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1. Introduction

The Neural Network (NN) modelling and application to system identification, predic-
tion and control was discussed for many authors [15]. Mainly, two types of NN
models are used: Feedforward (FFNN) and Recurrent (RNN). The main problem
here is the use of different NN mathematical descriptions and control schemes,
according to the structure of the object model. For example, N a r e n d r a  and
P a r t h a s a r a t h y [1, 2], applied FFNN for system identification and direct
model reference adaptive control of various non-linear objects. They considered four
object models with a given structure and supposed that the order of the object
dynamics is known. Y i p and P a o [3] solved control and prediction problems by
means of a flat-type functional FFNN, used for direct inverse model learning control.
P h a m [4] applied Jordan RNN for robot control. S a s t r y [5] introduced two
types of neurones  Network Neurones and Memory Neurones to solve identification
and adaptive control problems, considering that the object model is also autoregressive
one. In [7], some schemes of NN and RNN applications to control, especially of
direct model reference adaptive control, are surveyed. All drawbacks of the de-
scribed in the literature NN models could be summarised as follows: there exists a
great variety of NN models and a universality is missing [15]; all NN models are
sequential in nature as implemented for systems identification. (The FFNN model
uses one or two tap-delays in the input, [1, 2] and RNN models usually are based on
the autoregressive model [5], which is one-layer sequential one); some of the applied
RNN models are not trainable, others are not trainable in the feedback part [4].
Most of them are dedicated to a SISO and not to a MIMO applications [3]; in more
of the cases, the stability of the RNN is not considered, [4], especially during the
learning; in the case of FFNN application for systems identification, the object is
given in one of the four described in [1] object models, the linear part of the object
model, especially the system order, has to be known and the FFNN approximates

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ  .  BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ  НА ТЕХНИЧЕСКАТА  КИБЕРНЕТИКА  И  РОБОТИКАТА, 51
PROBLEMS OF ENGINEERING  CYBERNETICS AND ROBOTICS, 51

София  .  2001  .  Sofia



5 8

only the non-linear part of the object model [1]; all these NN models are nonparametric
ones [7], and so, not applicable for an indirect adaptive control systems design; all
this NN models does not perform state and parameter estimation in the same
time [7].

The major disadvantage of all this approaches is that the identification NN
model applied is a nonparametric one, that does not permit them to use the obtained
information directly for control systems design objectives. Baruch et all [6], in their
previous paper, applied the state-space approach to describe RNN in an universal
way, defining a Jordan canonical two- or three-layer RNN model, named Recurrent
Trainable Neural Network (RTNN). This NN model is a parametric one, permitting
to use the obtained during the learning parameters for control systems design.
Furthermore, the RTNN model is a system state predictor/estimator, which permits
to use the obtained system states directly for state-space control. The aim of this
paper is to use the RTNN as an identification and state estimation tool in an indirect
adaptive control system of nonlinear objects. The proposed Indirect Neural Adaptive
Control System (INACS) is studied by means of various non-linear, discrete-time
dynamic objects. Three types of object models are suggested: models, non-linear on
their output, state and input. Simulation examples of nonlinear objects, controlled by
the proposed INACS, are given.

2. Systems identification and state estimation using the RTNN model

The existing problem is to identify the discrete-time nonlinear object and simultane-
ously to estimate its states by means of a RTNN. The stable multivariable object under
test is described by the following discrete-time equation:

(1) d(k) = F [d(k1), d(k2),..., u(k1)],

where d(k) is a l-output vector; u(k1) is a m-input vector and F(.) is a smooth single
l-dimensional vector-valued function. The described in [6] discrete-time, two-layer
Jordan canonical RTNN architecture, improved with an additional stability preserv-
ing restriction on the feedback weight matrix of the hidden layer, is given in the form:

(2)     X(k+1)=JX(k)+BU(k), Z(k)=S[X(k)];  Y(k)=S[CZ(k)];  |Ji| < 1,

where the two layer equations of RTNN are separated by semicolon; Y, X, U are
output, state and input vectors with dimensions l, n, m, respectively; J = block-diag(Ji)
is a (nn)-block-diagonal weight matrix; Ji are blocks of J with (11) or (22) dimen-
sions, where the last equation of (2) is a stability condition, imposed on all blocks Ji of
J, which is in fact restriction, imposed on the discrete-time system eigenvalues of the
state matrix J; B and C are (nm) and (ln)- weight matrices; S(x) is a vector-valued
activation function, given as:

