
6 5

On the “Greedy” Algorithm

Krassimir Penev*, Petar Petrov**

*Academy for the Advancement of Science and Technology, USA
**Senior System Analyst, USA

Introduction

Born on the periphery of the Mathematical Science, today the combinatorics blooms
as one of the most rapidly developing branches of Mathematics. A testimony to that is
not only the enormous number of scientific publications on it but also the increasing
interest of physicists, chemists, biologists and engineers to the applications of various
combinatorial structures. New and new problems of the Applied Mathematics are not
only a powerful incentive to look for concrete solutions but also to form specific meth-
ods and results. Particularly close is the relationship between Combinatorics and Com-
puter Science and Information Technologies probably closer than any other branch
of Mathematics. It is important to note that the applications of the Information Tech-
nologies should be based on solid combinatorial knowledge.

This article is about a couple of applications of one of the most natural and
effective combinatorial algorithms  the so-called “greedy” algorithm. The examples
are intentionally picked from different fields on order to underline its universal math-
ematical significance. Solving these problems is in fact a proof for the correctness of
algorithmic procedures, which leads to the practical application of the greedy algo-
rithm as a method for solving combinatorial problems as well as a means of exploring
combinatorial problems with computer programs.

Egyptian Fractions

The ancient Egyptian papyri tell us something interesting. To perform operations on
proper fractions, the Egyptians would represent them as a sum of fractions with a
numerator of one and different denominators. For example

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ  .  BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ  НА ТЕХНИЧЕСКАТА  КИБЕРНЕТИКА  И  РОБОТИКАТА, 51
PROBLEMS OF ENGINEERING  CYBERNETICS AND ROBOTICS, 51

София  .  2001  .  Sofia

5  Problems of Engineering Cybernetics and Robotics, 51



6 6

        3    1       1     1
    

        7    3  11    231

That is why the fractions of 1/n, n= 2, 3, ...,  have been attracting the mathema-
ticians’ attention ever since those early days. For the historical tradition these frac-
tions are called Egyptian.

Can any proper fraction be represented as a sum of Egyptian fractions with dif-
ferent denominators, though? Led by practical purposes the Egyptian mathematics
did not tackle such a question. Not until many centuries after the golden Egyptian age,
in 1202, did someone solve this problem. That was Leonardo of Pisa, better known as
Fibonaci. Although this problem has many solutions, here we consider the earliest
only  Leonardo’s proof. Most probably it is the first nontrivial application of the
greedy algorithm.

Problem 1. Prove that every rational number a/b from the interval (0, 1) can be
represented as a sum of different Egyptian fractions, i.e. as a sum of the following kind

          1         1          1
(1)    

c1        c2          cn
where c1, c2,..., cn are different positive integers.

Solution. Let a/b be a proper fraction. We will apply induction with respect to
the numerator a. If a=1, a/b itself is an Egyptian fraction and the assertion is true.
Suppose that every proper fraction whose numerator is less than a can be represented
as a sum of different Egyptian fractions. Since a/b (0, 1) , there exists a unique
natural number n 2, so that

 1        1        1
(2)    

 n b    n 1
It is clear that 1/n is the biggest Egyptian fraction smaller than or equal to a/b.

This is the step where the greedy algorithm comes into play.
Consider the difference

a      1       an  b
(3)    = 

          b       n     bn
Inequalities (2) are equivalent to 0  an  b a, hence (an  b)/bn is a proper

fraction with a numerator smaller than a. According to the inductive assumption it can
be represented in the form of (1) with different denominators c1, c2,..., cn. Since

     a       1       an  b      n
   == ci,

          b      n       bn        i=1
then

a          1           1         1          1
      
bn          c1     c2               cn

and hence a/b. is represented as a sum of Egyptian fractions. It remains to prove that
n is different from c1, c2,..., cn. Indeed, from 0 an  b a and a/b < 1, we have

 an  b      a      1   1
< < 1 = 
    bn      bn       n   n



6 7

Thus the fraction (an b)/bn is less than 1/n and so is each of the fractions 1/c
i
,

which completes the induction.
Formally speaking the proof uses induction and no algorithm seems to be in-

volved. This only a matter of presentation, though. The above solution leads to the
effective procedure for representing a/b as a sum of different Egyptian fractions. The
main thing in it is that at each step we subtract from the fraction the greatest possible
Egyptian fraction. The inductive proof is nothing but the proof for the correctness of
the algorithm.

On the other hand the above mentioned greatest possible Egyptian fraction  is
readily determined. Inequalities

 1        1        1
   

  n b    n 1

are equivalent to nb/an 1, and thus n is the smallest integer greater than or equal
to a/b. Instead of the formal procedure description here is a program, which repre-
sents a proper fraction as a sum of Egyptian fractions.

