (screw, trunk) since its separation from
the edge point A of the intermediate sleeve and the opportunity of self-centering and
screw on in the hole of the assembly part to be shown.

2. Precession motion of the part after its separation from the
intermediate sleeve

After separating the part from the intermediate sleeve, the contact in the edge point
disappear and the reaction N, (i.e. N, = 0) stops acting on it. The relation (3.11)
from [1] between the precession and angular velocity of the part also disappear.
Then, if the fulcrum O remains steady and no extra constrains appear, one of the
opportunities of further motion is regular precession of the part, such as the one of
a heavy gyroscope. In this case the task is: for a given values of its own angular
velocity s and angle of nutation @, the precession angular velocity @, arround the
vertical axis Oz, isto be found, according to which this precession motion appears.

We use the formula for the gyroscopic moment according to the fixed fulcrum
02
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(2.1 L=J,ws x| 1+ —cosé
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and kinetic-static equation
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(2.2) M®& +L=0,

describing the motion of the part. Here J,. is the inertia moment of the part with
respect to its symmetry axis Oz and J,. is the inertia moment according to
transverse axis Ox'. Taking into account that in the given case the main moment
M (9 is considered only the moment of the weight force G , i.e. M & =0C x G
or M =Glsing, where | OC|= 1, after the projection of (2.2) on the line of
nodes we obtain

. . Jz' - Jx' wy
—Glsind+ J, w0, SiNO(1+ —cos6) =0.
JZ' w3
After reduction of the common multiplier sing, this equation transforms into
(2.3 (J,-J,)el cosf+J w,m, -Gl =0,

from here for a givenw,and ¢ we find two values of the precession angular
velocity ay, i.e.

~J, w3+ 202 + 4Gl (3, — J,-) cosO
2(J, —J,)cosd
Regular precession is possible if
(2.5) J2@l +4GI(J, - J,.) cosd >0.
If its own angular velocity ws is significant, we expand the square root into
series

(2.4) ol =

2GI(J, — J.)cosé
JZ2.03
We can stop after the second addend. Then, taking the upper sign in front of
theradical in (2.4), we get

JJIZ203 +4GI(J, - J,:)c0s6 = I, w5 (L+

Gl
2. L
(2.6) 2 1, o
Thisangular velocity corresponds to the so called slow precession of the part.
Taking the lower sing in front of the radical into (2.4.), we obtain
2.7) PR
(J, —J,)cosd
This angular velocity corresponds to fast precession of the part.

3. Influence of the friction on the motion of the part

In fact the steady plane, which the part touches, is not absolutely smooth, therefore
afriction force T occurs. In this case, on the part not only the weight G will act,
but also the normal reaction N and friction force T, applied in the fulcrum O.

We apply the mass center motion theorem
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(3.0 M3c. =G+ N+T,
where M is the mass of the assembly part (screw) and
(3.2) 8. =&x OC* +w/C'C,
is the acceleration of its weight C. Here @, is the precession angular velocity ,
directed aong the vertical axis Oz, C; is the orthogonal projection of the weight
center C on Oz axis and & =®,; x @, with magnitude ¢=wm,w,SN@ is the
angular acceleration of the part, where @, isits own angular velocity directed along
OZ axis. It is obvious that the angular acceleration & is directed along the line of
the nodes ON (Fig.1) so the centripetal acceleration 8% = w2CC, laysin the plane
0zZ and its normally directed to the axis OZ.

Considering the equality (3.2), we project equation (3.1) over the vertical axis

Oz and the horizontal axis ON’, perpendicular to the line of the nodes ON placed in
the plane OzZ. It is obvious that all vector addend in (3.1), including the friction

force T, lay in this plane. We will differ two boundary states of a boundary kinetic-
static equilibrium:

a) when the angular velocities @y and @; are such as the fulcrum O of the part
will dlip into the hole of the assembly part (nut);

b) when the angular velocities @, and ws are such as the fulcrum O of the part
will dlip out of the hole of the assembly part.

In the first case the friction force T is pointed out and in the second is pointed
into the hole.

Case a. As we project the equation (3.1) on the axes Oz and ON', we obtain
the scalar equations:

- Mlo,o, sn?d=N -G,
(3.3)
Mlw,w, sin@ cosd — Mlw. sin@ = -T.
Wefind
N =G - Mlw,w, Sin* 6,
(3.4)
T =Mlw, sSinf(w, — v, coso).

