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Part II. Dynamical Behavior of the Assembly Part after Its Separation 
from the Intermediate Sleeve in the Mounting Head  

1. Introduction 

In this paperwork the researches are continued from [1]. The main task here is to 
examine the motion of the assembly part (screw, trunk) since its  separation from 
the edge point A of the intermediate sleeve and the opportunity of self-centering and 
screw on in the hole of the assembly part to be shown. 

2. Precession motion of the part after its separation from the 
intermediate sleeve 

After separating  the part from the intermediate sleeve, the contact in the edge point 
disappear and the reaction N2 (i.e.  N2 = 0) stops acting on it. The relation (3.11) 
from [1] between the precession and angular velocity of the part also disappear.  
Then, if the fulcrum O remains steady and no extra constrains appear, one of the 
opportunities of further motion is regular precession of the part, such as the one of 
a heavy gyroscope. In this case the task is: for a given values of its own angular 
velocity ω3 and angle of nutation θ , the precession angular velocity ω1 arround the 
vertical axis Oz, is to be found,  according to which this precession motion appears. 

We use the formula for the gyroscopic moment according to the fixed fulcrum 
O [2] 
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and kinetic-static equation  
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(2.2)                                          0)(
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describing the motion of the part. Here 'zJ  is the inertia moment of the part with 
respect to its symmetry axis Oz and 'xJ  is the inertia moment according to 
transverse axis Ox'. Taking into account that in the given case the main moment  
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After reduction of the common multiplier sinθ, this equation transforms into  
(2.3)                           0cos)( 13'
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from here for a given 3ω and θ  we find two values of the precession angular 
velocity ω1, i.e. 
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Regular precession is possible if  
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If its own angular velocity ω3  is significant, we expand the square root into 
series 
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We can stop after the second addend. Then, taking the upper sign in front of 
the radical in (2.4), we get 
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This angular velocity corresponds to the so called slow precession of the part. 
Taking the lower sing in front of the radical into (2.4.), we obtain  
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This angular velocity corresponds to fast precession of the part. 

3. Influence of the friction on the motion of the part 

In fact the steady plane, which the part touches, is not absolutely smooth, therefore 
a friction force T  occurs. In this case, on the part not only the weight  G  will act, 
but also the normal reaction N  and friction force ,T  applied in the fulcrum O. 

We apply the mass center motion theorem   
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(3.1)                                         * ,CMa G N T= + +   
where M  is the mass of the assembly part (screw) and   

(3.2)                                       *Ca ε= × *OC *
1

*2
1 CCω+   

is the acceleration of its weight C.  Here 1ω  is the precession angular velocity , 
directed along the vertical axis Oz; С1

* is the orthogonal projection of the weight 
center C on Oz axis and 31 ωωε ×=  with magnitude θωωε sin31=  is the 
angular acceleration of the part, where 3ω  is its own angular velocity directed along 
Oz' axis. It is obvious that the angular acceleration ε   is directed along the line of 
the nodes ON  (Fig.1) so the centripetal acceleration ( ) 2

1 1*
c

Ca CCω= lays in the plane  
Ozz' and its normally directed to the axis Oz'. 

Considering the equality (3.2), we  project equation (3.1) over the vertical axis 
Oz and the horizontal axis ON’, perpendicular to the line of the nodes  ON placed in 
the plane Ozz'. It is obvious that all vector addend in (3.1), including the friction 
force T , lay in this plane. We will differ two boundary states of a boundary kinetic-
static equilibrium:  

а) when the angular velocities ω1 and ω3 are such as the fulcrum O of the part 
will slip into the hole of the assembly part (nut); 

b) when the angular velocities ω1 and ω3 are such as the fulcrum  O of the part 
will slip out of the hole of the assembly part.  

In the first case the friction force T is pointed out and in the second is pointed 
in to the hole. 

Case a. As we project the equation (3.1) on the axes Oz and ON', we obtain 
the scalar equations: 

,sin 2
31 GNMl −=− θωω  

(3.3)  
.sincossin 2
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We find 

,sin 2
31 θωωMlGN −=  

(3.4) 
).cos(sin 311 θωωθω −= MlT  

To prevent slip of the part in the fulcrum  O along the axis Oz, the friction 
force T should satisfy the Colon’s law, i.e. 