All programs were written using Microsoft Visual Basic for Applications because
of its popularity and availability. They can be executed under the standard Microsoft
Visual Basic, as well as under each of products included in Microsoft Office. We skip
the error handling in order to minimize the text of the programs.

Option Explicit
Option Base 1

Dim a As Double ‘The numerator
Dim b As Double ‘The denominator
Dim aNs() As Double ‘The array for the denominators

‘of the Egyptian Fractions
Dim lArrayDim As Long  ‘The dimension of aNs()

Sub Egipt()
    Dim i As Long
    Dim sPrint As String

    lArrayDim = 0

    ‘Pick the random proper fraction
    Call RandomFraction

    ‘Prepare the result for output
    sPrint = a & “/” & b & “ = “

    ‘While the numerator is greater than 1
    Do While a > 1
        Call FindFraction
    Loop

    ‘Output the result
    If lArrayDim > 0 Then
        For i = 1 To lArrayDim
            sPrint = sPrint & “1/” & Int(aNs(i)) & “ + “



6 8

        Next i
    End If
    sPrint = sPrint & a & “/” & b
    Debug.Print sPrint
End Sub

‘A function that calculates the next Egyptian fraction
‘and writes its denominator in the array sNs()
Sub FindFraction()
    Dim n As Double

    If (b / a) = Int(b / a) Then
        ‘If the fraction a/b has the numerator equals to 1
        b = b \ a:   a = 1
        Exit Sub
    Else
        ‘Calculate n from n >= b/a > n-1
        n = Int(b / a) + 1
    End If

    ‘Write n in the array with the results
    lArrayDim = lArrayDim + 1
    ReDim Preserve aNs(lArrayDim)
    aNs(lArrayDim) = n

    ‘Calculate the numerator and the denominator
    ‘of the new fraction a/b, which is equal to a/b - 1/n
    a = a * n - b:   b = b * n
End Sub

‘Generating the proper fraction
‘with a denominator between 2 and 1000
Sub RandomFraction()
    Const LowerBound = 2
    Const UpperBound = 1000

    Randomize
    b = Int((UpperBound - LowerBound + 1) * Rnd + LowerBound)
    a = Int((b - LowerBound + 1) * Rnd + LowerBound)
End Sub

Sample output:
58/229 = 1/4 + 1/306 + 1/140148 17/47 = 1/3 + 1/36 + 1/1692
13/25 = 1/2 + 1/50 39/46 = 1/2 + 1/3 + 1/69
151/324 = 1/3 + 1/8 + 1/130 + 1/42120     121/252 = 1/3 + 1/7 + 1/252
67/91 = 1/2 + 1/5 + 1/28 + 1/1820 67/340 = 1/6 + 1/33 + 1/11220

A Problem in Combinatorial Geometry

Here is a problem in which neither the idea of using the greedy algorithm nor the
proof of the correctness of the procedure is obvious.



6 9

Problem 2. Consider two sets of line segments as follows: the segments in the
first set are colored in blue where as the segments in the second are colored in red.
The total length of the segments of each color is 1. Find the smallest possible line
segment on which all given segments can be placed so that every two segments of the
same color have no points in common except possibly for their endpoints, and every
two segments of different colors either have no points in common or one contains the
other.

Solution. This problem is significantly harder. To figure out the answer first we
consider two simple sets of red and blue segments. The first one consists of two red
segments of length 1/2 and the second one consists of two blue segments of lengths 
and 1, where  is a positive number less than 1/2. The “big” blue segment, that of
length 1, can not accommodate the two red. That is why we have to place the big
blue and one red segment next to each other. Thus in this case the smallest segment
satisfying the conditions is of length (1)+1/2 = 3/2. Since this reasoning holds
for every, the smallest segment satisfying all cases is of length  3/2.

The nontrivial part of the problem is to prove that any system of red and blue
segments can be placed on a segment of length 3/2. First we will describe an algorith-
mic procedure for arranging the segments, which uses the greedy algorithm. Then we
will prove the correctness of this procedure.

Let’s consider two sets of blue and red segments with the properties described in
the problem statement and proceed as follows:

1. Pick segment d of maximum length, which we will call basic from now on.
2. Now we start placing on d line segments of the other color (i.e. different from

the color of d) so that:
 At each step we pick the longest segment d' of the other color, which has not

been placed yet.
 The first picked segment d' is placed so that its left endpoint coincides with

that of d, and the left endpoint of any next picked segment d' coincides with the right
endpoint of the previous one.

