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Part 111. Vertical Oscillations of the Intermediate Sleeve
in the Mounting Head

1. Introduction

The assembly process of cylindrical and threaded joints in the mounting head using
the pneumowhirl method [1, 2] is accompanied by vertical oscillations caused by
the air stream in the whirl tube (Fig. 1). Here the task is to examine these
oscillations by finding the laws of their alternation and to analyze their effect on the
assembly process.

When the air stream enter in the space between the whirl tube and the
intermediate Sleeve it separates in two flows: one is streaming downward and exert
pressure on the support plain and the other is streaming upward and exerts pressure
on the flange of the intermediate sleeve (Fig. 1), trying to lift it and flows out. It can
be assumed that the upper part or this space is a chamber, composed of cylinder and
piston with contact area
(1.1) A=7x(r7 —r}),
where r; is the internal radius of the whirl tube and r, is the externa radius of the
intermediate sleeve.

Let’s note po and V; be the pressure and the volume of this chamber when the
intermediate sleeve is in equilibrium state, i.e. when the force pyA, caused by the
pressure and the weight of the sleeve, mutually equalize each other. Also denote p;
and V; as the pressure and the volume in the chamber at an instant position of the
moving sleeve. Assuming that the thermodynamic process of changing the air in the
space between the whirl tube and the intermediate sleeve is adiabatic, i.e.

(1.2) PV = PoVy
where y= 1.4 isthe coefficient of the adiabat in the air.
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Fig. 1. Vertical vibrations of the intermediate sleeve

X

After differentiate equation (1.2) in respect to the shift from the equilibrium
state X, we have

dp, 4 dV.

1.3 —LV/ + L=,
(1.3) ax PV, ix
from where, taking into account (1.2), we find

dp, dv,
—_ -(r+)
(1.4) dx 7 PoVSVs dx

Due to the fact the volume of this closed space is changing linearly with
respect to x,

(1.5 V1= Vo —AX
v,
For the derivative _d we have
X
av.
(1.6) —L= 4.
dx

The closed air chamber can be considered as spring (air cushion), for which
elastic coefficient (defined as the ratio of the force to a shift unit) we will have

X
_)—(7+l)_

(1.7) c ” A
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The result for the coefficient ¢ shows that, it together with the produced by it
elastic force Fy, will have linear dependence with respect to the shifting of the
intermediate sleeve. This force causes the vertical oscillations of the sleeve.

We will examine two cases:. linear and nonlinear cases of oscillation.

2. Linear oscillations of the intermediate sleeve

Taking into account that shifting x of the sleeve is small, the expression in the
brackets in (1.7) can be taken so that in first approximation is ailmost equal to one.
Then the equation (1.7) can be approximated with the following expression
yPoA?  yGA

VAR VAR
which is a constant. In this case G is the weight of the sleeve measured in the
condition of pA=G, expressing that in the equilibrium state the force of weight of
the deeve is counterweighted by the force caused by the pressure of the air stream.

In this case the resultant force, which exerts on the flange of the intermediate
deeve, will be
(2.2) Fy= —CX,
where the coefficient of proportionality is the constant (2.1). It is caused by the
compressed air, which going into the whirl tube forms an air cushion between the
flange of the deeve and the joint of the tube. In this air cushion the pressure is
changing due to the flow out of the air. The resultant force is the one, which cause
the oscillations of the sleeve. These oscillations will be free continuous oscillations
if we not consider the resistances.

The differential equation that describes the vertical translational motion of the
deeveis
(2.3) %+k?x=0,
where

c yGA  |y0A
e

isits natural frequency. Here mis the mass of the intermediate sleeve, and g = E —
m

(2.1)

acceleration of the gravity.
Taking into account the initial conditionst = 0, X = h and X,= 0, the solution

of the differential equation is

A
(2.5 X = hcos &t :

VO

which describes a pure harmonic oscillation with amplitude h and frequency k. The
amplitude h specifies the height to which the flange of the intermediate seeve can
be lifted or lowered in respect to its equilibrium position (assumed as begin of the
coordinate system). The amplitude ensures the adequate surrounding cylindrical
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area, through which the fluid flows out pulsating. The frequency k of these
oscillations is defined using the formula (2.4) and depends mostly on the volume V,
of the closed chamber in equilibrium state and the contact surface 4 between the
flange of the sleeve and the whirl tube.

Vibrographic pictures of the intermediate sleeve’ s movements are taken during
experiments done using this pneumowhirl method. Based on the accomplished
harmonic anaysis of the velocity law, it is established that basic harmonic has
frequency k from 18 up to 19 s™. Calculated using formula (2.4), the theoretically
established frequency is k from 20 up to 52 s*. These results show that
experimental and theoretical results are almost equal .

The begin O of the coordinate system, from which we orientate the Ox axis
downward, is determined by the height 65 = H of the air cushion between the flange
of the dleeve and the whirl tube in equilibrium state. From the equilibrium
condition, it follows

G=cd,
Taking into account (2.1), we find
V,
(2.6) @:H:9=J:
c JA

This is the distance from the joint of the whirl tube, where we set the begin O
of the coordinate system.

