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Part III. Vertical Oscillations of the Intermediate Sleeve  
in the Мounting Нead  

1. Introduction 

The assembly process of cylindrical and threaded joints in the mounting head using 
the pneumowhirl method [1, 2] is accompanied by vertical oscillations caused by 
the air stream in the whirl tube (Fig. 1). Here the task is to examine these 
oscillations by finding the laws of their alternation and to analyze their effect on the 
assembly process. 

When the air stream enter in the space between the whirl tube and the 
intermediate sleeve it separates in two flows: one is streaming downward and exert 
pressure on the support plain and the other is streaming upward and exerts pressure 
on the flange of the intermediate sleeve (Fig. 1), trying to lift it and flows out. It can 
be assumed that the upper part or this space is a chamber, composed of cylinder and 
piston with contact area 
(1.1)                                             А = )( 2

2
2

1 rr −π ,  
where r1 is the internal radius of the whirl tube and r2 is the external radius of the 
intermediate sleeve. 

Let’s note p0 and V0 be the pressure and the volume of this chamber when the 
intermediate sleeve is in equilibrium state, i.e. when the force p0A, caused by the 
pressure and the weight of the sleeve, mutually equalize each other. Also denote p1 
and V1 as the pressure and the volume in the chamber at an instant position of the 
moving sleeve. Assuming that the thermodynamic process of changing the air in the 
space between the whirl tube and the intermediate sleeve is adiabatic, i.e.  
(1.2)                                              1 01 0p V p Vγ γ= ,  
where γ = 1.4 is the coefficient of the adiabat in the air. 
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Fig. 1. Vertical vibrations of the intermediate sleeve 

After differentiate equation (1.2) in respect to the shift from the equilibrium 
state x, we have  

(1.3)                                      011
111

1 =+ −

dx
dV

VpV
dx
dp γγ γ ,  

from where, taking into account (1.2), we find 

(1.4)                                           1 1( 1)
0 0 1

dp dV
p V V

dx dx
γγγ − += − .  

Due to the fact the volume of this closed space is changing linearly with 
respect to x,  
(1.5)                                                    V1 = V0 – Ax.   

For the derivative 
dx

dV1  we have 

(1.6)                                                  
dx

dV1 = −А.  

The closed air chamber can be considered as spring (air cushion), for which 
elastic coefficient (defined as the ratio of the force to a shift unit) we will have 

(1.7)                               
2

1 0 ( 1)

0 0
(1 ) .

dp p А Аx
c A

dx V V
γ

γ
− += = −   
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The result for the coefficient c shows that, it together with the produced by it 
elastic force Fx, will have linear dependence with respect to the shifting of the 
intermediate sleeve. This force causes the vertical oscillations of the sleeve.  

We will examine two cases: linear and nonlinear cases of oscillation. 

2. Linear oscillations of the intermediate sleeve 

Taking into account that shifting x of the sleeve is small, the expression in the 
brackets in (1.7) can be taken so that in first approximation is almost equal to one. 
Then the equation (1.7) can be approximated with the following expression 

(2.1)                                                 
2

0

0 0

p A GA
c

V V
γ γ

= = ,  

which is a constant. In this case G is the weight of the sleeve measured in the 
condition of p0A=G, expressing that in the equilibrium state the force of weight of 
the sleeve is counterweighted by the force caused by the pressure of the air stream. 

In this case the resultant force, which exerts on the flange of the intermediate 
sleeve, will be 
(2.2)                                                     Fx = –cx,  
where the coefficient of proportionality is the constant (2.1). It is caused by the 
compressed air, which going into the whirl tube forms an air cushion between the 
flange of the sleeve and the joint of the tube. In this air cushion the pressure is 
changing due to the flow out of the air. The resultant force is the one, which cause 
the oscillations of the sleeve. These oscillations will be free continuous oscillations 
if we not consider the resistances. 

