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1. Inbroduction

Over the years a considerable amount of literature has been accunulated on classifi-
cation (discrimirant analysis), invarious fields, including egineering, medical and
social sciences, biology, economics, marketing, finance and management (McLachlan,
1992; Ragsdale and Stam, 1992).

The best developed and earliest [15, 16, 25] and appeared [12, 37, 33, 40] was
the statistical theory of classification. Wewill refer to it as a traditional classification
theory. This theory is based on the Bayes decision approach [4, 10] that seeks to divide
the space of doservations into mutual ly exclusive and exhaustive regions such that if
ane aoservation falls inmto the 1-th region itwill be allocated to i-th class (grawp)- The
classification regions are defined by minimization of the expected costs due t awrong
cecision.

The research conducted over the past twenty years was aimed at the develop-
mertt and/or gpplication of different mathematical approaches for classification, such
as: mathematical programming (MP) — based classification [34], neural networks (NN)
[24, 29], support vector (SV) leaming [, 36], genetic algoritms (GA) [9, 14]. e
will call all these gyproades nontraditional classification goproades.

The main reason for the development of a such tremendous variety of classifica-
tion procedures (classifiers) is that no superior classifier can be found among them. The
usual practice for a particular goplication is to try as many as possible classifiers in
order 1o choose the best one. Unfortunately, the most of the researchers and users in
the field of classification use very restricted murber of classifiers - the scientists working
in the field of statistical classification use mainly statistical classifierswhile the scien-
tists from nontraditional classification fields use mainly classifiers fran their omn
field and some well known (linear — IDF and quadratic — QDF discriminant function,
logistic discrimination — ID, nearest neighbors — K\N) statistical classifiers. Rarely
[18, 26, 28] papers on statistical discriminant analysis include carparison with non-
traditional classifiers (WP, N\, SV).
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How coulld be explained this ladk of serious interest by statisticians, working in
the field of classical clessification, regarding the nontraditional (e.g. WP, NN, SV,
GA) classification approaches? In our opinion the main reason for that is the non -
Bayes decision theoretical goproach besis of the nost of the nontraditional classifica-
tion approades.

The most popullar classifiers are the linear ones. They coulld be constructed using
different classification goproades: statistical [3, 12, 13, 18, 25], gerational research
5, 39], mathematical programing [5, 11, 30], genetic algoritims [9], support vector
[32] ad other goproadhes. In this paper we willl show that any linear classifier could be
oconsidered within the Bayes decision theoretic gpproach franenork. We will carry out
our consideration about the mixed integer programming based linear classifier since
this is the only classifier that directly minimizes the nurber of misclassifications ad
it is the best classifier 1T the criterion is minimum error rate on the training set. Howv-
aver wewould like to stress again that our consideration is valid for any linear classi-
i

1. Mathemattical programing based classification

During the last twenty years, a class of non-parametric mathematical programing
(VP)—-based techniques has attracted considerable research attention [33]- We will
focus our attention to the mixed-integer progranming (MIP) classification approach
since onlly rt minimizes directly the nunber of misclassifications while all statistical
procedures minimize this number indirectly by minimizing the value of the
misclassification probebility. There are several studies devoted to MIP classification
algorithms (e.g- [11, 21, 31])- Utfortunately all knoawn MIP-based classification for-
mulations are NP-hard [2] and there is no hope to dotain fast (polynanial time) algo-
rithms for their solving unless P = NP.

A number of studies compared the MIP classification method with the most
Trequently used statistical methods (LDF, QDF, LD) using either real or simulated
data[1, 6, 8, 20, 21, 23, 30, 34, 35]. The conclusions of these studies are not uniformly
supportive of the MIP classification method but there is a fair amount of support for
the statament that it hes classified surprisingly well 1f the data are highly skened or
outlier—contaminated. Very often i1t clearly outperfoms the above mentioned statisti-
cal discriminant methods.