3. Nonlinear oscillations of the intermediate sleeve

In practice the coefficient of elasticity (1.7) is not constant, but is changing
nonlinearly with respect to the displacement x. Thisled to the nonlinear ateration in
the elastic force aroused by the air cushion between the flange of the sleeve and the
whirl tube. The differential equation, which describes the movement of the sleeve,
isnonlinear and is

A2 A —(r+1)
(3.1 mx = — 7P (1 xj X.

Vo |© Vo

A
Obviously this equation is independent and nonlinear. In most cases — < 1,
0
s0 the coefficient ¢ in front of x can be developed as binomial theorem in infinite
series for the powers of x. We have

7PA* A TRA  (y+DA  (y+D(r+ QA
= + X X?

32) c= 1= )y = 1
32) c=——0-x VAL R VAR — TV
2

. A .
We enter as small parameter the ratio u :? < 1, where B is the cross-

+...].

sectional surface of the whirl tube and replacing (3.2) in (3.1), we rewrite the
equation (3.1) in the following quasi-linear form

(3.3 X+ KX =—pax® — u? x> — ...,
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where the right side is brought under the small parameter 1. Here k is the frequency
of the originating solution and it takes the value (2.4), and about the coefficients «,
S, ... we have

- Y +DgB’® 5= 7+ +2)gB’

ve o A

The further problem is to find the periodic solution of (3.3) at least foe the
second power of the small parameter « and the relation between the aroused free
oscillations and their amplitude. The Liapunov—Lindsted—A. N. Krilov method is
suitable for the solution of (3.3).

The equation (3.3) satisfies the conditions of the Poincaré theorem for the
existence of periodical solution for independent systems. In conformity with the
adopted method we will find x(t) and the unknown frequency p, taking them
together into account and at the same time expanded with respect to the exponents
of the small parameter u:

(35) X(V) = @o + ppy + 2P + oy

(3.6) p? =k* + uh, + p’h, +...,

where the functions ¢y (t), @ (t), @, (t),... will be defined as periodic functions with
equal period so the (3.5) will be a periodic solution of the differential equation
(3.3). The position (3.6) of the square of the frequency, which we are looking for,
will be used in order to the conditions of periodicity be fulfilled. The solution will
be developed under the initial conditions:

(3.7) t=0, x(0)=H, x(0)=0.

To find the needed periodic solution of (3.3) with accuracy to the second
power of u inclusive, we replace (3.5) and (3.6) in it and after equalize the
coefficients of the equal exponents of 4 in the both side of the equation we get

(3.4)

(338) Po + P°p, =0,
(3.9 O, + p2¢1 =9, —0{(03,
(3.10) Py + pz(oz =hgo, + h,p, — 2a¢,0, - ;B(ng

which leads that we have to define the functions ¢y (t), ¢i(t), @2 (t),... and the

constants hy, h,,... consecutively.
The initial conditions (3.7) about x(t) will be satisfied if the functions
oo(1), @i (1), @, (1),...will be defined so that they fulfilled the initial conditions

2(0)=H, ¢,(0) =0,
2(0)=0, ¢,(0) =0,
(3.11) ¢A0) =0, 9,(0)=0,
From the first (cause) equation (3.8). .v.ve find
(3.12) @, (t)=H cospt .
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We replace this solution in the second equation (3.9), which with the help of
the formula

1
cos?pt = 3 1+ cos2pt)

we present in the following form:
2 2

H
+hH cospt—a

H
(3.13) @, + PP, =— & cos2pt.
To avoid secular term with t cos pt with a multiplier, we choose h; such that
the coefficient in front of cospt in the ride side of (3.13) to be equal to zero. Then
we get

(3.14) h,=0.
After this solution of the equation (3.13) it will has the following form
. aH? oH?
@, =M,cospt+N,snpt-—+ 607 cos2pt.
p

With zero initial conditions according to (3.11) for the constants Af; and N; we
find

2
Ml :—aHZ , N]_:O
3p
and then
aH? aoH? aH?

3.15 =— - cos pt + cos2pt .
( ) (01 2p2 3p2 p 2 p

In this manner the solution (3.5) in first approximation will be

oH ?

(3.16) X(t)=H cospt + ,— (cos2pt — 2cos pt - 3),
where
(3.17) p’=1k (p=Kk).

To find the second approximation, we replace the obtained expressions for ¢y
and ¢y from (3.12) and (3.15) in (3.10). Using the formulas

COS pt cos2pt = % (cos pt + cos3pt),

cos® pt = % (cos3pt + cos pt)

and after some transformations we get

@,+ P?p, =| hoH +505—H3—ﬂH3 cospt+a—H3+
(3.18) 2 6p* 4 3p*

aH? aH® pH?3

+3—pzc052pt—(6—pz+Tj0033pt.

To eliminate the secular term, we substitute the coefficient in front of cospt
with zero, from where we find
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BH? BaH?