The differential equation that describes the vertical translational motion of the 
sleeve is 
(2.3)                                                   2 0x k x+ = ,  
where 

(2.4)                                  
0 0

c GA gA
k

m mV V
γ γ

= = =   

is its natural frequency. Here m is the mass of the intermediate sleeve, and g = 
m
G

 – 

acceleration of the gravity. 
Taking into account the initial conditions t = 0, x0 = h and 0x = 0, the solution 

of the differential equation is  

(2.5)                                               x = h cos t
V
gA

0

γ
,  

which describes a pure harmonic oscillation with amplitude h and frequency k. The 
amplitude h specifies the height to which the flange of the intermediate sleeve can 
be lifted or lowered in respect to its equilibrium position (assumed as begin of the 
coordinate system). The amplitude ensures the adequate surrounding cylindrical 
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area, through which the fluid flows out pulsating. The frequency k of these 
oscillations is defined using the formula (2.4) and depends mostly on the volume V0 
of the closed chamber in equilibrium state and the contact surface А between the 
flange of the sleeve and the whirl tube. 

Vibrographic pictures of the intermediate sleeve’s movements are taken during 
experiments done using this pneumowhirl method. Based on the accomplished 
harmonic analysis of the velocity law, it is established that basic harmonic has 
frequency k from 18 up to 19 s–1. Calculated using formula (2.4), the theoretically 
established frequency is k from 20 up to 52 s–1. These results show that 
experimental and theoretical results are almost equal. 

The begin О of the coordinate system, from which we orientate the Ox axis 
downward, is determined by the height δst = Н of the air cushion between the flange 
of the sleeve and the whirl tube in equilibrium state. From the equilibrium 
condition, it follows 

G = c δst , 
Taking into account (2.1), we find 

(2.6)                                          δst = Н = 
A

V
c
G

γ
0= .  

This is the distance from the joint of the whirl tube, where we set the begin О 
of the coordinate system. 

3. Nonlinear oscillations of the intermediate sleeve 

In practice the coefficient of elasticity  (1.7) is not constant, but is changing 
nonlinearly with respect to the displacement х. This led to the nonlinear alteration in 
the elastic force aroused by the air cushion between the flange of the sleeve and the 
whirl tube. The differential equation, which describes the movement of the sleeve, 
is nonlinear and is  

(3.1)                               
( 1)2

0

0 0
1 .

p A A
mx x x

V V

γγ − +
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

  

Obviously this equation is independent and nonlinear. In most cases 
0V

A
< 1, 

so the coefficient с in front of х can be developed as binomial theorem in infinite 
series for the powers of х. We have 

(3.2)   
2 2 2

0 0( 1) 2
2

0 0 0 0 0

( 1) ( 1)( 2)
(1 ) [1 ...].

2!
p A A p A A A

c x x x
V V V V V

γ
γ γ γ γ γ

− +
+ + +

= − = + + +   

We enter as small parameter the ratio 2

2

B
A

=µ < 1, where В is the cross-

sectional surface of the whirl tube and replacing (3.2) in (3.1), we rewrite the 
equation (3.1) in the following quasi-linear form 
(3.3)                              ...3222 −−−=+ xxxkx βµµα ,  
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where the right side is brought under the small parameter µ. Here k is the frequency 
of the originating solution and it takes the value (2.4), and about the coefficients α, 
β, ... we have 

(3.4)                        2
0

2)1(
V

gB+
=

γγα , 
AV

gB
3

0

4

2
)2)(1( ++

=
γγγβ , ...  

The further problem is to find the periodic solution of (3.3) at least foe the 
second power of the small parameter µ and the relation between the aroused free 
oscillations and their amplitude. The Liapunov–Lindsted–A. N. Krilov method is 
suitable for the solution of (3.3). 

The equation (3.3) satisfies the conditions of the Poincaré theorem for the 
existence of periodical solution for independent systems. In conformity with the 
adopted method we will find x(t) and the unknown frequency р, taking them 
together into account and at the same time expanded with respect to the exponents 
of the small parameter µ: 
(3.5)                                       ...,)( 2

2
10 +++= ϕµµϕϕtx   

(3.6)                                         ...,2
2

1
22 +++= hhkp µµ   

where the functions 0 1 2( ), ( ), ( ),...t t tϕ ϕ ϕ  will be defined as periodic functions with 
equal period so the (3.5) will be a periodic solution of the differential equation 
(3.3). The position (3.6) of the square of the frequency, which we are looking for, 
will be used in order to the conditions of periodicity be fulfilled. The solution will 
be developed under the initial conditions: 
(3.7)                                  ,0=t  ,)0( Hx =   0)0( =x . 