(3) S'(inp) = [s(inp1), s(inp2),..., s(inpj), s(inpn)]

Here inp is the input variable of the activation function s(inpj), which is an
element of the vector function S. The activation functions in use are the sigmoid and
the saturation function, given by the equations:

+1,  inp+1,
(4) s(inp) = 1/[1+exp(inp)];  inp=(wixi+wio);    sat(inp) = inp, 0inp+1,

0, inp<0,

where w0, wi0 are trainable weights of the RTNN; S' signifies a vector transpose of S.
The saturation function is used as approximation of the sigmoid function in the
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forward step of learning to improve the RTNN architecture, facilitating its realisation.
The given above RTNN model could be linearised and its dynamic behaviour could
be studied by the first stability law of Liapunov, where the stability condition (2), for
the discrete time state-space model, could be used. Than it is easy to analyse the NN
model controllability, observability and identifiability. From the block structure of B
and C, corresponding to the block structure of J, we can conclude if the RTNN could
be learned or not, [6]. The main advantage of the proposed two layer Jordan Canoni-
cal Form (JCF) RTNN architecture is that the described JCF RTNN model is an
universal hybrid neural model which contains one output FF layer and one recurrent
hidden layer with completely decomposed dynamics, as the matrix J is block-diago-
nal. So, it has a minimum number of parameters and it is completely parallel, as the
Jordan canonical form is parallel with respect to the regressive model, which is a
sequential one. The RTNN architecture is described in state-space form (SISO or
MIMO) and could serve as an nonlinear dynamic identificator and one-step ahead
state predictor/estimator. The RTNN model is non-linear in large and linear in small,
so the matrices J, B, C, obtained as a result of learning, could be used for analytical
design of linear state/output feedback/feedforward control laws. Finally, the RTNN
could solve the optimal control problem itself by means of a NN mapping, [1]. The
obtained RTNN model is a robust model, as the learning method applied for weights
adjustment is a dynamic BP method, which is based on the network sensitivity model,
[1]. It also permits to perform node pruning and weight fixing during the learning,
which permits to obtain the simplest low order dynamic model approximation of the
nonlinear object dynamics.

The identification task could be performed, minimising the instantaneous squared
error between the object and RTNN outputs with respect to the RTNN weights. The
cost function is given in the form:

(5) (k) = (1/2) [ di(k) yi(k)]2; iC,

where di(k)and yi(k) are the desired response (the object output) and the actual
response (the RTNN output) of the output i in the discrete-time moment k, respec-
tively, and the set C includes all l output neurones of the RTNN.

The most common used BP updating rule, applied for the two-layer RTNN ca-
nonical model, [6], is the following:

(6) Wij(k+1)=Wij(k) + Wij(k),

where Wij is a general weight, denoting the ij-th weight element of each weight matrix
(C, J, B) in the RTNN model to be updated; Wij , (Cij, Jij, Bij), is the weight
correction of Wij; h is the learning rate parameter. If there are some oscillations in the
error during the learning, a momentum term can be added in the weight updating rule
(6). One of the following two forms can be used:

(7) Wij(k+1)=Wij(k) + Wij(k) + Wij(k  1),

Wij(k+1)=Wij(k) + (1) Wij(k) + Wij(k 1),

where is a momentum term learning rate parameter. The second equation of (7)
establishes some inverse dependence between the learning parameters of the first and
second updating terms. The weight corrections of the updated matrices in the dis-
crete-time RTNN model, described by equations (1), (2), are performed using the
following weight update equations:

For the output layer
(8) Cij(k) = [Tj(k)Yj(k)] Yj(k) [1Yj(k)] Zi(k),
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where Cij is the weight correction of the ij-th elements of the (ln) learned  matrix C;
Tj is a j-th element of the target vector; Yj is a j-th element of the output vector; Zi is an
i-th element of the output vector of the hidden layer.

