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I. Introduction

Over the years a considerable amount of literature has been accumulated on classifi-
cation (discriminant analysis), in various fields, including engineering, medical and
social sciences, biology, economics, marketing, finance and management (McLachlan,
1992; Ragsdale and Stam, 1992).

The best developed and earliest [15, 16, 25] and appeared [12, 37, 38, 40] was
the statistical theory of classification. We will refer to it as a traditional classification
theory. This theory is based on the Bayes decision approach [4, 10] that seeks to divide
the space of observations into mutually exclusive and exhaustive regions such that if
one observation falls into the i-th region it will be allocated to i-th class (group). The
classification regions are defined by minimization of the expected costs due to a wrong
decision.

The research conducted over the past twenty years was aimed at the develop-
ment and/or application of different mathematical approaches for classification, such
as: mathematical programming (MP) ­ based classification [34], neural networks (NN)
[24, 29], support vector (SV) learning [32, 36], genetic algorithms (GA) [9, 14]. We
will call all these approaches nontraditional classification approaches.

The main reason for the development of a such tremendous variety of classifica-
tion procedures (classifiers) is that no superior classifier can be found among them. The
usual practice for a particular application is to try as many as possible classifiers in
order to choose the best one. Unfortunately, the most of the researchers and users in
the field of classification use very restricted number of classifiers ­ the scientists working
in the field of statistical classification use mainly statistical classifiers while the scien-
tists from nontraditional classification fields use mainly classifiers from their own
field and some well known (linear ­ LDF and quadratic ­ QDF discriminant function,
logistic discrimination ­ LD, nearest neighbors ­ kNN) statistical classifiers. Rarely
[18, 26, 28] papers on statistical discriminant analysis include comparison with non-
traditional classifiers (MP, NN, SV).
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How could be explained this lack of serious interest by statisticians, working in
the field of classical classification, regarding the nontraditional (e.g. MP, NN, SV,
GA) classification approaches? In our opinion the main reason for that is the non -
Bayes decision theoretical approach basis of the most of the nontraditional classifica-
tion approaches.

The most popular classifiers are the linear ones. They could be constructed using
different classification approaches: statistical [3, 12, 13, 18, 25], operational research
[5, 39], mathematical programming [5, 11, 30], genetic algorithms [9], support vector
[32] and other approaches. In this paper we will show that any linear classifier could be
considered within the Bayes decision theoretic approach framework. We will carry out
our consideration about the mixed integer programming based linear classifier since
this is the only classifier that directly minimizes the number of misclassifications and
it is the best classifier if the criterion is minimum error rate on the training set. How-
ever we would like to stress again that our consideration is valid for any linear classi-
fier.

II. Mathematical programming based classification

During the last twenty years, a class of non-parametric mathematical programming
(MP)-based techniques has attracted considerable research attention [33]. We will
focus our attention to the mixed-integer programming (MIP) classification approach
since only it minimizes directly the number of misclassifications while all statistical
procedures minimize this number indirectly by minimizing the value of the
misclassification probability. There are several studies devoted to MIP classification
algorithms (e.g. [11, 21, 31]). Unfortunately all known MIP-based classification for-
mulations are NP-hard [2] and there is no hope to obtain fast (polynomial time) algo-
rithms for their solving unless P = NP.

A number of studies compared the MIP classification method with the most
frequently used statistical methods (LDF, QDF, LD) using either real or simulated
data [1, 6, 8, 20, 21, 23, 30, 34, 35]. The conclusions of these studies are not uniformly
supportive of the MIP classification method but there is a fair amount of support for
the statement that it has classified surprisingly well if the data are highly skewed or
outlier-contaminated. Very often it clearly outperforms the above mentioned statisti-
cal discriminant methods.

The well known MP formulations are based on the geometrical point of view in
respect to the discrimination. They construct hyperplane by minimization of some
criterion, based on the values proportional to the Euclidean distances of the points to
the hiperplane taking into account their position relative to it. Such an approach be-
longs to the distance-based discrimination. There are a lot of distance measures, pro-
posed for discriminant purposes. Most of these measures have a probability interpre-
tation (they use the probability density functions, covariance matrix etc.) and their
application for discriminant purposes is based on the Bayes decision-theoretic approach.
The Euclidean distance (this is the Mahalanobis distance in casde of independent
variables) has a geometrical sense, but not the probability one. Such an approach is
not a Bayes decision-making approach. It seems that this non-Bayes approach is one
of explanations for the lack of serious interest of the statisticians in MP classification.