3.19 h, = -
( ) 2 4 6p2 '

After this, from equation

320 ) aH3 aH3 aH3 pHS3 -
(' ) ¢2+p¢2_ p 3p2 - 2+ 4 COSp

6p
we find that
aH?® «aH?3 aH® pH?3

(3.21) @, =M,cospt+N,sinpt+— 3p* - op° cosZpt+[48p 3207 JcosSpt.

With respect to the zero initial conditions (3.11) for M, and N, we obtain

35aH?®*  pH?3

(3.22) M= —[ 144D +szj N,= 0.

From where we find that
(3.23)

aH?® (35a¢H3 pH?3 aH? aH?® pH?3
o = 3p° _[144p4 +32p2Jcospt 9p° cosZpt+[48p 32D Jcos3pt

The final solution of the equation (3.3) in second approximation will be
2

x=Hcospt+&(c032pt—2cospt—3)+
3.24 6p*
('),u2H3a 35 3ﬂ ‘. a - a 3ﬂ 30t |,
T3pz | p2 | a8p? 32 |SOSP T e 0P | g T ap |OSOP

where
B 5a
2_p2. | X2 22
(3.25) pc =k +[4 6p2j,u H<.

To calculate p* we have to solve equation (3.25). The needed accuracy for p*is
to with respect to the second power of . For this reason the right side of the
equation must be substitute with p’~k? so we find

(3.26) p2=k2+[£—zjﬂ2H2
' 47 ok? |

In this manner the expression (3.24) gives us the oscillations principle of the
intermediate sleeve in vertical direction with precision to the second power of the
small parameter . It shows that oscillation of the sleeve is sum of harmonics,
which frequencies are divisible of first, second and third order of the frequency of
the main harmonic. The relation of (3.25) is defined. It shows the dependence of
the frequency on the amplitude of the main harmonic. From statement (3.24) using
the non-harmonic addends in the right side it is obvious that there is a displacement
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of the static equilibrium position around which the dleeve does it resultant
oscillation.

4. Conclusion

In the propounded research work is discussed the problem of vertical oscillations of
the intermediate sleeve in the mounting head, which aroused during the assembly of
cylindrical or threaded joints under the influence of pneumatic stream. The physical
basis of the oscillations appearance is shrinking of the air encapsulated in the space
between the whirl tube and the sleeve with its flange. Examining the process of its
shrinking and expanding as adiabatic, a formula for the coefficient of elasticity of
the encapsulated air is deduced. Using this the air is presented as “air spring”. The
obtained relation is nonlinear with respect to the vertical displacement of the seeve.
The static displacement of the sleeve 6y is determined from the equilibrium state
condition. This displacement ensures the flow out of the air aside from the whirl
tube. On the base of these the following main results are obtained:

o For first approximation the problem is solved linearly, where the coefficient
of eladticity is approximated to one defined constant. A pure harmonic law of the
motion of the sleeve with amplitude and initial phase, which depend on the initial
conditions of movement, and the frequency of oscillation dependent on the air
adiabatic coefficient, cross-sectional surface and the volume of the space in which
the air is encapsulated, is obtained.

e On ahigher level of examination the problem is observed as nonlinear. For
this purpose the coefficient of elasticity of the “air spring” is expanded in series
with respect to the power of a small parameter For it, the square of the ratio
between the cross-sections of the space where the whirl tube’ s air is encapsulated, is
chosen. The differential equation of movement of the sleeve is reduced to quasi-
linear and using the nonlinear mechanic’s methods a solution to the second power
of the small parameter is obtained. The resultant motion is a sum of first, second
and third order harmonics with respect to the main harmonic. The obtained law of
motion of the sleeve is concurred with the experimentally obtained results, and the
frequency deviations are about 5+ 7%, and amplitude ones — 6+ 8%.

e The so caused oscillations of the intermediate sleeve assist in the assembly
process. They do this by trying to set up straight and self center the assembling part
in respect to the main one, as also shown in the experiment.
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TeopeTrnyeckue acreKkTbl aBTOMaTU3UPOBAHHON COOPKH
UWIMHIPUYECKUX U PE30OBBIX COEMHEHUI THEBMOBUXPOBBIM
metooMm (Yacts I11)

Cmegan bausapos, Jlioben Knoukos, Tooop Hewikog

Texnuuecxuii ynusepcumem, Coghus

(Pezome)

B

pa60Te paccMaTpuBa€TCd TPCITCHUEC IO BEPTHKAIAM Me)K,[[I/IHHOI\/'I BTYJIKH B

cOOpOYHOH TOJIOBKE, T'€HEPHUPOBAHHOE ITHEBMOBHUXPOBBIM BO3AYIIHBIM ITOTOKOM,
KOTOpPBIA U3-32 CXKAaTUS U PACTSHKEHUS SBISETCS ,, BO3AYIIHOW MPYXHHOM.
IIpobieMma obcyskaaeTcs B IMHEHHOM U HEJTMHEHHOM acIeKTe.
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