For the hidden layer

(9)Bij(k)= RUi(k); Jij(k)= R Xi(k1); R = Ci(k) [T(k)Y(k)] Zj(k)[1Zj(k)],

where Bij is the weight correction of the ij-th elements of the (mn) learned matrix
B; Ci is a row vector of dimension (1 l), taken from the transposed matrix C';
[TY] is a (l x1) output error vector, through which the error is back-propagated to
the hidden layer; Ui is an i-th element of the input vector U; Xi is an i-th element of
the vector X; Jij is the weight correction of the ij -th elements of the (n n) block-
diagonal matrix J under learning; R is an auxiliary variable. The applicability of the
RTNN model for system identification, prediction  and control is illustrated by an
appropriate example of nonlinear dynamic system.

3. Indirect adaptive neural control system design

In [8], two FFNNs are used for self-tuning of PID control system. The first NN is used
for object identification and an input error estimation and the second one is used to
tune the PID controller parameters. The great complexity of this control scheme is
evident. In this paper we propose to use all information that gives the RTNN param-
eter and state estimator for state control systems design.

Let us consider the linearised state-space model of the discrete-time RTNN, to
be given in the form:

(10)              X(k+1) = JX(k)+BU(k);      Y(k) = CX(k).
The given state space model could be transformed into Luenberger’s canonical

form [9], as it is:
(11) V(k+1) = AV(k) + H1 U1(k); U1(k) = H2U(k); Y(k) = V(k); V(k) = TX(k);

(12)      A= T1 J T; H = T1B = H1 H2 ; D = C T,

where T is a nonsingular transformation matrix, [9], and the matrices A, H1, H2, D are
given in the form:
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The controllability indices i  are determined from the number of linearly inde-
pendent columns of the controllability matrix  = | B, JB, J2B,..., Jn1B |, associated to
the j-th column of the control matrix B (the j-th control input Uj(k)). So the numbers
of the significant rows of the matrix A are determined as it follows:

          i
(16) =j j = 1, ..., m.

                    j=1
Now, it is possible to design a pole-assignment control using the given in [10]

methodology. Let us to introduce a state state feedback to the system, given by the
equation (11), as it is:
(17)    U1(k) =GV(k),
where G is a (mn) gain matrix. The closed-loop state equation (11) obtains the form:
(18)       V(k+1) = (A H1 G )V(k) = AcV(k)
where Ac is a (nn) state closed loop matrix with the same structure, as the open loop
matrix A, [10], which significant rows form the matrices b, a with dimensions (mn).
Following [10], we can assign a block- diagonal structure of the closed loop state
matrix Ac and to choose the significant rows of each diagonal block  ii with dimen-
sion (1i) to be coefficients of an assigned stable characteristic polynomial of order
i  with prescribed dynamics. Then it is possible to write the following expression for
the correspondent blocks of the gain matrix and the correspondent control:
(19) i =i  Gi; Gii = i ii ; Gij = ij; U(k) = K X(k); K = H2

1 G T,
where i , i  , Gi  are i-lines of the correspondent matrices; Gii , i , ii; are (1i)
diagonal blocks of the correspondent matrices; Gij , i are off diagonal blocks of
correspondent matrices; K is gain matrix of the original system, T and H2 are state and
control transformation matrices, respectively. In the particular case of dead-beat con-
trol, the (mn) matrix  = 0, so the gain matrix G =.

Another control system design approach is the state optimal control system de-
sign, minimising a quadratic cost criterion. The relation between this approach and
the pole assignment control system design could be find in [11]. There are some opti-
mal control system design method for synthesis of state optimal P, PD, PI and PID
controllers, given in [12]. The case of P control system design has been considered
above. Now, the case of PI control system design will be considered. Here we shall
apply the same pole assignment method, by means of system equation expansion add-
ing another vector- matricial equation to system state equation (17). This equation is
the discrete-time integral of system output (18), which could augment the state equa-
tion of the system, as it is:

(20) XI(k+1) = T0 Y(k) + XI(k)= To CX(k)+XI(k); Xa(k+1) = A1 Xa(k)+B1U(k),

where XI(k) is a l-vector of the integral term and T0 is a period of discretization;
Xa(k) is an [(n+l)(n+l)] augmented state vector, and the state and control matrices
A1 , B1 of the augmented system have appropriate dimensions. For this augmented
system, following the same procedure, it is easy to obtain the corresponding control.

One very important particular case is when we have a SISO system and the
matrix J is considered to be a diagonal one. Then the correspondent state and control
matrices have the form:
(21) J=diag (Ji);    B’=|b1, b2,..., bm|';    C=| c1, c2,..., cl |.