The purpose of this paper is to show the connection between the Bayes decision-
theoretic approach and MIP-based classification. In Section 3 we consider the classi-
cal two-group MIP-based formulation of linear classifier’s construction. Section 4 is
dedicated on the non-parametric estimation of the multivariate normal distribution
parameters based on the minimization of the divergence criterion.
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III. MIP-based classification

Let us consider the classical sample-based two-group classification problem: g1
and g2 are two distinct groups with prior probabilities q1 and q2 (q1 + q2= 1); a training
set of n = n1 + n2 samples (n1 from g1 and n2 from g2) is available described by a
k-component vector of variables xT = (x1,..., xk). The aim of the discriminant analysis
is build a decision function f(w, x) such that x g1 if f(w, x)  w0, otherwise x g2;
w = (w1, …, wk)

T is a vector of the classifier’s parameters and w0 is a cutoff value. The
most frequently used decision function f(w, x) = wTx ­ w0 is linear (this is a hyperplane
in the k-dimensional attribute space).

The conventional MIP-formulation of the linear classifier’s construction is as
follows:

   q1                 q2(1) minimize   z =  ¦¦ yi +  ¦¦yi           xig1 n1        xig2  n2
subject to

xi
Tw + Myi і w0, if  xi  g1,(2)

xi
Tw + Myi < w0, if  xi  g1,

where wj (j = 0, 1, …, k) are unrestricted (they correspond to the coefficients of the
decision hyperplane); the 0/1 integer variable yi is equal to 1 if the i-th observation is
misclassified, and yi is equal to 0 otherwise (correct classification), i = 1, … , n; M is
a sufficiently large positive real number. Obviously the objective function z is equal to
the overall misclassification error. This is a problem of the discrete optimization and
in general case there is not a unique optimal solution.

Definition. Two optimal solutions of the MIP-based classification problem (1)-(2)
will differ from classification point of view if and only if their linear classification
functions assign at least one sample to different groups.

Let OS1 and OS2 are two optimal solutions of the MIP-based classification prob-
lem (1)­(2). Therefore they have one and the same minimal value of the object func­
tion (1) and they differ at least in one value of the classification function’s parameters
wj , j = 0, 1, …, k. These two optimal solutions differ from classification point of view
if there exists at least one sample, such that if OS1 assigns it to say g1 then OS2 assigns
it to g2 (or vice versa). The number of the optimal solutions is finite since the training
sample set is finite. Let v = (v1, …, vk)

T and v0 are the parameter values of the optimal
solution OS. These values allow us to assign every observation from the training set to
one of the two groups, or in other words we have the following consistent system from
n inequalities:

xi
Tw і w0 , if OS assigns xi into g1 (obviously it is possible xi  g1),(3)             i = 1, …, n,

xi
Tw < w0 , if OS assigns xi into g2 (obviously it is possible xi  g2),

and OS (wj = vj, j = 0, 1, …, k) is a possible solution of the system (3). Obviously
every optimal solution OS from classification point of view is a set of infinite number
of optimal solutions from mathematical point of view that differ in some values of the
classification function parameters (wj , j = 0, 1, …, k), but all these solutions assign
each training set observation to one and the same group.

IV. Estimation of the parameters of the multivariate normal distribution
based on MIP classification and divergence criterion

We will consider a particular optimal (from classification point of view) solution OS
of the classification problem.

Let us accept that the both groups have multivariate normal distribution with
common covariance matrix ­ N(i, ), i = 1, 2. We look for such estimations of the
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means i, i = 1, 2 and the covariance matrix 
~, so that:

a) following the Bayes approach (with N(i, 
~), i = 1, 2) the same assignment of

the samples from the training set will be obtained as with the OS (see (3));
b) the divergence criterion between the multivariate normal distributions

N(i, 
~) and N(i, 



), i = 1, 2, has to be minimum, where i, i = 1, 2, and 


 are the
maximum-likelihood estimations of the means and the covariance matrix.