To prevent dlip of the part in the fulcrum O along the axis Oz, the friction

force T should satisfy the Colon’slaw, i.e.
T <uN or Mlw, sinf(w, — o, cosd) < u(G — Mla,w, sin” ),

where 1 isthe coefficient of friction. After atransformation we obtain the following
equation:
(3.5) a)fsine—a)la)3sin<9(cose—ysin0)—ylgso.

If its own angular velocity ws is given we can determine ;. We find the
solutions of the following quadratic equation:
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(36) o™ =-—(cosl - using) i\/—l(cosé? —usiné)?® + u 9
2 4 lsing
where the smaller solution @ is obtained when the sign in front of the radical |

minus and the received value is negative and the bigger solution a)l(z) is obtained
when the sign in front of the radical is plus and the result is a positive value.

77777

Fig. 1. Study of the piece motion on the fulcrum (supporting) plane (surface)

Factorizing the quadratic trinomial into a simple multipliers, the inequality
(3.5) becomes
(3.7) sné(o, - o )(w, - 0?)<0.

Here sin@> 0 and o, — " >0, because in a physical way w;>0. Thus, for
the inequality (3.7) to be correct, respectively the inequality (3.5), it is necessary
(3.8) 0, <0,

where 0 is the positive solution of (3.6).
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Vice verse, if the precession angular velocity @, is given, we find that that the
own angular velocity ws is

a)fsinﬁ—yg

(3.9) wy>—— I
®,SiN@(cosl — usinb)
Case b. In this case the friction force 7T is directed inwards and after
projection of (3.1) on Oz and ON', we obtain:

~Mlw,w,sin”0=N -G,

(3.10)
Mlw,w, sind cosd — Mlw? sing =T.
Therefore we determine T and N. We replaced them in the Colon's law
T < 4N, ensuring to prevent a dip in the fulcrum O inside out. We have the

inequality
(3.12) a)fsine—a)la)3sin0(cose—ysin0)+,u|g20.

Here the solutions of the quadratic equation are

. @ . w3 .
(1’2) = — + —_— 2_
(312) 5 (c0549+/¢sm0)_\/ 7 (cosf + using) Hisna:

They are positive as the smaller one is denoted with ", and the bigger one

with ©?".

Through factorization of the quadratic trinomial we find that to satisfy the
inequality (3.11) we need o, <o or ®, >w!? . Under technological
circumstances we can realize the second casg, i.e.

(3.13) w, >0l

On the other hand, if the tranglational angular velocity e is given, for w; we
find

a)lzsin6’+,ug|J

(3.14) Wz 2 - _ .

®, SiN@(cosb + 1 sinb)

So based on  (3.8) and (3.13) we conclude: the fulcrum O of the part to stay
fixed, it is necessary the values of the precession angular velocity a to be in the
interval

(3.15) ol <o, <0??,

or based on (3.9) and (3.14) the own angular velocity ws to be within the interval
wfsin@—,ug a)fsin49+u9

(3.16) ! !

: , Swg < : : :
@®,SiN@(cosf — usinf) ®,SiN@(cosl + psinb)
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Of great importance is the case when @, > @{® or w; is less than the left part

in (3.16). Then the fulcrum O of the part will slide on the horizontal plane towards
the axis Oz and due to the existence of chamfers a self center will occur, while the
axis of the part will try to reach a vertical position. Due to the gained angular
velocity of rotation the assembly process will begin. When we have high angular
velocities of the pneumowhirl stream these conditions can be reached very quickly
with agreat hustle.

4. Movement of the particle aong the support plane
like a whipping-top

After separation of the particle from the edged point A such a condition can be
made so that it will make a movement alike a heavy whipping-top. The osculating
point is moving aong the horizontal plane. Because the assembly part is
symmetrical and its inertia ellipsoid according to its mass center is rotational, the
task is brought to the examination of motion of the particle in the field of the
gravity(weight) force according to the assumption that one of its points, lying on the
axis of dynamic symmetry is moving on the horizontal plane.

We assume, that the part is with a very sharp end in point D from the axis of
symmetry, which stays in static horizontal plane all the time. We also will consider
this plane to be absolutely smooth.

Than the interaction with the part is brought to a vertical reaction N . Because
the active force is the force of weight therefore it also is vertical. Based on the
theorem for motion of the mass center we conclude that the rotation of the mass
center C on the horizontal plane is moving uniformly and rectilinearly or it is
steady. Without limitation of the whole we will consider it to be steady. Then the
mass center will move only on the given vertical axis.

