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1. Introduction

Markov models are the most frequently used tools for analyzing the reliability and
availability of complex high reliable systems. The large number of components and
possible system states often make detailed models of such systems large and un-
wieldy to the extent that they are understandable only by their developers or other
experts after careful study, and frequently require special software to be solved.
Fortunately, a set of simpler, “approximate”, but nevertheless highly accurate models
can be used for such systems.

The methods described in this report provide a set of simple, easily understood
“approximate” models that are applicable to a large class of system architectures. A
necessary requirement for their application is the systems to be repairable and the
mean time to repair to be much smaller than the mean time to failure, a case most
often met in the real practice.

Results of the “approximate” model application on a technological system of
Kozloduy NPP are presented in this paper.

For comparison, values, calculated using other methods are also presented. The
results obtained can be compared quite favorably.

2. Theoretical background

2.1. System model

The system model assumes that the system is a series combination of redundant sub-
systems. Individual units in the subsystem may fail, be repaired and returned to ser-
vice without the subsystem failing. However, if too many units fail at the same time,
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the subsystem fails and the system fails. The number of units that can fail without the
subsystem failing determines the subsystem structure [1].

The approximation model of the system is developed by constructing a Markov
model of each redundant subsystem and finding its Mean Time To Failure (MTTF).

The state transition diagram for a 3-state Markov model of a redundant system
with repair is shown on Fig 1. Let us assume that the units are identical with
constant failure rate. When a unit fails it is repaired at a constant rate m. If more
than one unit has failed the system fails. State S2 is the state with all units working.
We assume that S2 is the initial state of the system. State S1 is the state with one unit
failed. This state does not distinguish which unit has failed since the system behavior
is the same in all cases. State S0 is the system failed state it is entered if more than
one unit has failed at the same time.

        Fig. 1. 3-state Markov model of a parallel system with repair

With appropriate choices of the transition rates, the model in Fig. 1 can repre-
sent many system architectures. For the 2-unit parallel system both units are active
and 2 = 2; for a standby system only one unit is active and we assume the standby
unit does not fail, hence 2 = ; 1 =  for both cases. A Triple Modular Redundant
(TMR) system has three units and 2 =3, 1 = 2. More generally, an (n1)-out-of n
system can be described by letting 2 = n and 1 = (n1).

From this model it is not difficult to find an expression for the system
reliability.

The result is:
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Integrating (1) from 0 to  gives the subsystem MTTF:

(2) M = 1/ + /(12) + 1/2 .

For 1, 2, (i.e., MTTRMTTF), M 1 2 ,   and
 12 

R(t)  exp t  
  

This suggests approximating the reliability of the parallel subsystem by a pseudo-
component having a constant failure rate 1/M, and a reliability R'(t)=exp(t/M), where
M is the pseudo component MTTF. Using M from equation (2) gives the expressions
in Table 1, and M=m/12 gives those in Table 2, below.

Then the subsystem is replaced by a pseudo-component having a constant failure
rate ' equal to the inverse of the subsystem MTTF. The next step is to model the

 



system as a series combination of these pseudo-components and
its failure rate is the sum of the failure rates of the pseudo-
components (Fig. 2a and 2b).

Fig.2. Reliability model of a redundant system (a) and its pseudo-component “approximation” (b)

Fig. 2a shows an example of a system consisting of redundant subsystems. In
common case, for obtaining of necessary reliability it is possible for different sub-
systems different number of elements to be included in parallel. Fig. 2b shows the
system model in Fig. 2a with each subsystem collapsed into a pseudo-component
(designated by “pc”) [2, 3].

2.2. Approximation Formulas

Formulas for calculating the MTTF for various types of redundant subsystem are
given in Table 1.

Table 1. MTTF and failure rate for pseudo-components representing a parallel subsystem, m/>10
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The formulas given are for the most common types of sub-
systems used in commercial, transaction processing, computer
and other kind of high reliable systems. In the formulas,  is
the unit failure rate and m is its repair rate. Columns 2 and 3
give the basic system formulas and columns 4 and 5 include a
factor, c. This factor gives the probability that the unit
failure is detected and the system survives the failure. The
last column in Table 1 gives an expression for the maximum
relative error in the approximation.

The formulas in Table 1 are quite accurate provided the unit MTTF and unit
Mean Time to Repair (MTTR) have the ratio MTTF/ MTTR > 10. In case the ratio
MTTF/ MTTR > 100, the simpler, but less accurate, approximations in Table 2 can
be used.

For the general k-out-of n case (the subsystem is good if at least k out of n
redundant units are working), a simple closed form expression does not exist for the
subsystem MTTF but it can be calculated iteratively using expression (3):

1/
r
 + (r / +1) Mr+1 for r = 1, ..., n  1, ..., k

(3) M1 = 
1/n for r = n.

Table 2. Simplified expressions for MTTF and failure rates for pseudo component representing a parallel
subsystem, >100

The algorithm in equation (3), for the k-out-of-n system is derived by applying
the approximation (2) iteratively to first the (n1)-out-of-n, then the remaining the
(n2)-out-of-(n1) system, etc. until the (k1)-out-of-k system is reached. Note that
this assumes that a repair operation restores the system to the fully working state
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regardless of how many units have failed (Fig. 3).