This is a typical optimization task. First of all let us consider the criterion that
should be minimized. The divergence between the multivariate normal distributions
N(i, 

~) and N(i, 


) with density functions p(x/gi) and  p
(x/gi) is as follows [22]:

           p(x/gi)(4) D(N(i, 
~)N( i, 



)) = E{­ln ¦¦¦/gi} =           p(x/gi)
     1    |



|      1                        1
          = ¦ln¦¦ + ¦tr(~


­1 ­ I) + ¦ (i ­ 



i)
T

­1(i ­ 



i), i = 1, 2.     2    |~|      2                        2

Therefore we should minimize the following criterion:
         2

(5) Q = niD(N(

i, 
~)N( i, 



)).
       i=1

Now let us consider the conditions under which the criterion should be mini-
mized.

The class of the optimal (Bayes) classification rules for groups with multivariate
normal distribution with common covariance matrix is based on the linear discrimi-
nant function (LDF ­ see [4]):

        1
(6) fi(x) = wi

Tx + wi0,  wi = 
~­1i, wi0 = ­ ¦ 


i
T ~­1i + ln(qi), i = 1, 2.        2

Then the linear classifier has the form: xg1 if f(w, x) = w
Tx  w0 otherwise xg2,

where:
(7) w = w1 ­ w2 =  

~­1(1 ­ 

2),

     1   q2                   1          q2(8) w0=w20­w10= ¦ (

1 + 


2)

T ~­1(1 ­ 

2) + ln(¦¦) = ¦(1 ­ 2)Tw + ln(¦¦).     2    q1           2          q1

Let us now summarize the optimization problem:

(9) Q = n[ln(|


|) ­ ln(|~|) + tr(~


 ­ I)] + n1(

1 ­ 



1)
T

­1(1 ­ 



1) +

+ n2(

2 ­ 



2)
t

­1(2 ­ 



2)
subject to:

xi
Tw і w0 , if OS assigns xi into g1,(10)    i = 1, …, n,

xi
Tw < w0 , if OS assigns xi into g2,

(11) w =  ~­1(1 ­ 

2),

    1             q2(12)        w0= ¦ (

1 + 


2)

Tw + ln(¦¦).
    2             q1

where w0 and the components of w, 

1, 


2, and 

~ are unrestricted; q1, q2 and all
elements of   1, 



2, and 


  are real constants.
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The considered optimization problem is too complicated and we should simplify
it.

IV.1. 1 =  


1 and 

2 =  



2

Under the above assumptions the optimization problem is transformed as follows:

(13) minimize Q = ­ln|~| + tr(~

­1)

  subject to:
xi
Tw і w0 , if OS assigns xi into g1,(14)    i = 1, …, n,

xi
Tw < w0 , if OS assigns xi into g2,

(15) w =  ~­1( 1 ­ 


2),

    1             q2(16)        w0= ¦ (


1 + 


2)
Tw + ln(¦¦).

    2             q1

We will consider two assumptions about the covariance matrix.

IV.2. ~ = 


 where  = diag(1, 2, ..., k), i > 0  i = 1, ..., k.

In this case we have k unknown parameters.
Let 



 = ||cij||i,
k
j=1 and the inverse matrix to exist and 


­1 = ||rij||i,

k
j=1.

Then obviously:

­1= diag(1
­1, 2

­1, ..., k
­1), || = 12...k, |

­1| = 1
­12

­1...k
­1

   |~| = |||


||| = (12...k)
2|



| and ln(|~|) = 2ln(12...k) + ln(|


|)
cij k

~= 


 = ||ij cij||i,
k
j=1  and  

~­1 = (


)­1 = ­1

­1­1 =   ¦ ¦ 

ij i, j=1
  k     k

tr(~

­1) = tr(





­1)=  aijij .

i=1 j=i

Let us denote the components of the k-dimensional vectors as follows:
 1 = (



11, 


12 , ..., 


1k)
T,  1 = (



21, 


22 , ..., 


2k)
T, w = (w1, w2, ..., wk)

T.
Then the optimization problem is transformed as follows:

Formulation I.
                   k     k

(17) Minimize Q = ­ln(|~|) + tr(~

­1) = ­2ln(12...k) +  aijij .

                i=1 j=i

subject to:
xi

Tw і w0  if OS assigns xi into g1,(18)    i = 1, ..., n (n linear constrains),
xi

Tw < w0  if OS assigns xi into g2,
        k   rij(19) wi = 

    ¦¦ ( 1 ­ 


2), i = 1, ..., k (k fractional non-linear equations),       i=1 ij

    1             q2(20)        w0= ¦ (


1 + 


2)
Tw + ln(¦¦).