To find the needed periodic solution of (3.3) with accuracy to the second 
power of  µ  inclusive, we replace (3.5) and (3.6) in it and after equalize the 
coefficients of the equal exponents of µ in the both side of the equation we get  
(3.8)                                                 00

2
0 =+ ϕϕ p ,  

(3.9)                                            ,2
0011

2
1 αϕϕϕϕ −=+ hp   

(3.10)                         3
01002112

2
2 2 βϕϕαϕϕϕϕϕ −−+=+ hhp ,  

… 
which leads that we have to  define the functions 0 1 2( ), ( ), ( ),...t t tϕ ϕ ϕ  and the 
constants h1, h2,… consecutively. 

The initial conditions (3.7) about x(t) will be satisfied if the functions 
0 1 2( ), ( ), ( ),...t t tϕ ϕ ϕ will be defined so that they fulfilled the initial conditions 

ϕ0(0)=H, ,0)0(0 =ϕ  
ϕ1(0) = 0, ,0)0(1 =ϕ  

(3.11)                                         ϕ2(0) = 0, 
.

2 (0) 0,ϕ =      
… 

From the first (cause) equation (3.8) we find 
(3.12)                                               ptHt cos)(0 =ϕ . 
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We replace this solution in the second equation (3.9), which with the help of 
the formula 

2
1

cos (1 cos2 )
2

pt pt= +  

we present in the following form:  

(3.13)            ptHptHhHp 2cos
2

cos
2

2

1

2

1
2

1
ααϕϕ −+−=+ .  

To avoid secular term with t cos pt with a multiplier, we choose h1 such that 
the coefficient in front of cospt in the ride side of (3.13) to be equal to zero. Then 
we get 
(3.14)                                                      h1 = 0.     

After this solution of the equation (3.13) it will has the following form  

.2cos
62

sincos 2

2

2

2

111 pt
p
H

p
HptNptМ ααϕ +−+=  

With zero initial conditions according to (3.11) for the constants М1 and N1 we 
find  

2

2

1 3p
HM α

−= ,  N1 =0 

and then 

(3.15)                   pt
p
Hpt

p
H

p
H 2cos

6
cos

32 2

2

2

2

2

2

1
αααϕ +−−= .  

In this manner the solution (3.5) in first approximation will be 

(3.16)               ),3cos22(cos
6

cos)( 2

2

−−+= ptpt
p
HptHtx µα

  

where 
(3.17)                                            p2 = k2   (p = k).  

To find the second approximation, we replace the obtained expressions for ϕ0  
and ϕ1 from (3.12) and (3.15) in (3.10). Using the formulas 

),3cos(cos
2
12coscos ptptptpt +=  

)cos3(cos
4
1cos3 ptptpt +=  

and after some transformations we get 

(3.18)              

3 3 3..
2

2 22 2 2

3 3 3

2 2

5
cos

6 4 3

cos2 cos3 .
3 6 4

H H H
p h H pt

p p
H H H

pt pt
p p

α β α
ϕ ϕ

α α β

⎛ ⎞
+ = + − + +⎜ ⎟

⎝ ⎠
⎛ ⎞

+ − +⎜ ⎟
⎝ ⎠

 

To eliminate the secular term, we substitute the coefficient in front of cospt 
with zero, from where we find 
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(3.19)                                       h2 = 

2 2

2

5
.

4 6
H H

p
β α

−   

After this, from equation 

(3.20)         
3 3 3 3

22 2 2 2 2cos2 cos3
43 3 6

H H H H
p pt pt

p p p

α α α β
φ φ

⎛ ⎞
⎜ ⎟+ = + − +
⎜ ⎟
⎝ ⎠

  

we find that 

(3.21)  
3 3 3 3

2 2 2 4 4 4 2cos sin cos2 cos3
3 9 48 32

H H H H
M pt N pt pt pt

p p p p
α α α β

ϕ
⎛ ⎞

= + + − + +⎜ ⎟
⎝ ⎠

.   

With respect to the zero initial conditions (3.11) for M2 and N2 we obtain 

(3.22)                           M2 = 
3 3

4 2

35
144 32

H H
p p

α β⎛ ⎞
− +⎜ ⎟

⎝ ⎠
,  N2 = 0.  

