BBIITAPCKA AKAJEMMA HA HAYKUTE . BULGARIAN ACADEMY OF SCIENCES

NPOBJIEMM HA TEXHMUECKATA KMBEPHETMKA U POBOTMKATA, 51
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 51

Codmsa . 2001 . Sofia

On the ““Greedy’” Algorithm

Krassimir Penev*, Petar Petrov~*

*Academy for the Advancement of Science and Technology, USA
**Senior System Analyst, USA

Introduction

Borm on the periphery of the Mathematical Science, today the carbinatorics blooms
as one of the most rapidly developing branches of Mathematics. A testinony to that is
not onlly the enormous number of scientific publications on it but also the increasing
interest of physicists, denists, biolagists ad egineers 1o the goplications of various
corbinatorial structures. New and new problems of the Applied Mathematics are not
only a ponerful incertive to look for concrete solutions but also to form specific meth-
ods ad results. Particularly close is the relationship between Corbinatorics and Can-
puter Science and Information Technologies — probably closer than any other branch
of Mathematics. It is important to note that the gpplications of the Information Tech-
nologies should be based on solid combinatorial knowvledge.

This article is about a couple of applications of one of the most natural and
effective conbinatorial algoritims — the so-called “‘greedy’” algoritim. The examples
are intentional ly pided fran different fields on order to underlire its universal math-
ematical significance. Solving these problens is in fact a proof for the correctness of
algoritimic procedures, which leads to the practical application of the greedy algo-
rithm as a method for solving corbinatorial problems as well as ameans of exploring
corbinatorial problems with camputer programs.

Egyptian Fractions

The ancient Egyptian papyri tell us sanething interesting. To perform operations on
proper fractions, the Egyptians would represent them as a sum of fractions with a
nurerator of one and different denominators. For example

5 Problems of Engineering Cybermetics and Robotics, 51 6 5

3 1 1 1
— = =+ =+ -
7 3 n 23

That is why the fractions of /n, =2, 3, ..., have been attracting the mathema-
ticians” atterntion ever since those early days. For the historical tradition these frac-
tions are called Egyptian.

Can any proper fraction be represented as a sum of Egyptian fractions with dif-
ferent denominators, though? Led by practical purposes the Egyptian mathematics
did not tackle such a question. Not until many certuries after the golden Egyptian age,
in 1202, did saneone solve this problem. That was Leonardo of Pisa, better known as
Fibonaci . Although this probllem has many solutions, here we consider the earliest
only — Leonardo’s proof. Most probebly it is the first nontrivial goplication of the
greedy algoritim.

Prablem 1. Prove that every rational nurber a/b from the interval (0, 1) canbe
represented as a sum of different Egyptian fractions, i-e. as a sum of the folloving kind

1 1 1
(€)) — 0+ ——+ .+,

G G G
werec, C,..., C aredifferent positive Integers.

Solution. Let a/b be a proper fraction. We will apply induction with respect to
the numerator a. If a=1, a/b itself is an Egyptian fraction and the assertion is true.
Suppose that every proper fraction whose nurerator is less than a can be represernted
as a sum of different Egyptian fractions. Since a/b €(0, 1) , there exists a unique
natural nurber n >2, so that

1 1 1
() —— <,
n b n-1

It is clear that 1/ is the biggest Egyptian fraction sraller then or equal to a/b.
This is the step where the greedy algorithm comes into play.

Consider the difference

<) - = :
b n bn

Inequalities (2) are equivalent 1o 0 < an - b< a, hence (an — b)/bn is a proper
fraction with a numerator sraller than a. According to the inductive assurption It can
be represented in the form of (1) with different denominatorsc, G,, ... -, G, Since

a 1 an-b n

—— = =2 1/c,,
b n bn i=1
then
a 1 1 1 1
— = — 4+ —+ ——+ .+,
b n o} o} C,

and hence a/b. 1S represented as a sun of Egyptian fractions. It remains to prove that
n isdifferent franc, C,,-.-, ¢ . Indeed, fronO<an-b< aanda/b <1, we have

6 6

Thus the fraction (an-b)/n is less than 1/n and so is each of the fractions 1/c,
which conpletes the induction. !
Formally speaking the proof uses induction and no algoritim seems to be in-
wvolved. This only a matter of presentation, though. The above solution leads to the
effective prooedure for representing a/b as a sum of different Egyptian fractions. The
main thing in it is that at each step we subtract from the fraction the greatest possible
Egyptian fraction. The inductive proof is nothing but the proof for the correctness of
the algoritim.
On the other hand the above mertioned greatest possible Egyptian fraction is
readily determined. Inequalities
1 1 1
- S _— < ———
n b n-1

are equinalent to n<h/a<n -1, and thus n is the smallest integer greater than or equal
to a/b. Instead of the Tormal procedure description here is a program, which repre-
sents a proper fraction as a sum of Egyptian fractions.