NT µ≤  or ),sin()cos(sin 2
31311 θωωµθωωθω MlGMl −≤−  

where µ is the coefficient of friction. After a transformation we obtain the following 
equation: 

(3.5)                  .0)sin(cossinsin 31
2
1 ≤−−−

l
gµθµθθωωθω   

If its own angular velocity ω3 is given we can determine ω1. We find the 
solutions of the following quadratic equation:  
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where the smaller solution )1(
1ω  is obtained  when the sign in front of the radical I 

minus and the received value is negative and the bigger solution )2(
1ω  is obtained 

when the sign in front of the radical is plus and the  result is a positive value.  

 
Fig. 1. Study of the piece motion on the fulcrum (supporting) plane (surface) 

Factorizing the quadratic trinomial into a simple multipliers, the inequality 
(3.5) becomes  
(3.7)                              .0))((sin )2(

11
)1(

11 ≤−− ωωωωθ   
Here θsin > 0 and )1(

11 ωω − >0, because in a physical way ω1>0.  Thus, for 
the inequality (3.7) to be correct, respectively the inequality (3.5), it is necessary  
(3.8)                                                  )2(

11 ωω ≤ ,  
where )2(

1ω  is the positive solution of (3.6). 



 102 

Vice verse, if the precession angular velocity ω1 is given, we find that that the 
own angular velocity ω3  is 
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Case b. In this case the friction force  Т is directed inwards and after 
projection of (3.1) on Oz and ON', we obtain: 

,sin 2
31 GNMl −=− θωω  

(3.10)  
.sincossin 2
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Therefore we determine T and N. We replaced them in the Colon’s law 
NT µ≤ , ensuring to prevent a slip in the fulcrum O inside out. We have the 

inequality 
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Here the solutions of the quadratic equation are 
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They are positive as the smaller one is denoted with *)1(
1ω , and the bigger one 

with *)2(
1ω . 

Through factorization of the quadratic trinomial we find that to satisfy the 
inequality (3.11) we need *)1(

11 ωω ≤ or *)2(
11 ωω ≥ . Under technological 

circumstances we can realize the second case, i.e. 
(3.13)                                                 *)2(

11 ωω ≥ .  
On the other hand, if the translational angular velocity ω1 is given, for ω3  we 

find  
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So based on   (3.8) and (3.13) we conclude: the fulcrum O of the part to stay 
fixed, it is necessary the values of the precession angular velocity ω1 to be in the 
interval 
(3.15)                                      )2(
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or based on (3.9) and (3.14) the own angular velocity ω3  to be within the interval 
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Of great importance is the case when )2(
11 ωω ≥  or ω3 is less than the left part 

in (3.16). Then the fulcrum O of the part will slide on the horizontal plane towards 
the axis Oz and due to the existence of chamfers a self center will occur, while the 
axis of the part will try to reach a vertical position. Due to the gained angular 
velocity of rotation the assembly process will begin. When we have high angular 
velocities of the pneumowhirl stream these conditions can be reached very quickly 
with a great hustle.  

4. Movement of the particle along the support plane  
like a whipping-top 

After separation of the particle from the edged point A such a condition can be 
made so that it will make a movement alike a heavy whipping-top. The osculating 
point is moving along the horizontal plane. Because the assembly part is 
symmetrical and its inertia ellipsoid according to its mass center is rotational, the 
task is brought to the examination of motion of the particle in the field of the 
gravity(weight) force according to the assumption that one of its points, lying on the 
axis of dynamic symmetry is moving on the horizontal plane. 

We assume, that the part is with a very sharp end in point D from the axis of 
symmetry, which stays in static horizontal plane all the time. We also will consider 
this plane to be absolutely smooth. 

Than the interaction with the part is brought to a vertical reaction N . Because 
the active force is the force of weight therefore it also is vertical. Based on the 
theorem  for motion of the mass center we conclude that the rotation of the mass 
center C on the horizontal plane is moving uniformly and rectilinearly or it is 
steady. Without limitation of the whole we will consider it to be steady. Then the 
mass center will move only on the given vertical axis.  