    2             q1
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i  і 1 ­ (21)  i = 1, ..., k (2k linear constrains),
i  І 1 ­ 

where  > 0, q1, q2, rij, aij, 


1j, 


2j (i, j = 1, ..., k) are real constants.
We include the 2k linear constrains (21) since we would like the covariance

matrix ~ to be close ( > 0 is a small real number) to the maximum-likelihood estima-
tion of the covariance matrix  

~. (17) is a non-linear function in respect to the un-
known 1,2, ...,k. (18), (20), (21) are n+2k+1 linear constrains and (19) is a system
of k fractional non-linear equations. Therefore the optimization problem (17)-(21) is
a problem of fractional non-linear optimization and could be solved by conventional
software packages.

As a result of the proposed nonparametric estimation of the covariance matrix
( 
~ = 



 where  = diag(1,2, ...,k), i > 0  i = 1, ..., k) and the optimization
task (17)­(21) we found two multivariate normal distributions N( i, 

~), i = 1, ..., 2
( i are the maximum-likelihood estimations of the group means), that in accordance
with the Bayes discriminant rule will allocate one observation to the group with greatest
posterior probability and this allocation will coincide with the allocation of the con-
ventional MIP-formulation of the linear classifier’s construction (1)-(2).

IV.3. ~ = 


1 + (1 ­ )


2 where  (0, 1) and 


1 (


2) is the maximum-likeli-
hood estimation of the first (second) group. In this case we have one unknown param-
eter.

Let 


1 = ||ci
(1)
j||i,

k
j=1 and 



2 = ||ci
(2)
j||i,

k
j=1.

Then obviously:

|~| = detk()  is a k degree polynomial of ,

Ri,
k
j() k

~­1 = [


1 + (1 ­ )


2]
­1 = ||(ci

1
j ­ ci

2
j) + ci

2
j||i,

k
j=1

­1
 =  ¦¦¦  ,

detk() i,j=1
where Ri,

k
j() ­ k degree polynomial of ,

tr(~

­1) = tr(



1 + (1 ­ )


2

­1)=  tr(



1 ­ 


2

­1) + tr(



2

­1) ­ linear function of .

Then the optimization problem is transformed as follows.
Formulation II.

(22) minimize Q = ­ln(|~|) + tr(~

­1) = ­ln[detk()] + tr(



1 ­ 


2

­1)

subject to:
xi
Tw і w0 , if OS assigns xi into g1,

(23)    i = 1, ..., n, (n linear constrains),
xi

Tw < w0 , if OS assigns xi into g2,
         1       k

(24) wi = ¦¦¦ 
    Ri

k
j()(



1j ­ 


1j), i = 1, ..., k (k fractional non-linear equations),
     detk() 

j=1

    1             q2(25)        w0= ¦ (


1 + 


2)
Tw + ln(¦¦),

    2             q1
where the only variable  (0, 1).

The object (criterion) (22) is a non-linear function in respect to the unknown .
(23), (25) are n+1 linear constrains and (24) is a system of k fractional non-linear
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equations. Therefore the optimization problem (22)­(25) is a problem of fractional
non-linear optimization and could be solved by conventional software packages.

As a result of the proposed nonparametric estimation of the covariance matrix
(~ = 



 + (1 ­ )


2 where  (0, 1)) and the optimization task (22)­(25) we find
two multivariate normal distributions N( i, 

~), i = 1, 2 ( i are the maximum-likeli-
hood estimations of the group means), that in accordance with the Bayes discriminant
rule will allocate one observation to the group with greatest posterior probability and
this allocation will coincide with the allocation of the conventional MIP-formulation
of the linear classifier’s construction (1)­(2).

In fact maybe the true (from statistical point of view) assumption should be not
~ = 



 + (1 ­ )


2 where  (0, 1). The true assumption [29, p. 106] has to be

      n1


 + (1 ­ )n2


2~ = ¦¦¦¦¦¦¦¦¦ , where  (0, 1),
n1 + (1 ­ )n2

and 


(


) is the maximum-likelihood estimation of the first (second) group) - in this
case we have one unknown parameter.

Let  


 =  ||ci
(1)
j||i,

k
j=1 and 



2 = ||ci
(2)
j||i,

k
j=1.