The well known MP formulations are based on the georetrical point of view in
respect to the discrimination. They construct hyperplane by minimization of sone
criterion, based on the values proportional to the Euclidean distances of the points to
the hiperplane taking into account their position relative to 1t. Such an gpproach be-
longs to the distance-basaed discrimination. There are a lot of distance measures, pro-
pased for discriminant purposes. Most of these measures have a probebility interpre-
tation (they use the probabil ity density functions, covariance nmatrix etc.) and their
goplication for discriminant purposes is based on the Bayes decision-theoretic gpproadch.
The Euclidean distance (this is the Mahalanobis distance in casde of independent
variables) has a geaometrical sense, but not the probabil ity one. Such an approach is
not a Bayes decision-making approach. It seems that this non-Bayes approach is one
of eplaatios for the lack of serious interest of the statisticians in W classification.

The purpose of this paper is to show the connection between the Bayes decision-
theoretic approach and MIP-based classification. In Section 3 we consider the classi-
cal two-group MIP-based formulation of linear classifier’s construction. Section4 is
dedicated on the non-parametric estimation of the multivariate normal distribution
parareters based on the minimization of the divergence criterion.

75



111. MIP-esed classification

Let us consider the classical sample-based to-group classification problem: g
and g, are two distinct groups with prior probebilities g, ad g, (g, +g,~=1); a training
set of n=n, +n, samples (n, fran g, and n, from g,) iIs available described by a
k-camponent vector of variables X' = (X, - - -, X ). The aim of the discriminant analysis
is build a decision function f(w, X) suchthat X eg, If f(w, X) >w, otherwise X €g,;
w=w, ..., W) is avector of the classifier’s parareters and v, is a autoff value. The
most frequently used decision function fw, X) =wx - w, is linear (this is a hyperplane
in the k-dimensional attribute space).-

The conventional MIP-formullattion of the linear classifier’s construction is as

Tolloas:

(€)) minimize z = ql:: y, + Z%:yi
xeg My xeg N,

sject - . )

o Xw+M.iw, if X g,

. i
Xw+MWy, <w, if X, €9,

\M"EI’EV\G (g=0,1,..., K are urestricted (they correspond to the coefficients of the
decision hyperplane) ; the /1 integer varicbley, is equal o 1 if the i-th doservation is
misclassified, ady, is eqal to 0 otherwise (correct classification), 1=1, ... , n; Mis
a sufficiently large positive real nurber. Coviously the dbjective function z is equal t©
the overall misclassification error. This is a prablem of the discrete optimization and
in general case there is not a unique optimal solution.

Definition. Two gotimal solutions of the MIP-based classification prablem (D)-(2)
will differ fran classification point of view if and only 1T their linear classification
functions assign at least one saple to different grouss.

Let S, and OS, are two gptimal solutions of the MIP-based classification prob-
lem (1)-(2) . Therefore they have one and the same minimal value of the dbject func—
tion (O) ad they differ at least in one value of the classification fuction’s parareters
w. , J=0, 1, ..., k. These two gotimal solutions differ fran classification poirt of view
it there exists at lesst ore sanple, such that If 0, assigns it to say g, then (S, assigns
It g, (orvice versa). The nunter of the optamal solutians is finite since the training
saple set is finite. Letv=(v,, ..., )" ad v, are the paraneter values of the gotimal
solution 0S. These values allaw us 1o assign every ooservation fram the training set to
one of the two groups, or in other words we have the following consisternt system fram
n inequalites:

xwiw , IFCSassigns x, into g, (doviously it ispossible x, ¢ g), _ 1
i=1,..,n,
xw<w , IfFOSassigns x; into g, (Coviosly it ispossible x; ¢ g),
and0S (W, =Vv;, =0, 1, ..., K) is a possible solution of the system (3).. Coviously
every optimal solution OS from classification point of view is a set of infinite nuroer
of gptimal solutions fran mathemattical point of view that differ in some values of the
classification fuction parareters (V\ﬁ ,1=0,1, ..., K, butall these solutions assign
each training set observation to one and the same group-

IV. Estimation of the parareters of the nultivariate normal distribution
based on MIP classification and divergence criterion

We willl consider a particular optimal (from classification point of view) solution 0S
of the classification problem.
Let us accept that the both groups have multivariate normal distribution with

Common covariance matrix - N(u,, £), 1 =1, 2. We look for such estimations of the
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means {i,, i =1, 2 and the covariance matrix 3; so that:

@ following the Bayes approach (with N, , D), 1 =1, 2) the same assigment of
the saples fram the training set will be dotained as with the OS (see (3));

b) the divergence criterion between the multivariate normal distributions
NG, D) and N, 3), =1, 2, has to be minimum, where 1, i =1, 2, and S are the
maximum-likelihood estimations of the means and the covariance matrix.