 We stop placing segments when the next picked segment  the longest not
placed yet of color different from that of d can not be accommodated entirely on d.

We repeat the same procedure with the rest of red and blue segments until they
are all placed. On every repetition of step 1 we place the next basic segment so that its
left endpoint coincides with the right endpoint of the previous basic segment.

From the description of this algorithm it is clear that we follow the rule of the
problem statement that every two segments of the same color have no points in com-
mon except possibly for their endpoints, and every two segments of different colors
either do not have points in common or one contains the other. It is far from obvious
though that the so placed segments are entirely accommodated in segment l of length
less than or equal to 3/2 .

Without loss of generality suppose that the last placed basic segment is blue. We
can consider l as the union of all blue segments and of the "free" parts of all basic red
segments. By the free part of a red basic segment we understand its part which is not
covered with blue segments. The total length of all blue segments is 1. It remains to
prove that the total length of the free parts of the basic red segments is less than or
equal to 1/2 .

Consider any red basic segment r. We can say that on r there is at least one
placed blue segment b the next in order of length after r among the blue segments
not placed yet. We see this by noting that if this were not true, after placing r, we
would have red segments only, thus the last basic segment would be red which is not
true. Then the availability of free part f on r means that the next in order of length blue



7 0

segment c was longer than f. There exists such a blue segment because the last basic
segment is blue. But our picking of consecutive segments follows the greedy algo-
rithm: at each step the longest possible segment is chosen. Hence the blue segment c,
which was not accommodated in the free part f, is not longer than the already placed
blue segment b. That is why the free part f is not bigger in length than c, and it follows
that the noncovered (with blue) part of the red basic segment r is not longer than its
covered part.

Then the total of the lengths of all free parts of the red basic segments is not
bigger than 1/2 of the total length of the red basic segments and thus ­ 1/2 of the total
length of all red segments, which is 1. The proof of the correctness of the procedure is
complete. Following is the practical application of this procedure as a program. We
skip the text of the program that generates a sorted array with the sum of its elements
equal to 1 ­ GenSegments, because it is outside the subject of this article.

Option Explicit
Option Base 1

Const ic_RED = 1
Const ic_BLUE = 2

Sub Segments()
    Dim i As Long
    Dim iColor As Integer

    ‘Arrays for the red and blue segments
    Dim sngRed() As Single, sngBlue() As Single
    ‘Indexes in the red and blue arrays
    Dim lRedIndex As Long, lBlueIndex As Long

    ‘Arrays for the current and alternative segments
    Dim sngCurr() As Single, sngOpp() As Single
    ‘Indexes in the current and alternative arrays
    Dim lCurrIndex As Long, lOppIndex As Long

    ‘The length of the resultant segment
    Dim sngResult As Single

    ‘Generating the sorted red and blue arrays
    sngRed = GenSegments:  sngBlue = GenSegments

    ‘Output of both arrays
    Dim sRed As String, sBlue As String

    Debug.Print: Debug.Print “Red:”, “Blue:”
    For i = 1 To IIf(UBound(sngRed) > UBound(sngBlue), UBound(sngRed),

UBound(sngBlue))
        If i > UBound(sngRed) Then sRed = “” Else sRed = Format(sngRed(i),

“0.0000”)
        If i > UBound(sngBlue) Then sBlue = “” Else sBlue = Format(sngBlue(i),

“0.0000”)

        Debug.Print sRed, sBlue
    Next i



7 1

    Debug.Print “Basic:”, “Arranged:”
    sngResult = 0#
    lRedIndex = 1: lBlueIndex = 1

    ‘Pick the array with the longest segment
    If sngRed(lRedIndex) > sngBlue(lBlueIndex) Then
        iColor = ic_RED

        ‘Set the current and alternative values
        sngCurr = sngRed:  lCurrIndex = lRedIndex
        sngOpp = sngBlue:  lOppIndex = lBlueIndex
    Else
        iColor = ic_BLUE

        ‘Set the current and alternative values
        sngCurr = sngBlue: lCurrIndex = lBlueIndex
        sngOpp = sngRed:   lOppIndex = lRedIndex
    End If

    ‘An infinite loop
    Do While True
        ‘Add the next in order of length segment to the result
        sngResult = sngResult + sngCurr(lCurrIndex)
        Debug.Print Format(sngCurr(lCurrIndex), “0.0000”) & _
                    IIf(iColor = ic_RED, “ r”, “ b”)

        ‘Placing of the alternative segments on the basic segment
        If Not CoverSegment(sngCurr(), sngOpp(), lCurrIndex, lOppIndex, iColor)