Then obviously:
                detk()|~| = ¦¦¦¦¦¦¦ , where detk() is a k degree polynomial in ;         n1 + (1 ­ )n2

n1


 + (1 ­ )n2


2 
~­1 =  ¦¦¦¦¦¦¦¦¦= [n1 + (1 ­ )n2] ||(n1ci

1
j ­ ci

2
j) + n1ci

2
j||i,

k
j=1

­1
  =

n1 + (1 ­ )n2 

Ri,
k
j() k

= [n1 + (1 ­ )n2] ¦¦¦ , where Ri,
k
j() ­ k degree polynomial of ;

detk() i,j=1
n1



+(1 ­ )n2


2 
   tr(~


­1) = tr ¦¦¦¦¦¦¦¦­  


­1  = ¦­¦¦¦¦¦­tr(n1



1

­1­n2



2

­1)+

n1+(1 ­ )n2 n1 + (1 ­ )n2

n2+ ¦­¦¦¦¦¦­tr(


2

­1) ­ linear function of .

n1 + (1 ­ )n2
Then the optimization problem is transformed as follows:

Formulation IIa:

Is the same as (22)­(25) substituting corresponding estimates.

V. Recursive quadratic programming formulation (Formulation III)

Our aim here is to create a formulation with quadratic object, all constrains of which
being linear. Let us consider again the equation (12)

    1             q2       w0= ¦ (

1 + 


2)

tw + ln(¦¦),
    2             q1
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Let us assume that 1 + 

2 = 



1 + 


2.
Then (12) is transformed into the following linear constrain:

    1             q2       w0= ¦ (


1 + 


2)
tw + ln(¦¦).

    2             q1
Step 0. Let i(0) = 



i, i = 1, 2.
Step 1. Calculate the covariance matrix ~(1) of the training sample with means

i = 

i(0) = 



i, i = 1, 2, using the conventional maximum-likelihood estimation:

            1      2     1       2
(26) ~(1) = ¦¦­        (xj ­ 


i(0))(xj ­ 


i(0)) =  ¦¦­ 

       (xj ­ 

i)(xj ­ 


i)

T= 


.
          n ­ 2  i=1 xjgi   n ­ 2  i=1 xjgi

Under the above assumptions the optimization problem (9)­(12) is transformed as
follows:

   2                   2
(27) minimize Q(step1)=niD(N(


i,
~(1)||N( i,



))=niD(N(

i,



||N( i,


))=
 i=1           i=1

= n1(

1 ­ 



1)
t

­1(1 ­ 



1) + n2(

2 ­ 



2)
T

­1(2 ­ 



2)
subject to

xi
Tw і w0  if OS assigns xi into g1,(28)   i = 1, ..., n,

xi
Tw < w0  if OS assigns xi into g2,

(29) w =  

­1(1 ­ 


2),

    1             q2(30)        w0= ¦ (


1 + 


2)
Tw + ln(¦¦),

    2             q1
(31) 1 + 


2 = 



1 + 


2,

where w0 and the components of w, 

1, 

2 are unrestricted; q1, q2 and all elements of

 1,  


2  and 


 are real constants.
The object (criterion) (27) is a quadratic function in respect to the unknown ij

(i = 1, 2, j = 1, …, k), (28) is a system of n linear inequalities, (29) and (31) are two
systems of k linear equations and (30) is a linear equation. Therefore we have qua-
dratic object (27) and (n+2k+1) linear constrains (28)­(31), or the described optimi­
zation problem is a task of a quadratic mathematical programming.

The result of step 1 is as follows:

(32) (1(1), 

2(1)) = argminQ(step1), where Q1 = minQ(step1) =
= n1(


1(1) ­ 



1)
T

­1(1(1) ­ 



1) + n2(

2(2) ­ 



2)
T

­1(2(2) ­ 



2).