Al programs were written using Microsoft Visual Basic for Applications because
of its popularity and availability. They can be executed under the standard Microsoft
Visual Basic, as well as under each of products included in Microsoft Office. We skip
the error handling in order to minimize the text of the programs.

Option Bplicit
Option Base 1
Dim a As Double “The nurerator
Dim b As Double “The denominator
Dim aNs() As Double “The array for the denominators
“of the Egyptian Aractions

Dim lArrayDim As Long “The dimension of aNsQ)
Sub EgiptQ

Dim 1 As Long

Dim sPrint As String

IArrayDim = O

“Pick the randam proper fraction

Call RandomFraction

“Prepare the result for output

sPrint=a&*“/”&b&*“=*

“While the nurerator is greater than 1
Do Whilea>1

Call FindFraction
Loop

“Output the result
IT 1ArrayDim > O Then
For 1 =1 To IArrayDim
SPrint = sPrint & “1/” & Int(@\s(1)) & *“ +

6 7

Next i
Ed If
SPrint=sPrint &a &*“/’ &b
Debug.Print sPrint
End Sub

“A function that calcullates the next Egyptian fraction
“and writes its denominator in the array NsQ
Sub FindFraction()

Dim n As Double

If(b/a)=Int(b/a) Then
“If the fraction a/b has the nurerator equals to 1
b=b\a: a=1
Exit Sub

Else
“Calculate n fron n >=b/a>n-1
n=Int(b/a)+1

Ed If

“Write n in the array with the resulits
1ArrayDim = IArrayDim + 1
ReDim Preserve aNs(1ArrayDim)
aNs(lArrayDim) = n

“Calculate the nurerator and the denominator
“of the new fraction a/b, which isequal to a/b - I/n
a=za*n-b: b=b*n

End Sub

“Cererating the proper fraction
“with a denominator between 2 and 1000
Sub RandomFraction(Q)

Const LowerBound = 2

Const UpperBound = 1000

Randomize
b = Int((UpperBound - LowerBound + 1) * Rnd + LowerBound)
a = Int((b - LowerBound + 1) * Rnd + LowerBound)

End Sub

Sample output:

58/229 = 1/4 + 1/306 + 1/140148 17/47 = 1/3 + 1/36 + 1/1692
13/25=1/2 + 1/50 39/46 = 1/2 + 1/3 + 1/69
151/324 = 1/3 + 1/8 + 1/130 + 1/42120 121/252 = 1/3 + 1/7 + 1/252
67/91 =1/2 + 1/5 + 1/28 + 1/1820 67/340 = 1/6 + 1/33 + 1/11220

A Problem in Combinatorial Geometry

Here is a problem in which neither the idea of using the greedy algoritim nor the
proof of the correctness of the procedure is oovious.

6 8

Probllem 2. Consider two sets of line segrents as folloas: the segrents in the
First set are colored in blue where as the segrents in the second are colored in red.
The total length of the segrents of each color is 1. Find the smallest possible line
segment on which all given segrents can be placed so that every two segrents of the
same color have no points in common except passibly for their endpoints, and every
‘two segrents of different colors erther have no points in cammon or one contains the
otter.

Solution. This prablem is significantly harder. To figure out the ansier firstwe
oconsider two simple sets of red and blue segrents. The first one consists of two red
segrents of length 1/2 and the second one consists of two bllue segrents of lengths ¢
and 1-¢, where ¢ is a positive nurber less than 1/2. The “big” blue segrent, that of
length 1-¢, can not accammodate the two red. That is why we have to place the big
blue and orne red segrent next to each other. Thus in this case the smallest segrent
satisfying the conditions is of length (1-¢)+1/2 = 3/2—¢. Since this reasoning holds
for every, the smallest segrent satisfying all cases is of legth> 3/2.

The nontrivial part of the problem is 1o prove that any system of red and blue
segrents can be placed on a segrent of length 3/2. First we willl describe an algorith-
mic procedure for arranging the segrents, which uses the greedy algoritm. Thenwe
will prove the correctness of this procedure.

Let”s consider two sets of blue and red segrents wirth the properties described in
the problem statement and proceed as follows:

1. Pick segrent d of maximum length, which we will call basic from now on.

2. Nowwe start placing on d line segrents of the other color (i.e. different from
the color of d) so that::

o At each step we pick the longest segment d” of the other color, which has not
been placed yet.

o The first picked segrent d” is placed so that 1ts left endpoint coincides with
that of d, and the left endpoint of any next picked segrent d* coincides with the right
endpoint of the previous ore.