Fig. 3. Markov model of a k-out-of-n: system with bulk repairs

2.3. System and Subsystem Availability

When a redundant subsystem fails the entire system fails. Thus, there is an incentive
to make the necessary repairs quicker than when making repairs to a single failed
unit, which has not caused the entire system to fail. On the other hand, for the
system considered here, a subsystem fails only when more than one of the redundant
units has failed; thus more extensive repairs may be needed. Consequently, when a
redundant subsystem fails, the repair rate will generally be different from the repair
rate for an individual unit of the subsystem that is repaired while the subsystem
remains operational. Let ss denote this repair rate. Representing the subsystem as a
pseudo component having the constant failure rate '=1/MTTF, the subsystem
availability, A(t), and its steady state availability, A, can be found by:

     ss   '
A(t) = + e('+ss) t ,

'+ss '+ss
(4)

ss
A(t) = 

'+ss

The overall system availability can be calculated as the product of the system
availabilities obtained from the equations above given.

2.4. Error in the approximation

To use any approximation, it is important to have a good understanding of the error it
introduces. The error in the subsystem approximation is defined as the relative error:

   R(t) R' (t)   R' (t)
(5) E(t) == 

        R(t)    R(t)
where R(t) is the true subsystem reliability at time t and R'(t) is the pseudo-
component reliability, (R' (t)=exp(' t)). We note that since R(t)1, the relative
error is always greater than or equal to the difference, E(t)  R(t)  R' (t).

The error obtained by using the expressions given in the last column of Table
1 is generally on the order of the square of the ratio MTTR/MTTF. For most
applications the formulas are sufficiently accurate for MTTF/MTTR>10. For many
high reliable systems values of 1/ often are greater than 10 000 hours and 1/ is often
less than 50 hours. Hence, ratios /> 200 are common and both approximations
have very small errors. In some high reliable systems ratios of / may exceed 10 000.
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For such systems the errors in both approximations are negli-
gible. It is very important to note that without repair, the
approximations given are not valid and the approach of replacing
a parallel subsystem with a pseudo-component having a constant
failure rate gives a very poor approximation. The errors ob-
tained using the approximations in Table 2 are quite accurate
for time periods of less than 5 times the unit MTTF. Thus, they
are often good enough for practical work.

3. Example

As an example let us consider containment spray system TQn1
[11, 21, 31] of unit 5 and 6 of the Kozloduy NPP consisting of
three independent channels with three pumps [4]. If the seal of
a pump fails, the pump can be taken off-line and repaired while
the system remains operational. The pump MTTF is 1000 h, and the
pump downtime including MTTR is up to 72 h. In case a pump does
not work in a period of up to
72 h, the system is in standby position. If the downtime period continuous more than
72 h, the reactor is shutdown. If two pumps fail and it is necessary to be repaired, the
reactor is also to be shutdown.

Assuming constant failure and repair rates and using the expression for the
TMR system in Table 1 we have, =0.001 failures/hour, =0.014 repairs/hour;
therefore M=3166.63h=131.94 days, and '=0.0076. Then the expression

F(t)=1 exp( 0.0076 t)

can be used as the failure distribution for the 3-pump system.
The downtime of this type of systems leads to losses caused by unproduction of

electrical energy, (e.g. 1h = $21 000 losses). Hence, repairs are “expedited” when the
system must be taken down. If the system repair time is only 2 days when the second
pump fails, then mss=0.5, and we find from the equations (4) above:

А(t)=0.9850+0.01497exp(0.5076t),
A=0.9850.

Calculating the unavailability of the system we obtain:
Qsys(t)=0.015.

For comparison, we show in Table 3 the values obtained using different proce-
dures for calculation:

Table 3. Values obtained for A and Q

4. Conclusions

Models of complex systems are really complex. As a result de-
tailed models used to determine the availability and reliabil-

Procedure WANO According to 
Safety Analysis 
Report (SAR) 

Operational data 
(!995-1996) 

Approximation 
model 

Availability (A) 0.992 0.96 0.972 0,985 
Unavailability (Q) 0.008 0.04 0.028 0.015 
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ity of such systems are often too complex to be readily under-
stood and a simpler, easily understood model is often more
useful. In this paper we have described a set of relatively
simple, “approximate”, but nevertheless, highly accurate models
for such systems.The models as described above have rather
simple representations and can be easily implemented with simple
calculations.
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Применение простых приблизительных методов
для анализа надежности и готовности системы
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(Р е з ю м е)

В ряде случаев можно применять простые приблизительные модели  системы
на месте сложных, но “точных” моделей, которые очень трудоемкие и иногда
трудно применимые.

Марковские модели являются самое частое средство для анализа
надежности и эксплоатационной готовности сложных высоконадежных
систем. Большое число елементов и многочисленные возможные состояния
системы делают подробные модели таких систем тяжелые и трудные для
применения так что они понимаемые только для их разработчиков или других
экспертов, и часто требуют специального софтвера. Тогда для таких систем
можно использовать набор  более простых, “приблизительных”, но все таки
с большой точностью моделей.

Методы, описаны в статье, представляют комплектом простых
“приблизительных” моделей, применимых для большого класса системных
структур.

Приблизительная модель создана путем построения Марковской модели
каждой резервираной подсистемы и определения ее средной отработки до
отказа. Результаты делают вычисления надежности и эксплоатационной
готовности очень простые для системных инженеров. Другое преимущество
что эти модели могут быть легко поняты лицами, которые не эксперты в
этой области.

Представлены результаты применения “приблизительной” модели в
технологической системе АЕЦ “Козлодуй”. Для сравнения представлены
результаты, вычислены при помощи  других методов. Полученые результаты
демонстрируют хорошую сходимость.