Then
            ‘EXIT the infinite loop
            Exit Do
        End If

        ‘Go to the next segment
        lCurrIndex = lCurrIndex + 1

        ‘If there is no segments in the current array –
        ‘EXIT the infinite loop
        If lCurrIndex > UBound(sngCurr) Then  Exit Do

        ‘Change the color if it is necessary
        If sngOpp(lOppIndex) > sngCurr(lCurrIndex) Then
            Select Case iColor
            Case ic_RED
                ‘Reset the indexes
                lRedIndex = lCurrIndex: lBlueIndex = lOppIndex

                ‘Set the current and alternative values
                iColor = ic_BLUE
                sngCurr = sngBlue: lCurrIndex = lBlueIndex
                sngOpp = sngRed:   lOppIndex = lRedIndex



7 2

            Case ic_BLUE
                ‘Reset the indexes
                lBlueIndex = lCurrIndex: lRedIndex = lOppIndex

                ‘Set the current and alternative values
                iColor = ic_RED
                sngCurr = sngRed:  lCurrIndex = lRedIndex
                sngOpp = sngBlue:  lOppIndex = lBlueIndex
            End Select
        End If
    Loop

    ‘Add the segments not placed yet if there are any
    For i = lCurrIndex + 1 To UBound(sngCurr)
        sngResult = sngResult + sngCurr(i)
        Debug.Print Format(sngCurr(i), “0.0000”) & _
                    IIf(iColor = ic_RED, “ r”, “ b”)
    Next i
    For i = lOppIndex To UBound(sngOpp)
        sngResult = sngResult + sngOpp(i)
        Debug.Print Format(sngOpp(i), “0.0000”) & _
                    IIf(iColor = ic_RED, “ r”, “ b”)
    Next i

    ‘Output the result
    Debug.Print “Result:”:  Debug.Print Format(sngResult, “0.0000”)
End Sub

‘A function for placing of segments on the basic segment
Public Function CoverSegment(sngCurr() As Single, sngOpp() As Single, _
                             lCurrIndex As Long, lOppIndex As Long, _
                             iColor As Integer) As Boolean
    Dim sngRest As Single

    ‘The difference between the lengths of basic segment and
    ‘the placed on it segments of alternative color
    sngRest = sngCurr(lCurrIndex)

    ‘Exit function if there are no segments in the alternative array
    If lOppIndex > UBound(sngOpp) Then
        CoverSegment = False
        Exit Function
    End If

    ‘While the length of the noncovered part is greater than
    ‘the length of the next segment of alternative color
    Do While sngRest >= sngOpp(lOppIndex)
        ‘The length of the noncovered part
        sngRest = sngRest - sngOpp(lOppIndex)
        Debug.Print , Format(sngOpp(lOppIndex), “0.0000”) & _
                      IIf(iColor = ic_RED, “ b”, “ r”)



7 3

        ‘Go to the next segment
        lOppIndex = lOppIndex + 1

        ‘Exit function if there are no segments in the alternative array
        If lOppIndex > UBound(sngOpp) Then
            CoverSegment = False
            Exit Function
        End If
    Loop

    CoverSegment = True
End Function

Sample Output:
Red:          Blue: |    Basic:        Arranged:
0.4636        0.3458 |    0.4636 r      0.3458 b
0.4486        0.2168 |    0.4486 r      0.2168 b
0.0476        0.2132 | 0.2132 b
0.0402        0.1966 |    0.1966 b      0.0476 r
              0.0188 |    0.1966 b      0.0476 r
              0.0088 | 0.0402 r

| 0.0402 r
Result: |    0.0188 b
1.1364 |    0.0088 b

R e f e r e n c e s

1. H o n s b e r g e r, R. Mathematical Gems II, Vol. 2. Mathematical Association of America, 1976.
2. H o n s b e r g e r, R. Mathematical Gems III, Vol. 9. Mathematical Association of America, 1985.
3. K n u t  h, D. The Art of Computer Programming, Vol. 1-3. Addison-Wesley, 1999.
4. R i o r d a n, J. Introduction to Combinatorial Analysis, New York, Wiley, 1998.

О Greedy алгоритме

Красимир Пенев, Петар Петров

Academy for the Advancement of Science and Technology, USA
**Senior System Analyst, USA

(Р е з ю м е)

Статья с научно­приложным характером и исследует самые применения Greedy
алгоритма как метод решения комбинаторных проблем. Представлены
решения двух задач. Одна из них представляет рациональные числа при помощи
Египетских дроб, а другая  для арранжировки отрезков. Решения задач
являются доказательством корректности предложенных алгоритмических
процедур.