¢ e stop placing segments when the next picked segment — the longest not
placed yet of color different from that of d— can not be accamodated entirely on d.

We repeat the same procedure with the rest of red and blue segments until they
are all placed. Oleveryrepetitimcfsteplmeplaoeﬁembasicsegrentsoﬁatiis
left endpoint coincides with the right endpoint of the previous basic

From the description of this algoritim it is clear that we follow the ruleafihe
problem statement that every two segrents of the same color have no points in com-
mon except possibly for their endpoints, and every o segrents of different colors
either do not have points In comon or one cotains the other. It is far from dovious
though that the so placed segrents are entirely accomodated in segrent 1 of length
lessttenoreqal t03/2 .

Wirthoutt loss of gereral ity suppose that the last placed basic segrernt is blue. e
can consicer 1 as the union of alll blue segrents and of the "“free’” parts of all besic red
segrents. By the free part of a red basic segrent we understand its part which is not
covered with blue segrents. The total length of all bllue segrents is 1. It remains to
prove that the total length of the free parts of the basic red segrents is less than or
aqal tl/? .

Consider any red basic segrent r. We can say that on r there is at least one
placed blue segrent b- the next in order of length after r among the bllue segrents
not placed yet. We see this by noting that If this were not true, after placing r, we
would have red segrents only, thus the last basic segrent would be red which is not
true. Then the availability of free part T on r means that the next in order of length blue

69

segrent c was longer than F. There exists such a blue segrent because the last basic
segrent is blue. But our picking of consecutive segrents follows the greedy algo-
rithm: at each step the longest possible segrent is chosen. Hence the bllue segrent c,
which was not accomrmodated in the free part T, is not longer than the already placed
blue segrent b. That is why the free part T is not bigger in length then ¢, and it follons
that the noncovered (with blue) part of the red basic segrent r is not longer then iIts
ocovered part.

Then the total of the lengths of all free parts of the red basic segrents is not
bigger than 1/2 of the total length of the redlbasic segments and thus — 1/2 of the total
length of all red segrents, which is 1. The proof of the correctness of the procedure iIs
conplete. Followving is the practical application of this procedure as a program. e
skip the text of the program that generates a sorted array with the sum of Its elerents
equal to 1 — GenSegrents, because it is outside the subject of this article.

Option Bplicit
Option Base 1

Const ic RED =1
Const ic BLUE = 2

Sub Segrents()
Dim i As Long
Dim iColor As Integer

“Arrays for the red and blue segrents

Dim sngRed() As Single, sngBlue() As Single
“Indexes in the red and bllue arrays

Dim IRedIndex As Long, IBluelndex As Long

“Arrays for the current and altermative segrents
Dim sngCurr() As Single, sngOpp() As Single
“Indexes in the current and altermative arrays
Dim ICurrindex As Long, 10ppIndex As Long

“The length of the resultant segrent
Dim sngResult As Single

“Cenerating the sorted red and blue arrays
sngRed = GenSegments: sngBlue = GenSegments

“Cutput of both arrays
Dim sRed As String, sBlue As String

Debug.Print: Debug-Print “Red:”, “Blue:™
For i =1 To 11Tf(UBound(sngRed) > UBound(sngBlue), UBound(snhgRed),

UBound(sngBlue))
IT 1 > UBound(sngRed) Then sRed = ““” Else sRed = Format(sngRed(i),
“0.0000")
IT 1 > UBound(sngBlue) Then sBllue = ““” Else sBlue = Format(sngBlue(i),
“0.0000")
Debug.Print sRed, sBlue
Next i

70

Then

Debug -Print “Basic:, “Arranged:”
sngResult = O#
IRedIndex = 1: IBluelndex = 1

“Pick the array with the longest segrent
IT sngRed(IRedIndex) > sngBlue(IBluelndex) Then
iColor = ic RED

“Set the aurrent and altermative values
sngCurr = sngRed: 1Currindex = IRedIndex
sngOpp = sngBlue: 10ppIndex = IBluelndex

Else
iColor = ic BLUE

“Set the aurrent and altermative values
sngCurr = sngBlue: 1Currindex = IBluelndex
sngOpp = sngRed: 10ppIndex = IRedIndex

Bd IT

“An infinite loop
Do While True
“Add the next in order of length segrent to the result
sngResult = sngResult + sngCurr(ICurrindex)
Debug - Print Format(sngCurr(ICurrindex), 0.0000") & _
1If(Color = ic R, “r”, “bB”)

“Placing of the altermative segrents on the basic segrent

IT Not: CoverSegrent(sngCurr() , sngOpp(), 1ICurrindex, 10ppIndex, iColor)