Let us choose a steady coordinate system Oxyz. The axis Oz is vertical and 
passes through the mass center C of the part. The plane Oxy coincides with the 
horizontal plane  on which the part osculate with its edge D (Fig. 2). The orientation 
of the part according to the fixed coordinate system will be determined by the three 
Euler’s angles ψ, θ  and  ϕ . 

Let m be the mass of the part, l –the distance between the mass center C and 
the contact point D, Jz’  − the inertia moment according to the axis of dynamic 
symmetry Cz’, ( )

'
C

xJ  and  ( )
'
C

yJ  ( ( )
'
C

xJ = ( )
'
C

yJ ) are the inertia moments of the part 
according to any two connected to it perpendicular axes 'xC  and 'yC , also 

perpendicular to the axis 'zC . For the distance h, from the mass center to the 
support plane, the valid equation is h=l cosθ . 

Because ( )
'
C

xJ = ( )
'
C

yJ   and the moment of the external forces (the reaction of the 

support plane N  and the force of weight G ) according to the axis 'zC  is equal to 
zero, from the third equation of the Euler’s dynamic equation system 
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(4.1)                           ( ) ( ) ( ) ( )
' ' '' ' '( )C C C E

z y z zz y xJ J J Mω ω ω+ − =   
it follows that  0' =zω , i.e. we have the integral 
(4.2)                                         ' 0 const.z rω = =   

Thus the projection of the angular velocity ω  of the part according to its axis 
of dynamic symmetry remains constant. 

 
Fig. 2. Motion of the piece as spinning tap (sleeping tap) 

As the external forces are pointed vertically, they don’t create a moment 
toward the vertical axis Cz. Therefore from the theorem for the change of 
kinematics moment follows that the projection of the kinetic moment of the part 
toward the vertical axis Cz remains constant, i.e. 
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(4.3)                    ' ' 31 ' ' 32 ' ' 33zC x x y y z zK J a J а J a Cω ω ω= + + = , 
where  'xJ = 'yJ , and С is integrating constant. 

Here, for the shown cosines 31a , 32a  and 33a   of the single vector k  on the 
vertical axis Cz, we have  
(4.4)                  ϕθ sin.sin31 =a , ϕθ cos.sin32 =a , θcos33 =a ,  
and for the projections of the angular velocity ω  of the part according to the axis 
Cx'y'z'  the Euler’s kinematics equations take place   

' sin sin cos ,xω ψ θ φ θ φ= +  

(4.5)                                                     ' sin cos sin ,yω ψ θ φ θ φ= −   

' 0cosz rω ψ θ φ= + = . 

Here  ψ, θ  and ϕ  are Euler’s angles and the integral (4.2) is considered. Using  
(4.4) and (4.5), the equality (4.3) is written as  
(4.6)                                 2' ' 0sin cosx zJ J r Cφ θ θ+ = .  

On the other side, as the connection h=l.cosθ  is ideal and stationary and the 
active forces have potential П=Mgh, the integral of power occurs 
(4.7)                                                 T+П=h*,  
where h* is an integrated constant. Here T is the kinetic energy of the part, for 
which based on the Koenig’s theorem we have 

(4.8)                           2 2 2 2
' ' ' ' '

1 1 1
( ) ,

2 2 2C x x y z zT Mv J Jω ω ω= + + +          

where sinCv h lθ θ= = −  is the mass center velocity. As we use the kinematic 
Euler’s equations (4.5), the integral of energy (4.7) is written as      
(4.9)              ,cos2.sin).sin( 22

'
222

' HMglJMlJ xx =+++ θψθθθ   
where   2

' 02 * const.zH h J r= − =  
The integrals (4.2), (4.6) and (4.9) allows the full solution of the problem. We 

are going to observe the special case when the part is rotated around its axis of 
symmetry and is placed on the horizontal plane without initial velocity of its mass 
center C. Its axis is inclined according to the vertical of the angle 0θ . Therefore the 
initial conditions for motion when t = 0 are 
(4.10)                                 0=ψ , 0=θ , 0θ θ= , 0rφ = ,  
as it is assumed that the projection of the velocity Cv  on the horizontal plane is also 
equal to zero. 