This is a typical gotimization task. First of all let us cosider the criterion that
should be minimized. The divergence between the multivariate normal distributions
(e Y ad NQ, , ) with densiity functions P/, ad p(/g,) is as follans [22]:

- . POve)
DINGE. , D N, =E{-1n | Y/9} =
® (NG, DIING, D) Sosh 0.}

ik O GE -1+ G- G - i), § =1, 2.
é m 2 gl i i i
Therefore we should minimize the folloving criterion:
2 < A
®  Q=InDdONG;, DIINGy, ).
Now let us consider the conditions under which the criterion should be mini-
mized.
The cllass of the optimal (Bayes) classification rules for groups with nultivariate

normal distribution with cormon covariance matrix is based on the linear discrimi-
nant function (LDF - see [4]):

~ 1
®  F,0O=wxtu, W=, W= | ETEN, +In@), i =1, 2.

Then the linear classifier has the form: xeg, I f(w, X) =wx > w, otherwise xeg,,
where: _
@ w=w-w= T -,

1 1
®) w=w,, -w, = :Z(Ml + T, - 1) + |n§:) =1 5“1 - )W+ In(:dl)'
Let us now summarize the optimization problem:

©@ Q=n[In(IZD) - (B + - DI +n G, - DTG, - i) +
+ @, - 1T, - i)

sbject to: - CF S assi )
X'Wiw , 1 assli X. Into g,
0 T ITERESSIgEX TR0, o1 n,
xw<w , ifCSassigs x, intog,,
an w= @, - i),
1 '~ ~
(€2) W= (L + )W+ '”Cl;‘-)-

where w, and the components of w, {i,, fi,, and Yare unrestricted; q,, g, and all
elements of [, ji,, and Y. are real constants.
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The considered optimization problem is too complicated and we should simplify
L

IV.1. i, = {i, and i, = {3,
Under the above assumptions the optimization problem is transformed as folloas:
@) minimize Q = -1n[3] + tr&&Y)

subject to: - I )
) G TR ESIRA IO o, o,
xw<w , ifCSassigs x, intog,,
€9)) w= —il(ﬂl_ﬁz)’
1
@® w5 G+ G,

We will consider two assumptions about the covariance matrix.
IV.2. 3= ASA where A=diagQh,, Ay, ---5 1), A, >0V i=1, ..., ke

In this case we have k unknoawn parameters.
Let 3= Ic;ll; ., and the inverse matrix to exist and 1= Il -
Then obviously:
A'=diag(yt, Aty eas A, AL =0 A, AT =AML
131 = IALZHAL = G2, - 202151 and InC3D) = 2InQ.,- - -4 + InCIZ)

k

17 iy

- . - . . | c.
% AZA = 1yl and B = (AZA)T = ATEIAC = ‘ | ¥

| }\‘i}\] | i,j=1

() = r(ASAS =TT 30, -
i=1 j=i

Let us denote the components of the k—-dimensional vectors as folloas:
f’l’l:(f’lui i’llz 3 ===3 i’llk)Ti f’ll:(f’lz" i’l‘z 3 ===3 i’l‘z()Ti W:(W11 W21 === V\{()T'
Then the optimization problem is transformed as folloas:

Formulation 1.

