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1. Introduction 

Opportunities for using power polynomials at synthesis motion laws of the working 
devices of the mechanisms, machines, and robots are showed. Motions, one of 
necessary conditions is velocities and accelerations at the beginning and end of the 
end-effector moving to be equal zero, hold a basic place.  

At the mechanisms synthesis as well as control of different mechatronic 
devices in particular industrial robots, one of the main problems for their correctly 
working is the synthesis of suitable motion laws for their working devices. A choice 
of mathematical function, describing such a motion law, which satisfies wanted 
kinematic characteristics of the purpose motion, is the base of the synthesis. 

Almost all elementary functions, including Bessel functions, Chebishev 
polynomials, Legendre polynomials [7], using by engineers, chemists and 
mathematicians, are particular cases of the hypergeometric function [1], which 
represented in power series has the form 

(1)                    
0

( ) ( )( , , ; ) , 0, 1, 2,...,
( ) !

nn n

n n

a bF a b c c
c n

ξ ξ
∞

=

= ≠ − −∑   

(2)                
0( ) 1,

( )( ) ( 1)...( 1), 1, 2, 3,...
( )n

a
a na a a a n n

a

=⎧
⎪

Γ +⎨ = = + + + =⎪ Γ⎩

 

Characteristic elementary functions are utilized for synthesis of motion laws of 
the output links of the cam mechanisms [2, 3, 5, 9], centroid type mechanisms 
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[6, 8], as in planning of the robot end-effectors motions. The power polynomials 
“hide” little “surprises” from the elementary functions at planning of the motions. 

A purpose of this work is to show using of power polynomials at synthesis of 
motion laws of the working devices of the mechanisms, machines and robots. 
Motions, on which one of necessary conditions is the velocities and accelerations at 
the beginning and the end of the end-effector moving to be equal zero, hold a basic 
place.  

2. Normalized power polynomials 

Let a family of power polynomials is written as follows:  

(3)                   ( ) , , , , ...j
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and when [0; 1]ξ ∈  function u  changes at the same interval, [0; 1]u ∈ . A 
determination of the constant coefficients of the polynomial (3) can be done by 
solving the following algebraic system 
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obtained under substitutions ( 1)1, ... 0mu u u u +′ ′′= = = = =  for the end of the range 
[0; 1]ξ ∈ . A solution of the system (4), rewritten in the matrix form .J A B= , 

where 
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has the form 1.A J B−= . The system solving is reduced actually to finding an 
inverse matrix of the matrix J . When the number of equations in the system (4) is 
low, then its solution obtains convenient by the rule of Sarrus. 

If the coefficients 0ja ≠ , when , ,j k m p= , then the coefficients 

, ,k m pa a a  of the polynomial 
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The values of the coefficients , , ,k m pa a a when , , ,k m p  are integer 
numbers in the range from 2 to 6, written in Table 1. 

 Table 1 
No 

1a  2a  3a  4a  5a  6a  
 1  0  6 −8  3  0  0 
 2  0  5 −5  0  1  0 
 3  0 4.5 −4  0  0 0.5 
 4  0 10/3  0 −5 8/3  0 
 5  0  3  0 −3  0  1 
 6  0  2.5  0  0 –4 2.5 
 7  0  0 10 −15  6  0 
 8  0  0  8 −9  0  2 
 9  0  0  5  0 −9  5 
10  0  0  0  15 −24 10 

When the low polynomial power is equal to two, then the second derivative 
( )u u ξ′′ ′′=  of the polynomial (3) is possible to be equal to zero only for the right 

end of the ξ  range. For the conditions 0u u′ ′′= =  are fulfilled at the ends of the 
range [0; 1]ξ ∈  it is needed 3j ≥ , but this leads to higher extreme values of u′  and 
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u′′ , which increase in the polynomials with coefficients up from a line No 7 in 
Table 1. 

J = 3, 4, 5 J = 4, 5, 6, 7 
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Fig.1. Power polynomials u(ξ)and their derivatives u' and u" when J = 3, 4, 5 and J = 4, 5, 6, 7 

The functions , ,u u u′ ′′ are represented on the Fig. 1, when j  takes values 3, 4, 
5. The same conditions can be kept as well as j takes values greater than 6, but 
higher extreme values of the functions ,u u′ ′′  are obtained. For example, from (6) 
the coefficients ja  are a3 = 4.375, a5 = –5.25, a7 = 1.875, when 3, 5, 7,j =  and  

3 5 73 3, 1a a a= = − =  when 3, 6, 9j = . 
For the conditions 1, 0u u u u′ ′′ ′′′= = = =  to be fulfilled, it is necessary function 
( )u u ξ=  to be a polynomial, which consists of at least four terms and 4j ≥ . Then 

the coefficients of the polynomial  
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According to (8), coefficients ja  are obtained a4 = 35, a5 = –84, a6 = 70,          

a4 = –20, j = 4, 5, 6, 7. The functions , ,u u u′ ′′  are represented on Fig.1. The 
obtained results, compared with the results of a polynomial when 3, 4, 5j = , show 
that when u′′′  equals zero in the ends of the range [0; 1]ξ ∈ , the extreme values of 
u′  and u′′  increase. 