Step s. Calculate the covariance matrix  ~(s) of the training sample with means
i = 


i(s ­ 1), i = 1, 2, using the conventional maximum-likelihood estimation:

   1      2
(33)  ~(s) = ¦¦    (xj ­ 


i(s ­ 1))(xj ­ 


i(s ­ 1)).n ­ 2  i=1  xjgi

Under the above assumptions the optimization problem (9)­(12) is transformed
as follows:

        2
(34) minimizeQ(step s) = niD(N(


i,
~(s)||N( i,



))= nln|


| ­ nln|~(s)| +
       i=1

                     + ntr(~(s)

­1 ­1) + n1(


1 ­ 



1)
t

­1(1 ­ 



1) + n2(

2 ­ 



2)
t

­1(2 ­ 



2)
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subject to
xi
Tw і w0 , if OS assigns xi into g1,(35)     i = 1, ..., n,

xi
Tw < w0 , if OS assigns xi into g2,

(36) w =  ~(s)­1(1 ­ 

2),

    1             q2(37)        w0= ¦ (


1 + 


2)
Tw + ln(¦¦),

    2             q1
(38) 1 + 


2 = 



1 + 


2.

In other words the difference between two consecutive steps is the matrix ~(s)
which influences the object and the k linear equations (i. e. (44), (51)). Each step is a
task of a quadratic mathematical programming ­ quadratic object and (n + 2k + 1)
linear constrains.

The result of step s is as follows:
(39) (1(s), 


2(s)) = argminQ(step s), where         1, 2

Qs = min Q(step s) = nln|


| ­ nln|~(s)| + ntr(~(s)

­1 ­1) +

     1, 2
                     + n1(


1(s) ­ 



1)
t

­1(1(s) ­ 



1) + n2(

2(s) ­ 



2)
t

­1(2(s) ­ 



2).
If we prove that

(40) Q1  і Q2 і ...  і Qs­1 і Qs і ...,

then the result would be that our recursive procedure converges as follows:
           s   s(41) i(s), i = 1, 2  i, so that 

~(s)  ~,

where ~ is a maximum ­ likelihood estimation of the covariance matrix in respect to
the training sample and i(s), i = 1, 2.

For now we have no prove about the above statement, although it seems that it
would hold in the practice.

As a result of the proposed non-parametric recursive estimation we find two
multivariate normal distributions N(i, 

~), i = 1, 2, that in accordance with the Bayes
discriminant rule will allocate one observation to the group with greatest posterior
probability and this allocation will coincide with the allocation of the conventional
MIP-formulation of the linear classifier’s construction (1)-(2).

Let us have more than one solution optimal from the classification point of view.
Then we will decide the respective optimization problem (formulations I, II or III) for
each of them and will choose the solution with minimum values of the divergence
criterion Q.

VI. Conclusion

In this paper we show that any linear classifier could be considered within the Bayes
decision theoretic approach framework. We will carry out our consideration about the
mixed integer programming based linear classifier since this is the only classifier that
directly minimizes the number of misclassification and it is the best classifier if the
criterion is the minimum of the training set misclassification error rate. However we
would like to stress again that our consideration is valid for any linear classifier.

We consider the two-group mixed integer based classification and show its con-
nection with the Bayes decision theoretic approach. The conventional MIP-formula-
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tion of the linear classifier’s construction minimizes the overall misclassification er-
ror. This is a NP-hard optimization task which result is a set of infinite number of
optimal from mathematical point of view solutions that differ in some value(s) of the
classification function’s parameter(s). All of them assign each training set observation
into one and same group. In other words we have a consistent system from n inequali-
ties (n ­ the number of the training set observations). We assume that the two groups
have multivariate normal distribution with common covariance matrix - the class of
optimal (Bayes) classification rules in this case is based on the linear discriminant
function. Three optimization formulations, based on the minimization of the diver-
gence criterion under given constrains are proposed. Two of the formulations are non-
linear optimization problems, while the last recursive formulation is a task of qua-
dratic mathematical programming (quadratic object and linear constrains). As a re-
sult of the proposed non-parametric estimation we find two multivariate normal distri-
butions that in accordance with the Bayes discriminant rule will allocate one observa-
tion to the group with greatest posterior probability and this allocation will coincide
with the allocation of the conventional MIP-formulation of the linear classifier’s con-
struction.
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Математическое программирование с точки зрения Байесовской
теории принятия решений в случае классификации двух классов
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(Р е з ю м е)

Статья относится к области методов классификации, известной как дискри­
минантный анализ. Авторами сделана попытка показать, что “нетрадиционные
методы”, такие как метод смешанного целочисленного программирования,
могут быть приведены к традиционной Байесовской постановке при известных
предположениях о статистико­вероятностной структуре задачи. Вводится
определение различных оптимальных решающих функции, основывающеся
на виде ошибок. Выводится критерий минимизации и описывается соответству­
ющая итерационная процедура.