@) Minimize Q = -1n(3]) + ") = -21n(Q,.. ) + X T & Al

ey L AL
sbject to:
xwiw ifOSassigsx intog, _
@ ) ) ) i=1, ..., n( linear aonstrairs),
xw<w ifCSassigsx inog,,
k I
19 W= :"’gﬁl—ﬁz), i=1, ..., k (k fractional non-linear equations),
LA A
i
1 A A
@ w,= il Gy + p)w+ In(E?,)-
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A il-eg

@ i=1, ..., k& linear constrairns),
A Il-g

wheree >0, ¢, G,, Iy, &, by, iy, (@, J=1, ..., K) are real constants.

We include the 2k linear constrains (21) since we would like the covariance
matrix 2to be close (e >0 is a srall real nunber) to the meximum-likelihood estima-
tion of the covariance matrix 2. (17) is a non-linear function in respect to the un-
knoni,L,, --.,A- (18), (20), (2D are n2+1 linear constrains and (19) is asystem
of k fractional non-linear equattions. Therefore the optimization problem (17)-(2D) is
a prablem of fractional non-linear gptimization and could be solved by coverttional
software packages.

As a result of the proposed nonpararetric estimation of the covariance matrix
(E:Ai/\ where A=diag(\,2,, ---,A), A, >0V i=1, ..., K) and the gptimization
task (17)-(21) we found two multivariate normal distributions N(fii , ~D, i=1, ...,2

(1, are the maximum-likelihood estimations of the group means), that in accordance
wirth the Bayes discriminant rule will al locate one doservation to the group with greatest
posterior praoabi ity and this al location will coincide with the allocation of the con-
verttional MIP-formulation of the linear classifier’s construction (D)-2)-

IV.3. 3=25 + (1 - )%, where ke (0, D) and ¥, &) iis the maximum-likeli-
hood estimation of the first (second) group. In this case we have one unknoan param-
efer.

Let 5, = Re@N, S, and 5, = Be @l -

Then obviously:
I3] = det () is ak degree polynomial of 2.,

- . . | R ||
R R R TR 6y ¢
where Ri"]f(k) - k degree polynomial of A,

tréﬁ:‘l) = 1]’(7»: +(1- X)AZ;:{): 7\‘tl’(AZl - AZ;:{) + U’(AZZi‘l) - linear function of A.
Then the optimization prablem is transformed as folloas.

Formulation I1.

(@  minimize Q= -1n(3]) + tr&) = -In[det, )] + 1rE, - £330
sbject to:

?
=

xwiw , ifOSassigsx intog,
(¢2)) i=1, ..., n, (nlinear costrairs),
xw<w , ifCSassigs x, intog,,

1
@ w=1uy R‘fE_k)(f;li ~f), =1, ..., k (kfractional non-linear equations),

u

det ()

1
> Wozil Gy, + p)'w+ In(E?.),
where the only variable L e (O, 1).
The dbject (criterion) (22) is a non-linear function in respect to the unknown ..
@23), (5) are n+l linear constrains and (24) is a system of k fractional non-linear
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equations. Therefore the cptimization problem (22)-(25) is a problem of fractional

non-linear optimization and could be solved by conventional software packages.

As a result of the proposed nonpararetric estimation of the covariance matrix
@: 7‘2 +(1- k)iz where A e (0, 1)) and the optimization task (22)-(25) we find
o multivariate nomal distributions NG, D), i =1, 2 @, are the maximm-likeli-
hood estimations of the group means), that in accordance wirth the Bayes discriminant
rule will allocate one doservation to the group with greatest posterior probebility and
this allocation willl coincide with the allocation of the conventional MIP-formulation
of the linear classifier’s aonstruction (1)-(2) .
_ In fact maybe the true (from statistical point of view) assunption should be not
2=A2, + (1 -A)2, where L e (0, 1). The true assunption [29, p. 106] has to be

—i — l}l\‘rllllzi |+

1 11ni : (:

Il
ad ZI(ZZ) is the maximum-likelihood estimation of the first (second) grap) - in this
case we have one unknown parameter .

S = k S — K
Let zl - Ilci(lj?li,j:lardzz_ Ilci(zj)li,j=l'

gnﬁ%re re (0, 1),

1 iy, =1

- )n3
i :?'2%2:]: n + @ -n] Hnel -cr+ncill ™ =

| , where R, ¥(A) - k degree polynomial of i;

i,jJ71

7?”; ;lf(l,'k)_”zzzgl]
+

+ -1 2er (8 - linear function of A.
An + (1 - )N,
Then the optimization problem is transformed as folloas:
Formulation 1la:
Is the sane as (22)-(25) substituting corresponding estimates.