Let us choose a steady coordinate system Oxyz. The axis Oz is vertical and
passes through the mass center C of the part. The plane Oxy coincides with the
horizontal plane on which the part osculate with its edge D (Fig. 2). The orientation
of the part according to the fixed coordinate system will be determined by the three
Euler'sangles v, € and ¢.

Let m be the mass of the part, | —the distance between the mass center C and
the contact point D, J, — the inertia moment according to the axis of dynamic

symmetry C;, J& and JP (J{P=J() are the inertia moments of the part

according to any two connected to it perpendicular axes C,. and Cy., aso

perpendicular to the axis C, . For the distance h, from the mass center to the
support plane, the valid equation ish=1 cosé .
Because J{¥=J{" and the moment of the external forces (the reaction of the

support plane N and the force of weight é) according to the axis C,. is equa to
zero, from the third equation of the Euler’ s dynamic equation system
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(4.1) 36, +(I° - I w,0, =M E
it followsthat @, =0, i.e. we havethe integral
(4.2) @, =To = const.

Thus the projection of the angular velocity @ of the part according to its axis
of dynamic symmetry remains constant.
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Fig. 2. Motion of the piece as spinning tap (sleeping tap)

As the external forces are pointed vertically, they don’'t create a moment
toward the vertical axis Cz. Therefore from the theorem for the change of
kinematics moment follows that the projection of the kinetic moment of the part
toward the vertical axis Cz remains constant, i.e.
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(43) KCZ = Jx'a)x'agl + Jy'a)y'agz + \]Z'a)z'agg =C y
where J,.=J,., and Cisintegrating constant.

Here, for the shown cosines a,;, a,, and a,;, of the single vector k onthe
vertica axis Cz, we have
(4.4) a, =siné.sing, a,, =sinf.cosy, a,, =Cosy,
and for the projections of the angular velocity @ of the part according to the axis
Cxy'Z the Euler’'s kinematics equations take place

wx =y sindsing + 6cosg,
(4.5) wy =y sindcosg—dsing,

Wy =y COSO+P=Trg.

Here y, 6 and ¢ are Euler’'s angles and the integral (4.2) is considered. Using
(4.4) and (4.5), the equality (4.3) iswritten as
(4.6) Jy#sinZ 6+ Jyrgcosf =C.

On the other side, as the connection h=1.cos¢ isideal and stationary and the
active forces have potential 77=Mgh, the integra of power occurs
4.7 T+II=h*,
where h* is an integrated constant. Here T is the kinetic energy of the part, for
which based on the Koenig' s theorem we have

EM 2 E\] 2 2 E‘] 2
S MVE + 5 (@5 + 0F) + 5 Jz207,
where ve =h=-10sin@ is the mass center velocity. As we use the kinematic
Euler' s equations (4.5), theintegral of energy (4.7) iswritten as

(4.9) (J.+MI?sin?6).6° +J .sin” Gy° + 2Mgl cosé = H,

where H =2h*-J,r¢ =const.

The integrals (4.2), (4.6) and (4.9) allows the full solution of the problem. We
are going to observe the special case when the part is rotated around its axis of
symmetry and is placed on the horizontal plane without initial velocity of its mass
center C. Its axisisinclined according to the vertical of the angle 6, . Therefore the
initial conditions for motion whent = 0 are

(4.8) T=

(4.10) w=0,0=0,0=0,, g=r,,
asit is assumed that the projection of the velocity V. on the horizontal planeis also
equal to zero.

After these initial conditions we can write the integrals (4.6) and (4.9) as
follows:
(4.12) Jywsin? @ =J,1,(cosé, —cosb),
(4.12) (I, + MI2sin2 0)62 + J,. sin? Gy 2 = 2Mgl (cosb, — cosb).

Defining v from (4.11) and replacing the expression in (4.12) we have the
equation
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(4.13) J,sin2 (3 + MI2sin20)02 = f (0),
where

(4.19) f (8) = (cosb, —cosh)[2],. + MI?sin? & — J2r¢ (cosb, — cosh)],

in which only the parameter @ takes place.
We will consider this equation. The left side of the equation (4.13) is not
negative. Therefore the angle @ can be in that range of values for which f(€) > 0.

