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1. Introduction

One of the most important problems in Robotics is the effective real time obtaining of
the dynamic equations of motion for the real-time simulation and control purposes, i.e.
as well as for effective investigations and manipulator design, so for realizing effective
control algorithms. After geometrical description of the concrete structure, the next
step is the kinematical modeling, which may be realized on the base of the different
parameterizations of the rotation group SO(3) and the different algebraic descriptions,
using (44) homogeneous matrices and (33) rotation matrices (see M l a d e n o v a
[11]). After that, the dynamical modeling of manipulators may be realized on the base
on the Lagrange’s equations, Newton-Euler recursive equations, the equations of
D’Alembert, Gauss, Appel, Kane, etc. We will not referee here the so many papers
and books on this subject.

The robot manipulators are divided in some groups: rigid body manipulators
(C r a i g [3]; A n g e l e s [2]; M c C a r t h y [8]; L i l o v  [5], L i l o v  and  B o j a d z i e v
[6], etc.), flexible links manipulators (S c h w e r t a s s e k  and  R o b e r s o n [14];
S o f f k e r [16]; S h a b a n a [15]; Z a h a r i e v [18]; M l a d e n o v a  and  R a s h k o v
[10], etc.),  manipulators with flexible joints (O c h i e r, M l a d e n o v a  and  M u l l e r
[12]; M l a d e n o v a  and  M u l l e r  [9], etc.), and their different combinations. This is
according to the structure and the mechanical models. And what about according to
computations. In the recent years symbolic computations and parallel algorithms are
widely used for efficient modeling and computations. On the one hand the symbolic
computations give the possibilities for analytical evaluation, discussions and corrections,
on the other hand the parallel algorithms reduce the computational time, which is quite
important for on-line simulations and control (see for example, A n d r e e v a and
K a r a s t o y a n o v [1]; Z a h a r i e v  and  K a r a s t o y a n o v [19], etc.).
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Having in mind this study, namely modeling of flexible link manipulators, the main
algorithms are based on the following models: the finite element method, the Ritz
method and using Lagrange, Newton-Euler and Hamilton equations of motions.

In the present work an approach for defining the displacements of elastic link
from open-loop kinematical chain (manipulator) is presented, supposing that the
displacements are small. The presented approach is based on the differential equation
of an elastic line of a bent beam and the D’Alembert principle. An example of two-
link plain manipulator whose second link is flexible is given.

2. Problem statement

Let us consider an example of a cantilever with a fixed point mass at its end (Fig. 1).
If the beam stiffness is high enough it
could be supposed that the beam is
massless, and the only force which
loads it is the gravity force of a point
mass. We accept the beam stiffness to
be big enough if the beam doesn’t
undergo deformation under  the
influence only of its own mass. If the
displacements are small the elastic line

of the beam could be defined as follows (see T i m o s h e n k o [17]; F e o d o s i e v
[4]):

(1)                          )(;2

2

xlmgMM
dx

ydEI zzz  ,

where zM  is the bending moment, l  is the length of the beam, zI  is the inertia
moment of the beam section, m  is the mass of the point mass and g  is the gravitational
constant.

If the beam moves around some fixed point, according to the principle of
D’Alembert an additional inertia force  could be added (for more details see
L o i c i a n s k i and L u r i e [7]). This force is oriented out from the point mass
trajectory, it is equal to the product of the mass and its accelerations, and it exists
during the whole motion. If the movement is given or known in advance, the inertia
force can be found in every moment of time. The displacements of the beam can also
be obtained.

The main idea of this algorithm is:
1) to find acceleration of the point mass supposing that the link is undeformable

(rigid); this idea is based on the assumption that the elastic displacements are small;
2) to compose an expression of the inertia force of the point mass;
3) to compose a differential equation of the bent elastic line of flexible link;
4) to find the elastic displacements.
The simplest cases of movement of a massless beam with a fixed point mass are

analyzed below.

Fig. 1



2 9

CASE 1. Rotation of a flexible link in vertical plane with constant velocity

Let us consider Fig. 2. A flexible link with fixed point mass rotates around Oz  axis in
the vertical plane. The mass
of the link is neglected and
the elastic displacements of
the link are accepted to be

small. doesn’t gene-rate a
moment since there is no a
vertical component in the
movable coordinate system

''' zyOx , i.e.