The state and control matrices of the transformed in controllable companion
canonical form system for this case could be obtained from (13) for m=l=1. The
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elements of a could be obtained using the well known Leverier-Fadeeva’s algorithms,
which for diagonal matrix J leads to the following simple recurrent formulae

   1       n      k 
(22) nk= nj+1 Ji 

kj+1 ; k = 1, 2, ..., n.
   k i=1  j=1 

The same expression could be used to compute the coefficients of the closed-
loop state matrix  from the desired systems poles, to be assigned. PI control system
design could be resolved in the same manner augmenting the system with the integral
equation, as it was done above. The dead-beat control system design could be done
supposing =0.

Another particular case is the SISO object set point tracking system control,
[13]. In this case of n=1, the system control law has the form:

(23)   u(k) = (cb)1 [cA x(k) + y d(k) + 
1
 (y d(k+1) y(k+1))],

where y d(k) is the output set-point to track.
Simulation results of an indirect P- state and set point tracking indirect adaptive

control of nonlinear object, are given in the next part.

4. Simulation results

In this section we show some simulation result of an indirect adaptive control of
nonlinear object. The nonlinear SISO object is described by the following
equations [5]:
(24)  y(k+1)=[x1x2x3x5(x3 1)+x4]/[1+x2

2+x3
2];

x1 = y(k), x2  = y(k1), x3 = y(k2), x4= u(k), x5= u(k1).

Fig. 1. Continuous line output of the closed-loop state controlled object; dashed line RNN output;
RTNN topology (1, 2, 1), T0=0.01 s, h = a = 0.5, MSE % for t=20 s =1.5% (a); continuous linecontrol
variable of the object (b)

Fig. 1 represents the results of an P state indirect adaptive control of the
nonlinear object, described by equations (24), during last 20 iterations of learning.
Note that the overshoot in the beginning of the graphics is caused by the poor RNN
identification, but in few instants of time the RNN improved its learning and the
control goes better.

For the special case of a SISO set-point tracking control system design, we use
the technique, describe in [13] where the control is given by the equation (24) and the
simulation results are given on Fig.2, and Fig.3, for different set-point signals.
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Fig. 2. Continuous line  output of the closedloop state controlled object; dashed line  RNN output,.
RTNN topology (1, 1, 1), T0=0.01 s, h = a = 0.5, MSE % for t=30 s = 0.017% (a); continuous line control
variable of the object (b)

Fig. 2 represents the results of a set-point tracking indirect adaptive control of
the nonlinear object, described by equations (24), during last 20 iterations of learning.
Note that the overshoot in the beginning of the graphics is caused by the poor RNN
identification, but in few instants of time the RNN improved its learning and the
control goes better.

Fig. 3. Continuous line  output of the closed-loop state controlled object; dashed line - RNN output,.
RTNN topology (1, 1, 1), T0=0.01 s, h = a = 0.5, MSE % for t=30 s = 0.00698 % (a); continuous line 
control variable of the object. The overshoot in the beginning is caused by the RNN poor identification when
the system starts to work, but in the next time the system performance goes better (b)

5. Conclusions

A parametric Recurrent Neural Network model and an improved dynamic Back-
propagation method of its learning, are applied for nonlinear objects identification
and state estimation. The obtained parameters of the RNN model are used for
control system design of an indirect adaptive control system. The paper suggests
three main types of state-space control with RNN state estimation: a proportional; a
proportional plus integral and a trajectory- tracking control. The applicability of
the proposed neural indirect adaptive control schemes is confirmed by simulation
results.
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Подход рекуррентной нейронной сети для идентификации
и управления нелинейных объектов
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(Р е з ю м е)

Описывается подход для идентификациии нелинейных объектов при помощи
нейронной сети. Применяется схема рекуррентной обучаемой  нейронной
сети (РОНС). Модель нейронной сети параметрический, что  позволяет
применение параметров, полученных в процессе обучения, при проектировании
управляющей системы. РОНС используется как инструмент идентификации
и оценки состояния нелинейных дискретных динамических объектов.
Предложенный подход иллюстрируется симмуляционными примерами, при
чем сравняются выходы  при замкнтутом цикле управления состояния с
применением РОНС.