3. Power-polynomial motion laws  

Each component η  of the input or output coordinate can be written as a sum of 
initial value 0η  of η  and normalized power polynomial ( )u ξ , multiplied by a 
factor equal to maximum change maxη∆  of η : 
(9)               

0 max ( )uη η η ξ= + ∆ , 

where ξ  is substituted by ration /t Tξ =  current time t  to time T  for realizing of 

maxη∆ . 
The choice of normalized polynomial, describing the motion on defined 

coordinate, is determined by conditions for zero derivatives of the polynomial ( )u ξ  
in the ends of the range [0; 1]ξ ∈ . 

The derivatives , ,u u u′ ′′ ′′′  correspond respectively to the velocity, 
acceleration and second acceleration (pulse) on the appropriate coordinate. 

If it is necessary that the velocity and acceleration to be equal to zero, 
respectively u′ and u′′ in the ends of the ξ  range, at the synthesis of the motion 
laws, then the power polynomials with constant coefficients, written in Table 1, can 
be used. These polynomials guarantee zero inertial load, caused by the mass of the 
end-effector, in the ends of the ξ  range. 

If it is necessary apart of the velocity and acceleration to be equal to zero, 
the second acceleration to be equal to zero to, respectively u′ , u′′  and u′′′ , in the 
ends of the ξ  range, then the power polynomial (7) when 4, 5, 6, 7j =  can be used 
or other polynomials, consisting of at least four terms and 4j ≥ . These 
polynomials guarantee zero change of the inertial load (without jump), caused by 
the mass of the end-effector, in the ends of the ξ  range. This “suppress” in major 
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degree the unfavorable influence of the oscillations of the mechanical system, but 
leads to higher extreme values of the derivatives u′ and u′′ . 

The parabolic laws, based on the normalized polynomial of the form (5), 
are synthesized under conditions for straight path and zero velocities and 
accelerations in the path ends of the SCARA robots [4].  

Example. A motion law is to be synthesized at the coordinate η  under the 
following data: 0 0η = , 0 640 mm,η∆ = ÷ 2 sT =  and condition for zero 0η η= =& &&  
in the range of η∆ . 

The polynomials ( )u u ξ=  with constant coefficients, written in Table 1 
from line No 7 to line No 10, are appropriate under this condition. The polynomial 
(No 7), leading to low extreme values of the velocity and acceleration, is 

3 4 5( ) 10 15 6u ξ ξ ξ ξ= − + , which substituted in (9), along with the above data, leads 
to the positional function 3 4 5( ) 40(20 15 3 )t t t tη = − + . Its derivatives 

2 3 4( ) 600(4 4 )t t t tη = − +& , 2 3( ) 2400(2 3 )t t t tη = − +&&  with respect to t represent 
corresponding components of the velocity and acceleration at the coordinate η . The 
derivatives η&  and η&&  are obviously equal to zero in the ends of the interval 

0 2t s= ÷ . On this way all conditions on the put task are satisfied. 

4. Conclusion 

Opportunities for using power polynomials at the synthesis of motion laws of the 
working devices of the mechanisms, machines and robots are showed: 

1. Families of power-polynomial laws of movement, giving the different 
opportunities for zero the velocities and the accelerations on the ends of the 
intervals of the mechanical systems end - effectors movement, are identified. 

2. A comparative analysis are done for different power-polynomial laws of 
motion at relation on extreme values of their derivatives with respect to the time 
(velocities and accelerations).  

3. The possibilities for synthesis of power-polynomial motion laws, in which 
the derivatives and accelerations are zero, are mentioned. On this way the harmful 
influence of the oscillations of the mechanical system is reduced. 

An illustrative example shows approach for synthesis of motion law at one 
input or output coordinate of the mechanical system. 
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Appendix 

The functions , ,u u u′ ′′  are represented from Table 1 without line No 7  and line  
No 9 (Fig. 1).  

No 1              j = 2, 3, 4 No 2               j = 2, 3, 5 
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No 3              j = 2, 3, 6 No 4              j = 2, 4, 5 
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No 5             j = 2, 4, 6 No 6             j = 2, 5, 6 
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No 8             j = 3, 4, 6 No 10           j = 4, 5, 6 
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(Р е з ю м е) 

Показаны возможности использования степенных полиномов для синтеза 
законов движения исполнительных устройств механизмов машин и роботов. 
Одно из необходимых условий в начале и в конце движения исполнительного 
механизма (захвата) является установление нулевой скорости и ускорения. 
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