(2)               0'  y .
The only force which

generates a moment with respect to the point of hanging O is the gravity force of the
point mass. Its vertical component is
(3)                                      coscos' mgGG y  .
The equation of the elastic line is as follows:

(4)                                'cos
'

'
2

2

' xlmg
dx

ydEI z   .

After integration we have

(5)                            
1

2

' 2
'cos

'
' Cxlmg

dx
dyEI z 


  .

The initial conditions are:

(6)                    cos
2

0
'
';0';0'

2

1 mglC
dx
dyyx  ,

or the first integral is

(7)                       ,cos
22

'cos
'
' 22

'  mglxlmg
dx
dyEI z 




and after a second integration obtain

(8)                      .'cos
26

'cos' 2

23

' CxmglxlmgyEI z 


 

According to the initial conditions the integral constant is

(9)                                  cos
6

3

2 mglC  .

The second integral is

(10)                           









6
'

2
'cos'

32

'

xxl
EI

mgy
z


.

Fig. 2
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So an equation that describes the elastic line of the link at a fixed time moment is
obtained. Then during the whole motion the elastic displacements can be described by
the following system

(11)                    









6
'

2
'cos';

32

'

xxl
EI

mgyt
z

 .

Since the angular velocity of the link rotation is constant we have
(12)                                             tt ,

where and  are constants.
The elastic displacements in the absolute coordinate system using the corres-

ponding rotation matrix  look like
(13)                                          '.,0  zR ,

where  T000 yx  and  T''' yx .
Note. The upper left index shows in which coordinate system we describe the

respective quantity.

CASE 2. Rotation of an elastic link in vertical plane with variable velocity

Let us consider Fig. 3. The case is similar to Case 1, but here the movement is
accelerating and the angular
velocity is not constant. The
admissions are the same as in the
previous case, but here we have
introduced an acceleration
constraint, namely  which is
continuous and smooth, i.e. 
exists for every t and it is
necessary the first derivative of
the acceleration of the mass
point  to be fixed at every
moment.   and G  have
vertical components in a movable
coordinate system ''' zyOx ,
hence they generate moments
with respect to the hang point of

the link.  'y   is nothing, but lm  , where )(t   is a known function of the
acceleration.

The equation of the elastic line is

(14)                               ''cos
'

'
2

2

' xllmxlmg
dx

ydEI z   .

This is the same as

(15)                        'cos
'

'
2

2

' xlmglm
dx

ydEI z   ,

         Fig. 3
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and after integration we obtain

(16)                      
1

2

' 2
'cos

'
' Cxlmglm

dx
dyEI z 


  .

The initial conditions are the same as before. For 1C  we have

(17)                              
2

cos
2

1
lmglmC   .

The first integral is

(18)         
2

cos
2

'cos
'
' 22

'
lmglmxlmglm

dx
dyEI z  


 .

Following the same procedure, given in Case 1, it is obtained

(19)            2

23

' '
2

cos
6

'cos' CxlmglmxlmglmyEI z 


  .

With respect to the initial conditions 2C  is as follows:

(20)                                 
6

cos
3

2
lmglmC   ,

and the second integral is

(21)                             












6
'

2
'cos'

32

'

xxl
EI
mglmy

z


.

The system that describes the elastic displacements of the link throughout the
whole motion is

(22)                   












6
'

2
'cos';;

32

'

xxl
EI
mglmytt

z

  .

If the elastic displacements of the link are necessary in absolute coordinate system
we may proceed as before using the rotation matrix.

CASE 3. Rotation of the elastic link in horizontal plane with constant velocity

In this case (Fig. 4) the motion is a constant rotation around the immovable axis Oy.
Let us attach again a local coordinate
system to the link ''' zyOx . The two
acting forces are the gravity force
G  and the inertia force . The
moments are generated by their
vertical components:

;coscos'  mgGGy 

,sincos
sinsin

2
'




lm
maOy




Fig. 4
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where Oa is the centripetal (centrifugal) acceleration of the point mass. In this case 
does not depend on time and appears to be constant during the whole motion.

Of course,   and G  have components along the axis Ox', which also generate
moments after beam deformation. They, however, could be neglected provided the
components of the forces along axis Ox' are not too high, since the arms of these
forces also appear to be small when the displacements are small. However, in spite of
the fact there is a rotation that could be immediately measured even by an observer
who is located in the local frame ''' zyOx , the situation is the same as if the beam is
immovable, and   is a kind of a concentrated force having the same direction and
magnitude. In this case the elastic beam, after reaching its maximum deformations
behaves itself as if it is a rigid body making pure rotation. The equation of the elastic
line is

(23)                           ''
'

'
''2

2

' xlGxl
dx

ydEI yyz  .