V. Recursive quadratic programming formulation (Formulation 111)

Cur aim here is to create a formulation with quadratic dbject, all constrains of which
being linear. Let us consider again the equation (12)

= ; G, + ) + 'n(:q'l)’
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Let us assume that Ti, + [i, = 1, + [i,-
Then (12) is transformed into the folloving linear constrain:

W= 3 G + ()W + In(:q,l)-

Step 0. Let . (0) =, 1=1, 2.
Step 1. Calculate the covariance matrix Xl) of the training sample with means
=00 = pi, =1, 2, using the converttional maximun-1ikelihood estimation:

- 2 1,
(26)21)—11 ZZ(X‘M(O))(X—M )= 1i-X % (x—u)(x—u)T—

—p X God n-2 X< J

Under the above assumptions the optimization problem (9)-(12) is transformed as
Tollos:

(27) minimize Q(stepl){lZniD(N(ﬁi , XD NGy, , i))::zzlniD(N(ﬁi , i"N(ﬁli ,i)):
=n QL - 1S, - ) + G - LG, - L)

sbject o - "
xwiw, 1fOSassi X inog,
@ T TR0 a1, o,
xw<w ifCSassigsx inog,,
@) w= S - 1,
1
@ W= Gy i + IH(E‘;-),
@D i+ p, =0+,

where w, and the components of w, 1i,, Ti, are urestricted; g, g, and all elements of
i, [, ad?2 are real constants.

The object (criterion) (27) is a quadratic function in respect to the unknown ILU.
(=1,2,j=1, ..., K, @) isasystanof n lirear inequalities, (0) ad (31) are o
systems of k linear equations and (30) is a linear equation. Therefore we have qua—
dratic adbject (27) and (Mt2k+1) linear constrains (28)-(31), or the described optimi-
zation problem is a task of a quadratic mathematical programing.

The result of step 1 is as follows:

@ GO, K1) = argninQ(stepl), where Q = minQ(stepl) =
=n @ (D) - pE M) - )+, 2) - )Tz (w2 - ).

Step s. Calaulate the covariance matrix ~Xs) of the training sample with means
L=nG-1),1=12, using the conventional maximum-likelihood estimation:
€9)) XS)—" ZZ GG -mG-1) x5 -KG-1)

=1 xeg

Under the above assumptions the cptimization problem (9)-(12) is transformed
as follons:

@D minimizeQ(step s) = Z_Z_niD(N(ﬁi SSNG,, )= nIn[E | - nIn[Xs)] +
GO D G )T ) G - -
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Soject to
xwiw , ifOSassigsx intog,

i=1,...,n,
S xw<w , iIfCSassigs x, intog,, ' "
(€9) w= XS)'(, - i),
1
@ w=§ Gy + iy s inG),
G
(8) ﬁl-i-rlZ:f’ll-'-f’lz'

In other words the difference between two consecutive steps is the rratrist)
which influences the dbject ad the k linear equattions (i- e. (44), BD). Eachstep isa
task of a quadratic mathematical programming — quadratic dbject and (n + 2k + 1)
linear corstrains.

The result of step s is as follows:

@ O, () =agninQ(step s), where
His Hy
Q, =min Q(step s) = nlnﬁ{ - nln|~2(s)| + ntr(i(s)AZ‘1 -1) +
s
+nEL0S) - B2 EE) - i) + nGELeS) - LT ELCE) - L)-
Ifve prove that

“€0) QiQi...iQ, iQi...,
then the result would be thatt our recursive procedure converges as follows:
D @), i=1,227 51, othat Xs) 22> %

where Y.is a maximum - likelihood estimation of the covariance matrix in respect to
the training sample ad [i.(s), 1=1, 2.

For now we have no prove about the above statement, although it seems that it
would hold in the practice.