After these initial conditions we can write the integrals (4.6) and (4.9) as 
follows: 
(4.11)                               2

' ' 0 0sin (cos cos ),x zJ J rψ θ θ θ= −   
(4.12)            2 2 2 2 2

' ' 0( sin ) sin 2 (cos cos ).x xJ Ml J Mglθ θ θψ θ θ+ + = −   
Defining ψ  from (4.11) and replacing the expression in (4.12) we have the 

equation 
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(4.13)                     2 2 2 2
' 'sin ( sin ) ( ),x xJ J Ml fθ θ θ θ+ =   

where  

(4.14)        2 2 2 2
0 ' ' 0 0( ) (cos cos )[2 sin (cos cos )],x zf J Ml J rθ θ θ θ θ θ= − + − −   

in which only the parameter θ  takes place. 
We will consider this equation. The left side of the equation (4.13) is not 

negative. Therefore the angle θ  can be in that range of values for which 0)( ≥θf . 
It follows that 0θ θ≥ , because when 0θ θ≤ , the function )(θf  from (4.14) will be 
a product of two multipliers with opposite  signs. The angle θ  will alter in the 
interval defined by θ0  and  the value θ1, which is the nearest root  to θ0  of the 
equation )(θf =0. It is clear that θ1 ≤ π because 2 2 2

' 0( ) (1 cos ) zf J rπ θ= − + < 0. 
Consequently during motion of the part, the angle θ  should remain in the interval 

(4.15)                                            ,10 πθθθ ≤≤≤   

and the length of the segment OD (Fig. 2) will change in the interval  

(4.16)                                        .sinsin 10 θθ lODl ≤≤   

This means that the trajectory of point D over the support plane will be 
between two concentric circles with radiuses lsinθ and lsinθ1, with center point O 
(Fig. 2). 

From (4.11) follows that when θ  takes its initial value θ0 during motion then 
0=ϕ .Therefore the trajectory of point D  will have on its inner circle with radius  

lsinθ0  point of reversion (Fig. 2).  
If  the initial velocity of the part r0 is very big , the angle θ will slightly differ 

fro its initial value θ0 . Actually, if the expression from the middle brackets in (4.14) 

is equal to zero, we will have for angle 1θ (with accuracy in order to 
0

1
r

)  

' 0
1 0 2 2

' 0

2 sinx

z

J Mgl
J r

θ
θ θ= + . 

From here it follows that 1θ , and also θ  are close enough to 0θ , if the value of 
r0 is big enough. 

The analyses made on the motion of the part shows that  when point D  reach 
the inner circle with radius lsinθ0 and it coincides with the outer circle of the 
chamfer of the assembly part (nut) a sliding of the part to the hole of the nut occurs. 
A contact among the threads of the nut and the screw exists and because of the high 
angular velocity the fit is made. The experience shows that when we have an 
automatic assembly of such junctions,  to reach a better interaction between the 
parts and higher efficiency it is advisable ,for example, the trunk to be with 
diameter 6 mm, the chamfer of the nut to be 2×30° and the screw − 3×30°. 
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5. Friction influence over the motion of the part 

Till now we assume that the supporting plane, which the part is touching is 
absolutely flat. Actually it is real and causes forces of friction. Besides that the part 
don’t end with a sharp apex (point) but with some rotational surface, more or less 
sharp-pointed so the contact point L along with the supporting plane don’t lie on the 
axis of symmetry (Fig. 3). Because of that, the motion of the part will slightly differ 
from the previously described.  

One of the most interesting effects, caused by the friction force in the contact 
point L, is that the force tries to approximate the axis of symmetry of the part to the 
vertical axis, i.e. to set it up straight. We will consider this effect from its 
qualitative side, using the theorem for changing the kinematic moment.  