This equation describes the form of the elastic line of the beam at a fixed time
moment. But when  = const, then const,2  hm i.e. the equation is valid for
every time moment.

The equation of the elastic line at a fixed time moment is

(24)                 'sincos'cos
'

' 2
2

2

' xllmxlmg
dx

ydEI z   .

After integration of the last equation it follows:

           
1

2
2

' 2
'sincoscos

'
' Cxllmmg

dx
dyEI z 


  .

The initial conditions are the same as before and C1 is

                    
2

sincoscos
2

2
1

llmmgC   .

The first integral is

(25)     
2

sincoscos
2

'sincoscos
'
' 2

2
2

2
'

llmmgxllmmg
dx
dyEI z  


 ,

and after a second integration it is obtained

     2

2
2

3
2

' '
2

sincoscos
6

'sincoscos' CxllmmgxllmmgyEI z 


  .

In accordance with the initial conditions the result for the integral constant is

                                  
6

sincoscos
3

2
2

llmmgC   .

Then the second integral is

(26)              












6
'

2
'sincoscos'

32

'

2 xxl
EI

lmmgy
z


.
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Due to the constant velocity of the link rotation, the above equation describes in
the local coordinate system the displacements not only at a definite moment, but also
throughout the whole motion.

CASE 4. Rotation of the elastic link in a horizontal plane with variable velocity

The case is similar to the previous one, but now the angular velocity of the elastic link
is not a constant quantity.  The
admissions are the same as in the
previous case, but here we have
introduced an acceleration constrains,
namely  is continuous and smooth, i.e.
 exist for every  t and it is necessary
the first derivative of the acceleration
of the mass point to be fixed at every
moment. The movement of the link is
rotation around the immovable axis Oy
with a non-constant velocity, i.e.  =
const  and  'zz   only at the initial
moment. During the motion, the axis
Oy' describes a circular cone whose
axis of symmetry coincides with axis
Oy. The angle vertex of the cone is 2.

If the movement is not
accelerating, the case will coincide with
previous one. Here, however, as a result

of the tangential acceleration, we obtain an additional component of the inertia force.
This component loads the link of bending in the plane that contains the axis Ox' and the
acceleration  a  itself. Let us define the displacements of the point mass in this plane
and once we had found the displacements in the vertical plane, containing the gravity
force G  and the centrifugal acceleration Oa  , we could obtain the total displacement.

Thus, in plain Ox'z', the tangential component of the inertia force is
(27)                                         lmma   .

In this case the equation of the elastic line of the link in this plane at a fixed time
moment is

(28)                                       '
'
'

2

2

' xllm
dx

zdEI y   .

After integration of the last equation, we obtain

(29)                               
 

1

2

' 2
'

'
' Cxllm

dx
dzEI y 


  .

The initial conditions are

(30)                                   0
'
';0';0' 

dx
dzzx .

For C1 it is obtained

Fig. 5
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2

3

1
lmC  .

The first integral is

(31)                             
 

22
'

'
' 32

'
lmxllm

dx
dzEI y  


 .

After a second integration, namely

(32)                          
 

2

33

' '
26

'' CxlmxllmzEI y 


  ,

and in accordance with the initial conditions, the corresponding integral constant is

(33)                                          
6

4

2
lmC  ,

or the second integral is

(34)                                    









6
'

2
''

32

'

xxl
EI

lmz
y

 .

The form of the elastic line in plain Ox'y' we could obtain as in the previous case.

The difference here is that the quantity  is not constant and the direction of 'y .  So,
similar to CASE 3 we have

(35)                     












6
'

2
'sincoscos'

32

'

2 xxl
EI

lmmgy
z

 .