It follows that @ > 6,, because when 6 < 6,, the function f (8) from (4.14) will be

a product of two multipliers with opposite signs. The angle 6 will ater in the
interval defined by & and the value &, which is the nearest root to & of the

equation f(6)=0. It is clear that & < because f(z)=—(1+cos#)2JI2ré< O.
Consequently during motion of the part, the angle 6 should remain in the interval

(4.15) 6,<0<6 <,
and the length of the segment OD (Fig. 2) will changein the interval
(4.16) Isng, <OD<Isindg,.

This means that the trgjectory of point D over the support plane will be
between two concentric circles with radiuses Ising and Ising;, with center point O
(Fig. 2).

From (4.11) follows that when @ takes itsinitial value &, during motion then
¢ = 0.Therefore the trajectory of point D will have on its inner circle with radius
Isinéy, point of reversion (Fig. 2).

If theinitial velocity of the part ryis very big, the angle @ will dlightly differ
froitsinitial value & . Actualy, if the expression from the middle bracketsin (4.14)

: : , : 1
isequal to zero, we will have for angle @, (with accuracy in order to —)
r.O
2J,.Mglsing
6 =6+ Mg SN% :

2r2
z'rO

From hereit followsthat 6, , and also ¢ are close enough to 8, if the value of
r'o is big enough.

The analyses made on the motion of the part shows that when point D reach
the inner circle with radius Ising, and it coincides with the outer circle of the
chamfer of the assembly part (nut) a sliding of the part to the hole of the nut occurs.
A contact among the threads of the nut and the screw exists and because of the high
angular velocity the fit is made. The experience shows that when we have an
automatic assembly of such junctions, to reach a better interaction between the
parts and higher efficiency it is advisable ,for example, the trunk to be with
diameter 6 mm, the chamfer of the nut to be 2x30° and the screw — 3x30°.
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5. Friction influence over the motion of the part

Till now we assume that the supporting plane, which the part is touching is
absolutely flat. Actualy it isrea and causes forces of friction. Besides that the part
don’'t end with a sharp apex (point) but with some rotational surface, more or less
sharp-pointed so the contact point L along with the supporting plane don’t lie on the
axis of symmetry (Fig. 3). Because of that, the mation of the part will slightly differ
from the previously described.

One of the most interesting effects, caused by the friction force in the contact
point L, is that the force tries to approximate the axis of symmetry of the part to the
vertical axis, i.e. to set it up straight. We will consider this effect from its
qualitative side, using the theorem for changing the kinematic moment.

Let the part rotates very fast around its own axis of symmetry and without
initial velocity of its mass center. It is placed on the supporting plane such as the

axis of symmetry and the vertical axis make asmall acute angle 8, (Fig. 3).

Fig. 3. Influence of the roundness of the piece in the contact zone over its motion

The kinematic moment K¢ of the part according to its mass center C in the
initial moment is pointed towards the axis C, asit is shown on Fig. 3. Let L be the
contact point of the part with the supporting plane, which now is considered not to
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be sharp-pointed. In that point a force of friction T occurs, which is pointed
opposite to the velacity. The moment M ¢ of the friction force T accordi ng to the
inertia mass center C is directed perpendicularly to the plane, which is defined by
the center C and the vector T. The moment MC can be expanded into two

components Mland Mz,i.e. MC=M1+M2,Where Mlisavector perpendicul ar
to Kc,md Mz is avector collinear KC but in an opposite direction. Based on the

Rezal’ s theorem the velocity of the kinematic moment K atits point is equal to
M c - Therefore the vector RC , decreasing by its magnitude because of the vector

components M ;and I\ﬁz, tries to reach a vertical position because of the

component M 1~ In'such away the vector K¢ and also the axis of symmetry of the

part under the influence of the force of friction will aim at the vertical axis. If the
friction force is acting long enough the axis of the part will take a vertical position
and remain steady. In this case the part is said to be asleep. The examined effect,
caused by the force of friction also contributes for the better positioning and
compatibility of the assembly parts.

6. Pseudo regulating precession of parts

Let assume that after separation of the part from the edge point A it has gained a
great angular velocity @, of its own rotation and the fulcrum O with the horizontal

plane remains steady, i.e. there is no dlip. In this case the Euler’'s angles can be
expressed in time function through simple functions.