Let the part rotates very fast around its own axis of symmetry and without 
initial velocity of its mass center. It is placed on the supporting plane such as the 
axis of symmetry  and the vertical axis make a small acute angle 0θ  (Fig. 3).  

 
Fig. 3. Influence of the roundness of the piece in the contact zone over its motion 

The kinematic moment CK  of the part according to its mass center C in the 
initial moment is pointed towards the axis Сz', as it is shown on Fig. 3. Let L be the 
contact point of the part with the supporting plane, which now is considered not to 
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be sharp-pointed. In that point a force of friction T  occurs, which is pointed 
opposite to the velocity. The moment CM  of the friction force T  according to the 
inertia mass center C is directed perpendicularly to the plane, which is defined by 
the center C and the vector T . The moment CM  can be expanded into two 

components 1M and 2M , i.e. CM = 1M + 2M , where 1M is a vector  perpendicular 

to CK , and 2M  is a vector collinear CK  but in an opposite direction. Based on the 

Rezal’s theorem the velocity of the kinematic moment CK  at its point is equal to 

CM . Therefore the vector CK , decreasing by its magnitude because of the vector 

components 1M and 2M , tries to reach a vertical position because of the 

component 1M . In such a way the vector CK and also the axis of symmetry of the 
part under the influence of the force of friction will aim at the vertical axis. If the 
friction force is acting long enough the axis of the part will take a vertical position 
and remain steady. In this case the part is said to be asleep. The examined effect, 
caused by the force of friction also contributes for the better positioning and 
compatibility of the assembly parts. 

6. Pseudo regulating precession of parts 

Let assume that after separation of the part from the edge point A it has gained a 
great angular velocity 3ω  of its own rotation and the fulcrum O with the horizontal 
plane remains steady, i.e. there is no slip. In this case the Euler’s angles can be 
expressed in time function through simple functions. 

It is known that Euler’s dynamic equations contains three first integrals. They 
are as follows: the integral for preserving the mechanic energy, the integral for 
preserving the kinematic moment according to the vertical axis Oz and the integral 
for preserving the own  angular velocity ' 3zω ω=  towards the axis of symmetry Оz'. 
According to the movable coordinate system Ox'y'z', with a beginning at the 
fulcrum O and fixed to the part, it follows:  
(6.1)                    2 2 2 2

' ' 0( sin ) 2 cos 2 *,z zJ J r Mgl hψ θ θ θ+ + = − +   
(6.2)                                2

' ' 0sin cos ,x zJ J r Cψ θ θ+ =   
(6.3)                                           ,cos 0r=+ ϕθψ   
where h*, С and r0  are integrating constants. For simplicity and better clearness we 
will consider the following initial conditions for motion: when t = 0, let 

' ' 0x yω ω= = , ' 3 0z rω ω= = , 0θθ = , 00 =ψ , 00 =ϕ . From ' ' 0x yω ω= =  it also 

follows that 00 =ϕ , 00 =θ . It means that in the initial moment the part has gained 
an angular velocity 3ω  around its axis of symmetry, inclined at an angle 0θ  
according to the vertical axis.  
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Based on this initial conditions for the integrating constants we find   
20 02 * 2 cos zh Mgl J rθ= − , 

(6.4)                                                0 0coszC J r θ= ,  
  300 ωϕ ==r , 

where, because the assumption 30 ωϕ =  is great so 0r  is quite big at its 
absolute value. 

Using  (6.4), the equations  (6.1)-(6.3) become  

(6.5)                          ),cos(cos2sin 0
'

222 θθθθψ −=+
xJ
Мgl

  

(6.6)                              ' 02
0

'
sin (cos cos ),z

x

J r
J

ψ θ θ θ= −   

(6.7)                                     .cos 0r=+ ϕθψ   
If from the first two equations (6.5) and (6.6) remove ψ , we have 

(6.8)  
2
' 02 2 2

0 02
' '

2
sin . (cos cos ) (1 cos ) (cos cos ) .

r
z

x x

Mgl J r
J J

θ θ θ θ θ θ θ
⎡ ⎤

= − − − −⎢ ⎥
⎣ ⎦

  

We replace cosθ = u and the equation turns to  

(6.9)                  
2 2 2

' 02
0 02

' '

