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1. Introduction

Opportunities for using power polynomials at synthesis motion laws of the working
devices of the mechanisms, machines, and robots are showed. Motions, one of
necessary conditions is velocities and accelerations at the beginning and end of the
end-effector moving to be equal zero, hold abasic place.

At the mechanisms synthesis as well as control of different mechatronic
devices in particular industrial robots, one of the main problems for their correctly
working is the synthesis of suitable motion laws for their working devices. A choice
of mathematical function, describing such a motion law, which satisfies wanted
kinematic characteristics of the purpose motion, is the base of the synthesis.

Almost al elementary functions, including Bessel functions, Chebishev
polynomials, Legendre polynomials [7], using by engineers, chemists and
mathematicians, are particular cases of the hypergeometric function [1], which
represented in power series has the form

e (@), L L
® F(a b, c; 5)-% O & c#0,-1,-2,...,
(a)o:lr
@ (a)nzl“(a+n) =a(a+1)...(a+n+1), n=123...
I'(a)

Characteristic elementary functions are utilized for synthesis of motion laws of
the output links of the cam mechanisms [2, 3, 5, 9], centroid type mechanisms
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[6, 8], as in planning of the robot end-effectors motions. The power polynomials
“hide” little “surprises’ from the elementary functions at planning of the motions.

A purpose of this work is to show using of power polynomials at synthesis of
motion laws of the working devices of the mechanisms, machines and robots.
Motions, on which one of necessary conditions is the velocities and accelerations at
the beginning and the end of the end-effector moving to be equal zero, hold a basic
place.

2. Normalized power polynomials

Let afamily of power polynomialsiswritten as follows:

3) u@=>acs, j=k,mp, ..,
i

and when £¢€[0; 1] function u changes at the same interval, ue[0; 1]. A

determination of the constant coefficients of the polynomial (3) can be done by
solving the following algebraic system

0 >a,i(j-1)=0

obtained under substitutions u=1, U’ =u" =...= U™ =0 for the end of the range
£€[0; 1. A solution of the system (4), rewritten in the matrix foomJ.A= B,
where

1 1 1 .1 %
b C d .. n &
J=|b(b-1) cc-1) d(d-1)..n(n-1| A=l
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has the foom A=J".B. The system solving is reduced actually to finding an

inverse matrix of the matrix J . When the number of equations in the system (4) is
low, then its solution obtains convenient by the rule of Sarrus.
If the coefficients a, # 0, when j=k,m, p, then the coefficients

&, a, a, of the polynomial

(5) u@)=as" +a,¢"+a,c’
are determined by the next expressions:
(6) ak=%; am=%; a,=1-a,-a,
where
1 1 1
D { m p ;
k(k-1) m(m-1) p(p-J
1 1 1
D, {O m p X
0 m(m-1) p(p-1)
1 1 1
D,=|k 0 p
k(k-1) 0 p(p-1)

The values of the coefficients a,, &, a,, when k, m, p, are integer
numbersin the range from 2 to 6, written in Table 1.

Tablel
No a1 aZ a3 a4 aS aG
1 0 6 -8 3 0 0
2 0 5 -5 0 1 0
3 0 45 -4 0 0 0.5
4 0 10/3 0 -5 8/3 0
5 0 3 0 -3 0 1
6 0 2.5 0 0 —4 2.5
7 0 0 10 -15 | 6 0
8 0 0 8 -9 0 2
9 0 0 5 0 -9 5
10 0 0 0 15 | -24 | 10

When the low polynomial power is equal to two, then the second derivative
u”"=u"(&) of the polynomia (3) is possible to be equal to zero only for the right

end of the £ range. For the conditions u'=u"=0 are fulfilled at the ends of the
range & €[0; 1] itisneeded j >3, but this|leads to higher extreme values of u’ and
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u”, which increase in the polynomials with coefficients up from a line No 7 in
Table 1.

J=3,4,5 J=4,56,7
10, T T T T 1 10 T T T 1
5 —10.75 5 -10.75
U (€) u(§)
e - .. 0 0.5 u($)
-5 H0.25 -5 105
~10 f I I I 0 -10 ' ' ' 0
0 02 04 06 08 1 0 02 04 06 08 1
¢ §

Fig.1. Power polynomials u(&)and their derivativesu’ and u" whenJ=3,4,5and J=4,5,6,7

The functions u, U, u” are represented on the Fig. 1, when | takesvalues 3, 4,

5. The same conditions can be kept as well as j takes values greater than 6, but
higher extreme values of the functions u’, u” are obtained. For example, from (6)

the coefficients a aeag= 4375, as = -5.25, a; = 1.875, when j=3,5, 7, and
8,=3 a,=-3 a =1when j=36,9.