It is known that Euler’s dynamic equations contains three first integrals. They
are as follows: the integral for preserving the mechanic energy, the integral for
preserving the kinematic moment according to the vertical axis Oz and the integral
for preserving the own angular velocity @, = @, towards the axis of symmetry Oz.
According to the movable coordinate system Ox'y'Z, with a beginning at the
fulcrum O and fixed to the part, it follows:

(6.1) J,(W2sin? 0 + 62) + J,1¢ = —2Mgl cosé + 2h*,
(6.2 Jywsin?@+ J,rycos6 =C,
(6.3 ycosf+@=r,,

where h*, C and ro are integrating constants. For simplicity and better clearness we
will consider the following initial conditions for motion: when t = 0, let

oe=0y=0, o, =w3=1y, 0=0,, y,=0, ¢, =0. From oy =wy =0 it dso
followsthat ¢, =0, 6, = 0. It meansthat in the initial moment the part has gained

an angular velocity @, around its axis of symmetry, inclined at an angle 6,
according to the vertical axis.
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Based on thisinitial conditions for the integrating constants we find
2h* = 2Mgl coséo — J1¢
(6.4 C=J,r,cos0,,
fo = Qo = W3,
where, because the assumption ¢, =m, is great so r, is quite big at its

absolute value.
Using (6.4), the equations (6.1)-(6.3) become

Lo . > 2Myl
(6.5) w2sin®0+6° = J_g (cosé, — cosh),
y
. . Jz'rO
(6.6) wsin?g = 3 (cosé, —cosb),
(6.7) Y Ccosl + @ =r,.
If from the first two equations (6.5) and (6.6) remove ¥ , we have

o 2Mgl , Jarg
(6.8) sin®#.0% =(cosd, —cosH) 3 (1—cos*0) - iE

X

(cosé, - cos@)}.

X

We replace cosd = u and the equation turns to
2r2

du)? 2Mgl ) Jarg
(69) o P ) R Gt O B e RO
where cos 6 = u,. It is adeferential equation from first order with respect to u, from
where we determine the ateration law for 6. Therefore the equation (6.9) to have a
real meaning the function f (u) from its right side, which is a polynomial from third
order with respect to u, should be positive at some interval of values between -1
and +1. It is known that the equation f (u)=0 has three real roots, one of which is

U, = Cosé, determined by the initial condition & = 8,.The other two are the roots

of the quadratic equation which we have after nullify the expression in the middle
bracts in (6.9) and (6.8). It is known that, the equation f (u)=0 has three real roots.

The one of them is U, =cosd,, which is determined from initial conditions

0 =0,. The other two roots are the roots of the quadratic equation, which is

obtained, as we make equal to zero the expression in the middle parentheses of the
equation (6.9) or (6.8). Wewriteit asfollows

(6.10) cos® @ — 24.cosf + 24 cosf, —1=0,
2.2
where we replace 21 = J2 o and for the roots find
2MgJ,.
(6.12) Uy, =C0S6,, = A /1- 21.c0S0, + A2.

Since cosfp < 1 and 1— 24 cosé, + A°> (1-1)% the root which is less than 1
is obtained when we have sign “—, i.e.
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(6.12) U, =06, = A+ \1- 21 cos0 + 2.

From (6.8) follows that cosé, <cosf, and therefore 6,>6,, since
1-cos® @ =sin? §,>0. The meaning is that @, is the minimum angle and 6, is
the maximum between which the angle of notation & will change, i.e
0, <0 <0,. Fromthe equality f (u;)=0, we obtain
2MglJ,. (1- cos? 4,)

Jarg

It is clear that if the own angular velocity @, =T, expands, the subtraction

(6.13) c0s6, — cosb, =

cosd, —cos@, diminish fast and &, will am to @,. In such way the axis of

symmetry Oz of the part will move in one quite confined zone defined by the cones
with orifices 26, and 26, and point at the fulcrum O.

Because @ ischanging in avery confined interval between 6, and 6, during
the motion, lets replace
(6.14) 0=0,+a,
where o = a(t) is function under determination. We obtain
(6.15) coséd =cos(d, + ) =cosl, cosa —sinf, Sina =cosb, —asinég,,
where it is taken in mind that cosa =1, and Siha ~ « . Based on (6.15) and
considering thatSin & = sin g, , the basic equation (6.8) is turning into

2,2
(6.16) a’ = 2Mgl sinf,.a - JZ'ZO a’.
Replacing
2MglJy
(6.17) IX s,

2,2
Jarg
this equation is reduced to

: 2
(6.18) g6 =MasnG, |y (p-a)
'Jx' p

whence through integrating taking into account that when t = 0 it follows that
o = 0, and we obtain

MglJ,. sinéy, N

(6.19) a=—73 - cos—- t)
Considering (6.14), the angle € will change according to the law
MglJ,.siné, N
(6.20) =06, + 1-cos t),
Jarg N
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27l
which is a periodic function with a period T = I
z''o

. This period will decrease

27
when ry is increased, and the frequency of the oscillations T will increase along

with ry .
We can get the precise motion of the part from (6.6) taking into account that
cosf, —cosd = asinf,and siné ~ sing, .We have

621 . \]z'ro Mgl 1 Jz'rOt
(621 V= Tesing, " 3 s Y
from where, if t=0,=0, we find

Mgl Jx Jzr
(6.22) 9 X Gn—204).