2
( ) (1 ) ( ) ,z

x x

du Mgl J r
u u u u u

dt J J
⎡ ⎤⎛ ⎞

= − − − −⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

  

where cos θ = u0. It is a deferential equation from first order with respect to u, from 
where we determine the alteration law for θ. Therefore the equation (6.9) to have a 
real meaning the function f (u) from its right side, which is a polynomial from third 
order with respect to u, should be positive at some interval of values between −1 
and +1. It is known that the equation f (u)=0 has three real roots, one of which is 

00 cosθ=u  determined by the initial condition 0θθ = .The other two are the roots 
of the quadratic equation which we have after nullify the expression in the middle 
bracts in (6.9) and (6.8). It is known that, the equation f (u)=0  has three real roots. 
The one of them is 00 cosθ=u , which is determined from initial conditions 

0θθ = . The other two roots are the roots of the quadratic equation, which is 
obtained, as we make equal to zero the expression in the middle parentheses of the 
equation (6.9) or (6.8). We write it as follows  
(6.10)                         ,01cos2cos2cos 0

2 =−+− θλθλθ   

where we replace 
'

2
0

2
'

2
2

x

z

MgJ
rJ

=λ  and for the roots find  

(6.11)                   .cos21cos 2
02,12,1 λθλλθ +−±==u   

Since cosθ0 < 1 and 2
0cos21 λθλ +− > (1−λ)2, the root which is less than 1 

is obtained when we have sign “–“, i.e. 
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(6.12)                        .cos21cos 2
11 λθλλθ +−±==u   

From (6.8) follows that cos 1θ <cos 0θ  and therefore 1θ > 0θ , since 

1
22 sincos1 θθ =− >0. The meaning is that 0θ  is the minimum angle and 1θ  is 

the maximum between which the angle of notation θ  will change, i.e. 

10 θθθ ≤≤ . From the equality f (u1)=0, we obtain  

(6.13)                           
2

' 1
0 1 2 2

' 0

2 (1 cos )
cos cos x

z

MglJ
J r

θ
θ θ

−
− = .  

It is clear that if the own angular velocity 03 r=ω  expands, the subtraction 

10 coscos θθ −  diminish fast and 1θ  will aim to 0θ . In such way the axis of 
symmetry Oz' of the part will move in one quite confined zone defined by the cones 
with orifices 2 0θ and 2 1θ  and point at the fulcrum O.  

Because θ is changing in a very confined interval between 0θ  and 1θ  during 
the motion, lets replace 
(6.14)                                                 αθθ += 0 ,  
where )(tαα = is function under determination. We obtain 
(6.15)  ,sincossinsincoscos)cos(cos 00000 θαθαθαθαθθ −=−=+=   
where it is taken in mind that 1cos ≈α , and αα ≈sin . Based on (6.15) and 
considering that 0sinsin θθ ≈ , the basic equation (6.8) is turning into  

(6.16)                         2
2
'

2
0

2
'

0
'

2 .sin2 ααθα
x

z

x J
rJ

J
Mgl

−= . 

Replacing 

(6.17)                                            '
2 2
' 0

2
2x

z

MglJ

J r
ρ= ,  

this equation is reduced to  

(6.18)                                 
ρ
αρθα

2

'

0 )(1sin −
−=

xJ
Mgl

, 

whence through integrating taking into account that when t = 0 it follows that  
α = 0, and we obtain  

(6.19)                             ' 0 ' 0

2 2
' 0 '

sin
(1 cos )x z

z x

MglJ J r
t

J r J
θ

α = − . 

Considering (6.14), the angle θ  will change according to the law 

(6.20)                      ' 0 ' 0
0 2 2

' 0 '

sin
(1 cos ),x z

z x

MglJ J r
t

J r J
θ

θ θ= + −   
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which is a periodic function with a period '

' 0

2 x

z

J
T

J r
π

= . This period will decrease 

when r0 is increased, and the frequency of the oscillations 
2
T
π

 will increase along 

with 0r . 
We can get the precise motion of the part from (6.6) taking into account that 

00 sincoscos θαθθ ≈− and 0sinsin θθ ≈ .We have 

(6.21)                         ' 0 ' 0

' 0 ' 0 '
(1 cos ),

sin
z z

x z x

J r Mgl J r
t

J J r J
ψ α

θ
= = −   

from where, if t=0,ψ=0, we find 

(6.22)                            ' ' 0

' ' '0 0
( sin )x z

z z x

Mgl J J r
t t

J r J r J
ψ = − .  