From where we find that 

(3.23)
3 3 3 3 3 3

2 4 4 2 4 4 2

35
cos cos2 cos3 .

3 144 32 9 48 32
H H H H H H

pt pt pt
p p p p p p

α α β α α β
ϕ

⎛ ⎞ ⎛ ⎞
= − + − + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

The final solution of the equation (3.3) in second approximation will be 

(3.24) 

2

2

2 3

2 2 2 2 2

cos (cos2 2cos 3)
6

35 3 3
cos cos2 cos3 ,

3 48 32 3 24 32

H
x H pt pt pt

p
H

pt pt pt
p p p p p

µα

µ α α β α α β

= + − − +

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ − + − + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

where 

(3.25)                               2 2 2 2
2

5
4 6

p k H
p

β α
µ

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
.  

To calculate p2 we have to solve equation (3.25). The needed accuracy for p2 is 
to with respect to the second power of µ. For this reason the right side of the 
equation must be substitute with  p2≈k2 so we find 

(3.26)                            2 2 2 2
2

5
4 6

p k H
k

β α
µ

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
. 

In this manner the expression (3.24) gives us the oscillations principle of the 
intermediate sleeve in vertical direction with precision to the second power of the 
small parameter µ. It shows that oscillation of the sleeve is sum of harmonics, 
which frequencies are divisible of first, second and third order of the frequency of 
the main harmonic. The relation of (3.25) is defined. It shows the  dependence of 
the frequency on the amplitude of the main harmonic. From statement (3.24) using 
the non-harmonic addends in the right side it is obvious that there is a displacement 
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of the static equilibrium position around which the sleeve does it resultant 
oscillation. 

4. Conclusion 

In the propounded research work is discussed the problem of vertical oscillations of 
the intermediate sleeve in the mounting head, which aroused during the assembly of 
cylindrical or threaded joints under the influence of pneumatic stream. The physical 
basis of the oscillations appearance is shrinking of the air encapsulated in the space 
between the whirl tube and the sleeve with its flange. Examining the process of its 
shrinking and expanding as adiabatic, a formula for the coefficient of elasticity of 
the encapsulated air is deduced. Using this the air is presented as “air spring”. The 
obtained relation is nonlinear with respect to the vertical displacement of the sleeve. 
The static displacement of the sleeve δst is determined from the equilibrium state 
condition. This displacement ensures the flow out of the air aside from the whirl 
tube. On the base of these the following main results are obtained: 

• For first approximation the problem is solved linearly, where the coefficient 
of elasticity is approximated to one defined constant. A pure harmonic law of the 
motion of the sleeve with amplitude and initial phase, which depend on the initial 
conditions of movement, and the frequency of oscillation dependent on the air 
adiabatic coefficient, cross-sectional surface and the volume of the space in which 
the air is encapsulated, is obtained. 

• On a higher level of examination the problem is observed as nonlinear. For 
this purpose the coefficient of elasticity of the “air spring” is expanded in series 
with respect to the power of a small parameter For it, the square of the ratio 
between the cross-sections of the space where the whirl tube’s air is encapsulated, is 
chosen. The differential equation of movement of the sleeve is reduced to quasi-
linear and using the nonlinear mechanic’s methods a solution to the second power 
of the small parameter is obtained. The resultant motion is a sum of first, second 
and third order harmonics with respect to the main harmonic. The obtained law of 
motion of the sleeve is concurred with the experimentally obtained results, and the 
frequency deviations are about 5 ÷ 7%, and amplitude ones − 6 ÷ 8%. 

• The so caused oscillations of the intermediate sleeve assist in the assembly 
process. They do this by trying to set up straight and self center the assembling part 
in respect to the main one, as also shown in the experiment. 
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Теоретические аспекты автоматизированной сборки 
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методом (Часть III) 
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(Р е з ю м е) 
 
В работе рассматривается трептение по вертикалам междинной втулки в 
сборочной головке, генерированное пневмовихровым воздушным потоком, 
который из-за сжатия и растяжения является „воздушной пружиной“. 
Проблемма обсуждается в линейном и нелинейном аспекте. 
 