“EXIT the infinite loop
Bxit Do
BEd IT

“Go o the next segrent
ICurrindex = ICurrindex + 1

“IF there is no segrents in the current array —
“EXIT the infinite loop
IT 1Currindex > UBound(sngCurr) Then Exit Do

“Change the collor i It IS necessary
IT sngOpp(10ppIndex) > sngCurr(ICurrindex) Then
Select Case iColor
Case ic_RED
“Reset the Indexes
IRedIndex = ICurrindex: IBluelndex = 10ppIndex

“Set the aurrent and altermative values
iColor = ic BLUE
sngCurr = sngBlue: ICurrindex = 1Bluelndex
sngOpp = sngRed: 10ppIndex = IRedIndex

71

7 2

Case ic BLUE
“Reset the Indexes
IBluelndex = ICurrindex: IRedIndex = 10ppIndex

“Set the aurrent and altermative values
iColor = ic RED
sngCurr = sngRed: ICurrindex = IRedIndex
sngOpp = sngBlue: 10ppIndex = IBluelndex
Bd Select
Bd IF
Loop

“Add the segrents not placed yet if there are any
For i1 = ICurrindex + 1 To UBound(sngCurr)
sngResult = sngResult + sngCurr (i)
Debug-Print Format(sngCurr (i), “0.0000") &
1If(Color = ic R, “r”, “b”)
Next i
For i = 10ppIndex To UBound(sngOpp)
sngResult = sngResult + sngOpp(i)
Debug -Print Format(sngOpp(i), “0.0000) &
1If(Color = ic R, “r”, “bB”)
Next i
“Output the result
Debug-Print “Result:"’: Debug-Print Format(sngResult, “0.0000)
End Sub

“A function for placing of segrents on the basic segrent

Public Function CoverSegrent(sngCurr() As Single, sngOpp(Q As Single,

ICurrindex As Long, 10ppIndex As Long, _
iColor As Integer) As Boolean
Dim sngRest As Single

“The difference between the lengths of basic segrent and
“the placed on It segrents of altermative color
sngRest = sngCurr(ICurrindex)

“Bxit function if there are no segrents in the altermative array
IT 10ppIndex > UBound(sngOpp) Then
CoverSegrent = False
Bxit Function
Ed IT

“While the length of the noncovered part is greater than
“the length of the next segrent of altermative color
Do While sngRest >= sngOpp(10ppIndex)
“The length of the noncovered part
sngRest = sngRest - sngOpp(10ppIndex)
Debug-Print , Format(sngOpp(I0ppIndex), “0.0000") &
1Hf(Color = ic RD, “b”, “r”)

“Go to the next segrent
10ppIndex = 10ppIndex + 1

“Bxit function If there are no segrents in the altermative array
IT 10ppIndex > UBound(sngOpp) Then
CoverSegment = False
Bxit Function
End I
Loop

CoverSegment = True
End Function

Sample Output:
Red: Blue:
0-4636 0.3458
0.4486 0.2168
0.0476 0.2132
0.0402 0.1966

Basic: Arranged:
0.4636r 0.3458Db
0.4486r 0.2168b

0.2132b
0.19%6b 0.0476r

0.0188 0.1966 b 0.0476 r

0.0088 0.042 r

0.042 r
Result: 0.0188 b
1.1364 0.0088 b

References

1.Honsberger, R. Mathematical Gems 11, Vol. 2. Mathematical Association of Arerica, 1976.
2.Honsberger, R. Mathematical Gars 111, Vol. 9. Mathematical Association of Arerica, 1985.
3. Knut h, D. The Art of Cotputer Programming, Vol. 1-3. Addisorn-\Wesley, 1999.
4_.Riordan, J. Introduction to Carbinatorial Amalysis, New York, Wiley, 1998.

O Greedy anropmuTMe

Kpacummp IleHeB, [leTap IleTpoB

Academy for the Advancement of Science and Technollogy, USA
**Senior System Analyst, USA

(PesoMe)

CTaTba C HAy4YHO-TIPWJIOXHEM X3PaKTEPOM M MCCIIeNyeT CaMble INPMMEHEHMA Greedy
aJjropuTMa Kak MeTOl PelleHMS KOMOMHATOPHEIX NpobJjeM. lIlpencTabiieHH
pelleHrs OByX 3amad. OmHa M3 HMX NPEeOCTaBIIAeT PaLMOHAIbHEE WICTA [TPM TTOMOLM
Ermnerckmux OpoO, a Opyras — IJId appaHXMPOBKM OTPE3KOB. PelleHMsa 3amad
ABJIAITCA OOKa3aTeJIbCTBOM KOPPEKTHOCTMU NPEeNJIOKEHHEIX aJIlOPUTMMUECKMX

TIPOLIETTYP .«

7 3