Finally from (6.3) we find α with precision to the second degree:  

(6.23)                       ' 0 0
0 0

' 0

cos
cos ,

sin
z

x

J r
r r

J
θ

φ φ θ α
θ

= − = −   

where (6.21) is taken into account. From this equation, after integrating with initial 
conditions t = 0  we have 00 =ϕ , as we take into account (3.18), we get 

(6.24)                  ' ' 0
0

' 0 ' 0 '
cos ( sin ).x z

z z x

Mgl J J r
r t t t

J r J r J
φ θ= − −   

Following this way we found the law of the nutation (6.20), of the precision 
(6.22) and of the own rotation (6.24). The undetermined precision (3.19), when θ 
slightly differs from θ0, is called pseudoregular precision. The precision and the 
nutation define the motion of the own axis of rotation of the part. If we neglect the 
periodic addends, they define the motion of this axis around the vertical, deflected 
on angle θ0  and rotation with a very small  angular velocity of the precision. The 
deflections of the angle θ, especially the bigger values, also helps for the getting 
over the force of friction in the support, and the part to slide to the axis of the 
assembly part. Because of the high angular velocity it can self-center.  

7. Conclusion 

In the two parts offered above are examined some dynamic problems of the 
automated assembly process of threaded and cylindrical joints through a 
pneumowhirl head with an intermediate sleeve, which puts into practice  the 
pneumowhirl method of Rank–Hill–Levchuk [6, 7, 8]. The principle structure of the 
pneumowhirl head with an intermediate sleeve and its action, caused by a 
pneumowhirl air stream, is introduced. According to the constructed dynamic 
examinations four main conclusions can be made. 

1. The dynamic interaction of the system assembly part–intermediate sleeve–
air pneumostream is examined when there is a contact without sliding between the 
part and the sleeve. According to the law of conservation of the kinetic moment 
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with respect to the vertical axis, the angular velocities of the intermediate sleeve 
and the part are defined (3.17) and (3.18) according to the angular velocity of the 
stream and the geometric-mass characteristics of the sleeve and the part. 

2. According to the kinetic-static equation for the motion of the part as an 
approximately regular precision, the angular velocities of the intermediate sleeve 
and the part are defined (4.7) and (4.8). Thus, the part separates from the sleeve.  

3. In the second part, the motion of the part after its separation from the edge 
point with the intermediate sleeve is examined. Three possible cases are introduced: 

• regular precision, for which the angular velocities for slow and high 
precision are defined (1.6) and (1.7); 

• motion in the support plane, when the support point D of the part with the 
plane is moving in a band, closed of two concentric circles (3.16) around the hole of 
the assembly part. 

• pseudo regular precision, for which the law of the motion is found (6.20), 
(6.22) and (6.24). 

4. The influence of the friction, through the support plane, on the motion of 
the part is analyzed. The interval (2.16), in which the own angular velocity 3ω  must 
change, for the support edge point O to be stable, is defined. When that angular 
velocity is not in this interval, the support point O  begins to move on the support 
plane. And when unavoidably  the tip (the edge) rounds off, the friction causes 
effect of straightening of the axis of symmetry of the part and helps for the better 
positioning and joining with the assembly part. 

The caused motions of the assembly part are objectively along with some 
chaotically behavior, and that is because of the possible additional contacts with the 
intermediate sleeve. But after all, along with the useful effects of the friction, they 
lead to automated behavior and assembly process of the desired joint. 
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(Р е з ю м е) 

В работе рассматривается поведение собираемой детали после ей 
сепарирования от междинной втулки в собираемой головке. Исследованы три 
возможные варианта движения детали.  
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