The form of the elastic line during the whole motion is described by the following
system:

(36)                       

     

.
6
'

2
'sincoscos'

6
'

2
''

;;

32

'

2

32

'


























xxl
EI

lmmgy

xxl
EI

lmz

ttt

z

y




 

The total displacement is

(37)                                          2
'

'2
'

''
yz   ,

and the direction cosines are respectively:

(38)                       
2
'

'2
'

'

'
'

2
'

'2
'

'
'

'

;
yz

y

yz

z















 .
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3. General motion of a manipulator

In this section we consider a general motion of a massless elastic link with a fixed
point mass in its end which link appears to be the last one in a structure of open-loop
kinematic chain (manipulator). We have in mind an open-loop kinematic chain
(manipulator) that consists of n joints with one degree of freedom and n + 1 links (the
base is denoted by 0). The last link (link n) is flexible, the rest ones are rigid. A point
mass is immovably connected to the free end of the last link. A coordinate system
oriented according to the Denavit-Hartenberg notation, is attached to each link. It is
convenient the axes of a coordinate system numbered  to be oriented along the principal
inertia axes of the link. In case the above mentioned system doesn’t coincide with the
respective one of link n, oriented according to notation of Denavit-Hartenberg, the
transformation matrix between the two coordinate systems is to be composed. Let us
suppose further that both systems coincide. In this right-hand frame (Ox'y'z') coinciding
with coordinate system n, we calculate the elastic displacements. The movement of
the link could be calculated in the inertial coordinate system Oxyz, which is attached
to the base of a manipulator. Axis  Ox' appears to be a tangent to the elastic line of the
link in the hang point of the link after its deformation; axis Oz' is perpendicular to axis
Ox' and is oriented along the rotation (translation) joint axis. With respect to the local
coordinate system of the elastic link, its joint end is immovable and doesn’t complete
elastic displacements, since it is connected to the previous link, which is rigid. On the
other hand, the actual displacements of the point mass are due to its absolute acceleration
and its weight. This procedure is described further down in 10 steps (elements of this
procedure could be found also in  C r a i g [3], R a s h k o v  and  M l a d e n o v a  [13],
M l a d e n o v a  and   R a s h k o v  [10]).

1. What we enter first are the geometrical and mechanical characteristics of the
links: size, mass of point mass, elasticity module of link n.

2. The next quantities that are entered are the laws of motion of the links (joint
variables) together with cycle of the manipulator (the duration of the motion of the
manipulator).

3. Further the transformation matrices are composed. The general transformation
matrix is

(39)       






























1000
coscossincossinsin
sinsincoscoscossin

0sincos

1111

1111

1

1

iiiiiii

iiiiiii

iii

i
i d

d
a

T





,

where , a, , d are the Denavit-Hartenberg joint variable and link parameters (joint
angle, link length, link twist and link offset).

4. The angular and linear velocities are calculated:
(a)for joint i +1 rotational, they are

(40)                             ;
,

1
1

1
1

1
1

1
1

1
1




















i
i

i
i

i
ii

ii
i

i
i

ii
ii

ii
i

PvRv

ZR



 

(b)for joint i +1 prismatic they are
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(41)                           ,

,

1
1

11
1

1
1

1
1

1



















i
i

ii
i

i
i

i
ii

ii
i

i
ii

ii
i

ZdPvRv

R




where Ri
i
1  is an inverse rotation matrix with dimension (33), 1i

i P   the distance
from the origin of coordinate system {i} to the origin of coordinate system {i + 1},

1
1




i
i Z  unit vector along the axis Z, i.e.  T

1
1

1
1

1 00 






  i
i

i
i

i Z    .
5. The angular and linear accelerations are calculated:
(a) for joint i + 1 rotational, they are

(42)                    ;

,

11
1

1
1

1
1

11
1

1
11

1
1

i
i

i
i

i
i

i
i

i
i

i
ii

ii
i

i
i

ii
i

ii
ii

ii
ii

ii
i

vPPRv

ZZRR






























(b) for joint i + 1 prismatic, they are

(43) 
   .2

,

1
1

11
1

11
1

11
1

1
1

1
1

1

























i
i
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6. The  inertia force of the point mass is composed:
(44)                                          1

1


 i
i

n
n vm 

7. The gravity force of the point mass with respect to coordinate system n is
calculated:

(45)                                         n

Tn

i

i
in

n GRG 0

1
1 








 


 .

8. The differential equations of the elastic line in the two plains are given:

(46)                      
  
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dx
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ydEI

zzyy

yyzz
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





9. The displacements in the two plains are found and the total displacement is
defined:

(47)                                          2
'

'2
'

''
yz   ,

and the direction cosines are respectively

(48)                      
2
'
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'

'

'
'

2
'
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'

'
'

'

,
yz

y

yz

z















 .