As a result of the proposed non-pararetric recursive estimation we find two
multivariate normal distributions N, 2), 1 =1, 2, that in accordance with the Bayes
discriminant rule will allocate one dbservation to the group with greatest posterior
probabi Ity and this al location will coincide with the allocattion of the conventional
MIP-formullation of the linear classifier’s construction (D-(2)-

Let us have more than one sollutiion optimal from the classification point of view.
Then we willl decide the respective gptimization problem (fomulations I, 11 or 111) for
each of them and willl choose the solution with minimum values of the divergence
criterionQ.

V1. Conclusion

In this paper we show thatt any linear classifier coulld be consiidered within the Bayes
decision theoretic approach framenork. We will carry out our consideration about the
mixed integer prograrming besed linear classifier since this is the onlly classifier that
directly minimizes the nurber of misclassification ad it is the best classifier if the
criterion is the minimum of the training set misclassification error rate. Honever we
would like to stress again thatt our consideration is valid for any linear classifier.

e consider the two-group mixed integer based classification and show its con-
nection with the Bayes decision theoretic approach. The converttional MIP-formulla-
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tion of tre lirear classifier’s construction minimizes the overall misclassification er-
ror. This is a NP-hard gptimization task which result is a set of infinite nunber of
optimal from mathematiical point of view solutions that differ in some value(s) of the
classification function’s parareter(s) - All of them assign each training set dbservation
iNto one and same growp.  In other words we have a consistent system from n inequali-
ties (h - the number of the training set dbservations) . e assune that the two groups
have multivariate normal distribution with common covariance matrix - the class of
optimal (Bayes) classification rules in this case is based on the linear discriminant
function. Three gptimization formulations, based on the minimization of the diver-
gence crirterion under given constrains are proposed. Two of the formulations are non-
linear gptimization problems, whille the last recursive formulation is a task of qua-
dratic mathematical programing (quadratic object and linear constrains). As a re-
sult of the proposed nonHpararetric estimation we find two multivariate normal distri-
butions that in accordance with the Bayes discriminant rule will allocate one doserva-
tion to the group with greatest posterior probebi lity and this al location will coincide
with the allocation of the coverttional MIP-formullation of the linear classifier’s co-
structaon.
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MaTemaTrdeckoe NPOTPaMMMPOBAHME C TOUKM 3PeHMA BalleCOBCKOM
TeopVM MNPUHATUS PElleHM B CJlydae KJIaCCHMOMKAIMM IBYX KJIACCOB

Orusgu Acriapyxos', IInamen MaTees’

YlenTp 6GMoMmemmpHCKOIT KMbepHeTHry, 1113 Cous

2YrcTuTyTe MaTeMaTuru u mEGopMaTuiy, 1113 Copus

(PesoMme)

CTaTbsa OTHOCUTCS K OBJIaCTU METOIOB K.HaCCM@MKaLUA]/I, M3BECTHOM Kak AVCKPM—
MMHAHTHBI aHAJIAS . ABTOpaMM ChoeJjiaHa IIOIBITKa IIokazsaTb, 4To “HeTpa,IU/H_I.MOHHbIe
Me‘I‘O,JIbI", TaKMe KaK MeTOl CMEUaHHOI'O LIEJIOWMCJIEHHOTI'O INPOoI'paMMVPOBaHMA,
MOTYy'T OBITh IIPMIBEIIEHEL K Tpa,J:U/H_I.MOHHOﬁ BareCcoBCKOM MOCTaHOBKE TPV M3BECTHBIX
TIPEeOIIOJIOXKEHMAX O CTaTMCTMKO—BepOHTHOCTHOIZ CTPYKTYPE 3aadl. BromuTcsa
OoInpelneJiIeHME Pa3JIMYHBIX OIITVMMAaJIbHBIX pellammX @yHKLU/H/I, OCHOBEIBaAKeCc4d
Ha BUIe oumOOK. BeBOIMTCH KpMTepMIZ MVHVIMMSBaliMI M OIVICEIBAETCHA COOTBETCTBY—
nad MTepalViOHHaAd Inpouenypa.
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