L B (t- Iatg o Iy

Finally from (6.3) we find a with precision to the second degree:

Jz'rg cosd
Jx'sing

where (6.21) is taken into account. From this equation, after integrating with initial

conditionst =0 we have ¢, = 0, aswe take into account (3.18), we get

(6.23) $=ry—cosd=rq -

Mgl Je .
Ir cosé(t Ir sin 3. t).

Following this way we found the law of the nutation (6.20), of the precision
(6.22) and of the own rotation (6.24). The undetermined precision (3.19), when 6
dightly differs from 6, is caled pseudoregular precision. The precision and the
nutation define the motion of the own axis of rotation of the part. If we neglect the
periodic addends, they define the motion of this axis around the vertical, deflected
on angle ¢, and rotation with a very small angular velocity of the precision. The
deflections of the angle 6, especialy the bigger values, also helps for the getting
over the force of friction in the support, and the part to slide to the axis of the
assembly part. Because of the high angular velocity it can self-center.

(6.24) ¢ =rot -

7. Conclusion

In the two parts offered above are examined some dynamic problems of the
automated assembly process of threaded and cylindrical joints through a
pneumowhirl head with an intermediate sleeve, which puts into practice the
pneumowhirl method of Rank—Hill-Levchuk [6, 7, 8]. The principle structure of the
pneumowhirl head with an intermediate sleeve and its action, caused by a
pneumowhirl air stream, is introduced. According to the constructed dynamic
examinations four main conclusions can be made.

1. The dynamic interaction of the system assembly part—intermediate sleeve—
air pneumostream is examined when there is a contact without sliding between the
part and the sleeve. According to the law of conservation of the kinetic moment
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with respect to the vertical axis, the angular velocities of the intermediate sleeve
and the part are defined (3.17) and (3.18) according to the angular velocity of the
stream and the geometric-mass characteristics of the sleeve and the part.

2. According to the kinetic-static equation for the motion of the part as an
approximately regular precision, the angular velocities of the intermediate Sleeve
and the part are defined (4.7) and (4.8). Thus, the part separates from the Sleeve.

3. In the second part, the motion of the part after its separation from the edge
point with the intermediate sleeve is examined. Three possible cases are introduced:

e regular precision, for which the angular velocities for sow and high
precision are defined (1.6) and (1.7);

e motion in the support plane, when the support point D of the part with the
planeis moving in a band, closed of two concentric circles (3.16) around the hole of
the assembly part.

e pseudo regular precision, for which the law of the motion is found (6.20),
(6.22) and (6.24).

4. The influence of the friction, through the support plane, on the motion of
the part is analyzed. The interval (2.16), in which the own angular velocity @, must

change, for the support edge point O to be stable, is defined. When that angular
velocity is not in this interval, the support point O begins to move on the support
plane. And when unavoidably the tip (the edge) rounds off, the friction causes
effect of straightening of the axis of symmetry of the part and helps for the better
positioning and joining with the assembly part.

The caused motions of the assembly part are objectively along with some
chaotically behavior, and that is because of the possible additional contacts with the
intermediate sleeve. But after al, along with the useful effects of the friction, they
lead to automated behavior and assembly process of the desired joint.
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TeopeTnyeckue aclieKThl aBTOMATH3UPOBAaHHON COOPKH
WIMHAPUICCKUX U pe300BBIX COCITUHEHHUI THEBMOBUXPOBBIM
meTogoM (Yacrs I1)

Cmedghan bausapos, Jlioben Knoukos, Tooop Hewixos
Texnuueckuii ynueepcumem, Cogpust
(Pezrome)

B pabotre paccmaTpuBaeTcs TIOBEIEHHWE COOMpaeMoil Jgeranu Toclie el
cermapupoBaHysl OT MEXIMHHOW BTYJIKU B coOMpaeMol rosoBke. MccnenoBansl Tpu
BO3MO’KHBIE BapHaHTa JABMIKEHUS I€TaJIN.
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