10. If it is necessary to find the displacements with respect to absolute coordinate
system we could write

(49)                                        n
n

n

i

i
in PTP 




1

10 ,
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where n
nP  is a 41 vector and represents the elastic displacement of a characteristic

point (for example an end-effector) from the last link n in time and Ti
i
1  is a 44

homogeneous transformation matrix that represents the description of frame {i}  relative
to {i 1}.

4. Example

The manipulating system (Fig. 6) consisting of two movable links and two rotational
joints with one degree of freedom is presented.
To the second link at its free end a point mass
is immo-vably attached. The characteristics of
the manipulators are as follows:

 length of link 1: L[1] = 1 m;
 length of link 2: L[2] = 0.5 m;
 mass of the point mass at the end of

the link 2: m = 5 kg;
 the section of link 2 is a circle with

radius: r = 0.01 m;
 elasticity module of link 2 (steel):

E = 2.11011 Pa.
As exemplary laws of motion of the joint angles

we have chosen 5th degree polynomials:

       000200
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00020
)302220(

2000
)201840(

2
5

2
)(]2[

,
000200

)12880(
00020

)302220(
2000

)201840(
2

5)(]1[
5432

5432

ttttt

ttttt
























with duration of time 10 s.
The biggest displacements are obtained at the end of the elastic link where the

point mass is attached, i.e. the point with coordinates (0.5, 0, 0) with respect to Ox'y'z'.
Fig. 7 shows the mode of the vertical components of the inertia force (continuous

line) and of the gravity force of the point mass during the motion, i.e. the components

Fig. 6. 2R planar manipulator

Fig. 7. Gy' (- - -)  and y' (—) depending on time t
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'yG  and 'y  depend on time t. Fig. 8 shows the displacements of the elastic link
(where the point mass is fixed) during the motion. The maximum positive and negative
displacements of the point mass are respectively 0.0019 m when t = 1.89 s and 0.002
when t = 5.8 s with the link length 0.5 m. These results coincide with the assumption
that the displacements are small.

5. Conclusion

The considered algorithm can be used also in cases of more than one point masses
attached to the flexible link arbitrary, as well as in cases of distributed loads, concentrated
forces and moments. The mass of the link can also be included. It is also possible a
contact points of the forces and concentrated moments, as well as the length of the
link, to be changed with respect to time. In its base part the algorithm doesn’t change.
It is only necessary to correct the differential equation of the elastic line of link n.

In this algorithm a check is also possible of the maximum normal stresses of the
elastic link to be included, for example the quotient of the maximum bending moment
and the moment of resistance to be calculated. However, it is necessary to take account
of the force cyclicity since only this kind of check could not be a strength criterion.

To minimize the vibrations of the elastic link there shouldn’t be jerk change of the
acceleration, i.e. the acceleration to be fixed at each time moment, except in trivial
cases, when the acceleration is constant or doesn’t exist.

The presented algorithm is valid only for cases of small displacements. When
the displacements are large, a contact point of the forces move during the link
deformation which have to be taken into account. Besides, equation (1) is obtained on
the assumption that the quantity dy/dx is small compared to unity. In order to obtain
large displacements it is necessary changes of the link curve to be considerable. But
if the strains are not bigger than the limit of elasticity that is possible only with small
height of the section, i.e. the link should be in the form of a thin band or a thin wire.

Fig. 8. The displacements of the elastic link (where the point mass is fixed) during the motion
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The algorithms for generating laws of motion, kinematics of the manipulator and
for calculating of the elastic displacements are modelled as software packages
(Mathematica Package) in Mathematica 4.2. More information can be found in
(R a s h k o v  and  M l a d e n o v a   [13]).
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Прием исследования упругого звена в составе открытой
кинематической цепи  (манипулятора)

Иван Рашков, Клементина Младенова

Институт механики, 1113 София
E-mails: Rashkov@imbm.bas.bg , clem@imbm.bas.bg

(Р е з ю м е)

Рассматривается приём исследования упругого звена в составе открытой
кинематической цепи (манипулятора) в случае небольших пере-мещений. Этот
приём базирован на дифференциальном уравнении изогнутой оси упругой балки
и на принципе Даламбера. Закон движения рассматривается совместно с
уравнением изогнутой оси. Анализируются случаи самого простого движения
упругого звена, имеющего тяжёлую точку, неподвижно прикреплённую к его
концу. Кроме этого, рассматривается общий случай движения того же самого
звена, которое звено является последним в составе любого манипулятора.
Приведен пример  равнинного манипулятора, состоящегося из двух звен, второе
из которых является упругим.