For the conditions u=1, u'=u"=u" =0 to be fulfilled, it is necessary function
u=u(¢) to be apolynomial, which consists of at least four termsand j > 4. Then
the coefficients of the polynomial

(7) u@)=as" +a,¢"+a s’ +as’
are defined from the following expressions:
(8) a =2 a,-=Cn a D, a,=1-a -a,-a,,
D D D P
where
1 1 1 1
D= k m p q )
k-1 m(m-1) p(p-1) a@-y |
k(k-D)(k-2) m(m-D(m-2) p(p-D(p-2) a(q-)(q-2)
1 1 1 1
D - 0 m p q
|0 mm- p(p-1) a(a-1)

0 m(m-)(m-2) p(p-D(p-2) da(@-H(Q-2)
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1 1 1 1

D - k 0 p q

" k-1 0 p(p-1) a(q-1)
k(k-D(k-2) 0 p(p-D(p-2) a@-D(a-2)

1 1 1 1

D - k m 0 q

P k-1 m(m-—1) 0 9(g-1)

k(k-)(k-2) m(m-)(m-2) 0 a(q-D(a-2)
According to (8), coefficients a, ae obtained a, = 35, as = -84, as = 70,
=-20,j=4,5, 6, 7. The functions u, u’,u” are represented on Fig.1. The
obtained results, compared with the results of a polynomial when j=3, 4,5, show
that when u” equals zero in the ends of the range £ €[0; 1], the extreme values of
u" and u” increase.

3. Power-polynomial motion laws

Each component n of the input or output coordinate can be written as a sum of
initial value 7, of 7 and normalized power polynomial u(¢), multiplied by a
factor equal to maximum change A7, of 7:

(9) 77:770+A77maxu(§)'
where £ issubstituted by ration £=t/T currenttime t totime T for reaizing of
AT -

The choice of normalized polynomial, describing the motion on defined
coordinate, is determined by conditions for zero derivatives of the polynomia u(&)

in the ends of therange £ €[0; 1].

The derivatives u’,u”,u” correspond respectively to the velocity,
acceleration and second acceleration (pulse) on the appropriate coordinate.

If it is necessary that the velocity and acceleration to be equal to zero,
respectively u’and u”in the ends of the & range, at the synthesis of the motion
laws, then the power polynomials with constant coefficients, written in Table 1, can
be used. These polynomials guarantee zero inertial load, caused by the mass of the
end-effector, in the ends of the & range.

If it is necessary apart of the velocity and acceleration to be equal to zero,
the second acceleration to be equal to zero to, respectively u’, u” and u”, in the
ends of the & range, then the power polynomial (7) when j=4,5, 6, 7 can be used
or other polynomials, consisting of at least four terms and j>4. These
polynomials guarantee zero change of the inertial load (without jump), caused by
the mass of the end-effector, in the ends of the & range. This “suppress’ in major
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degree the unfavorable influence of the oscillations of the mechanical system, but
leads to higher extreme values of the derivatives u’and u”.

The parabolic laws, based on the normalized polynomial of the form (5),
are synthesized under conditions for straight path and zero velocities and
accelerations in the path ends of the SCARA robots [4].

Example. A motion law is to be synthesized at the coordinate 7 under the

following data: 77, =0, Anp =0+ 640 mm, T =2 s and condition for zero =7 =0
intherangeof A7 .
The polynomias u=u(&) with constant coefficients, written in Table 1

from line No 7 to line No 10, are appropriate under this condition. The polynomial
(No 7), leading to low extreme values of the velocity and acceleration, is

u(&) =10&°% —15&* + 6£° , which substituted in (9), along with the above data, |eads
to the postiona function 7(t)=40(20t° -15t* +3t°). Its derivatives
7(t) = 600(4t* — 4t> +t*), 7j(t) = 2400(2t —3t* +t°) with respect to t represent
corresponding components of the velocity and acceleration at the coordinate 7 . The
derivatives 7 and 7 are obviously equal to zero in the ends of the interval
t=0+2s. Onthisway al conditions on the put task are satisfied.

4. Conclusion

Opportunities for using power polynomials at the synthesis of motion laws of the
working devices of the mechanisms, machines and robots are showed:

1. Families of power-polynomia laws of movement, giving the different
opportunities for zero the velocities and the accelerations on the ends of the
intervals of the mechanical systemsend - effectors movement, are identified.

2. A comparative analysis are done for different power-polynomial laws of
motion at relation on extreme values of their derivatives with respect to the time
(velocities and accelerations).

3. The possibilities for synthesis of power-polynomia motion laws, in which
the derivatives and accelerations are zero, are mentioned. On this way the harmful
influence of the oscillations of the mechanical system is reduced.

An illustrative example shows approach for synthesis of motion law at one
input or output coordinate of the mechanical system.
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The functions u, U’, u” are represented from Table 1 without line No 7 and line

Appendix
No 9 (Fig. 1).
No 1 =234
15 T T T 1
10 0.75
u'(§)
5 105 U
u”(§) -12
0 0.25
_ ¢ ] ] ] 0
0 02 04 06 08 1
§
No 3 j=2,3,6
1 T T T 1
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u'(§) 9
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_5 ! ! ! 0
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4
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¢
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No 8 j=3,4,6 No 10 j=4,56

1 T T T 1 1 T T T T 1
5 —0.75 5 —0.75

u'(§) u'($)

e ¢ 05 u(¢) @ 05 u($)
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