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1. Introduction

The Neural Network (\N) modelling and application to system identification, predic-
tion and control was discussed for many authors [1-5]. Mainly, two types of NN
models are used: Feedforward (FFNN) and Recurrent (RNN). The main problem
here is the use of different NN mathematical descriptions and control schemes,
according to the structure of the object model. For example, Narendra and
Parthasarathy[l, 2], applied FA\N for system identification and direct
model reference adaptive control of various non-linear dojects. They considered four
object models with a given structure and supposed that the order of the object
dynamics is known. Y i p and P a o [3] solved control and prediction problems by
means of a flat-type functional FA\N, used for direct inverse model leaming control .
P h am [4] applied Jordan RN\N for robot control. Sa s try [5] introduced two
types of neurones — Network Neurones and Memory Neurones to solve identification
and adgptive control prablans, considering that the dbject model is also autoregressive
one. In [7], some schemes of NN and RNN applications to control, especially of
direct model reference adaptive control, are surveyed. All drawbacks of the de-
scribed in the literature NN models could be sumarised as follows: there exists a
great variety of NN models and a universality is missing [1-5]; all NN models are
sequential in nature as implemented for systems identification. (The FA\N model
uses one or o tap-delays in the input, [1, Z] and R\N models usual ly are based on
the autoregressive mocel [5], which is one-layer sequential one); same of the gpplied
RNN models are not trainable, others are not trainable in the feedback part [4].
Most of them are dedicated to a SISO and not to a MIMO applications [3]; in more
of the cases, the stability of the R\N is not considered, [4], especially during the
learing; in the case of FA\N application for systems identification, the object is
given in ane of the four described in [1] object models, the linear part of the object
model, especially the system order, has to be known and the FFNN approximates
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only the non-linear part of the dbject model [1]; all these NN models are nonpararetric
ones [7], and so, not gpplicable for an indirect adaptive control systens design; all
this NN models does not perform state and parameter estimation in the same
tne [7]-

The major disadvaritage of all this approaches is that the identification NN
model gpplied is a nonpararnetric one, that does not permit them to use the ootained
informettion directly for control systems design dbjectives. Baruch et all [6], in their
previous paper, applied the state-space approach to describe R\N in an universal
way, defining a Jordan canonical two- or three-layer RNN model, named Recurrent
Trainable Neural Network (RTNN). This NN model is a parametric one, permitting
to use the obtained during the leaming parameters for control systems design.
Furthermore, the RTNN model is a system state predictor/estimator, which permits
1o use the dbtained system states directly for state-space control. The aim of this
paper is to use the RT\N as an identification and state estimation tool in an indirect
adaptive control system of nonlinear dbjects. The proposed Indirect Neural Adaptive
Control System (INACS) is studied by means of various non-linear, discrete-time
dynamic objects. Three types of dbject models are suggested: models, non-linear on
their output, state and input. Sinulation exarplles of nonlinear dbjects, cortrolled by
the proposed INACS, are given.

2. Systems i1dentification and state estimation using the RTNN model

The exiisting problem is to identify the discrete-time nonlinear object and simultane-
ously 1o estimate its states by means of a RIN. The stablle multivariable object under
test is described by the folloving discrete-time equation:

@ d@® =F [d(-D), d(k-2), ..., uk-D],

where d(K) is a l-output vector; u(k-1) is am-input vector and F(.) is a smooth single
I-dimensional vector-valued function. The described in [6] discrete-time, two-layer
Jordan canonical RT\N architecture, improved with an additional stabil ity preserv-
ing restriction on the feedbadk weight matrix of the hidden layer, is given in the form:
@ X(HD=IXE)+BUK) , Z(D=S[X(D]; YE=S[CZ(DT; 15,1 <1,

where the two layer equations of RTNN are separated by semicolon; Y, X, Uare
output, state and input vectors with dimensias 1, n, m, respectively; J = blodk-diag(J,)
is a (nxn)-block-diagonal weight matrrix; J; are blocks of J with (1x1) or (2x2) dimen-
sians, where the last equation of (2) is a stability condition, inposed on all blods J, of
J, which is in fact restriction, imposed on the discrete-tine system eigenvalues of the
state matrix J; B and C are (hxm) and (Ixn)- weight matrices; S(X) is a vector-valued
activation function, given as:

(€)) S'(@Imp) = [s(imp), s(im), -- -, s(Irp,), s@imp)]

Here inp is the input variable of the activation function s(inp.), which is an
element of the vector function S. The activation functions in use are sigmoid ad
the saturation function, given by the equations:

J+1, inp>+1,
() s(inp) = V[1+expinp)]; Inp=X(wx+w, ); sat(inp) = | inp, O<inp<+l,

lQ inp<0,
where w , w, are traineble weights of the RINN; S* signifies a vector transpose of S.
The saturation function is used as approximation of the signoid function in the
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forward step of leaming to inprove the RN archirtecture, facilitating its realisation.
The given above RTNN model could be linearised and its dynamic behaviour could
be studied by the first stability law of Ligounov, where the stability condition 2), for
the discrete time state-space model, could be used. Then It is easy to analyse the NN
mocel controllability, dosenvability and identifiability. From the block structure of B
and C, corresponding to the block structure of J, we can conclude if the RN could
be learmed or not, [6]- The main advantage of the propased two layer Jordan Canoni-
cal Form (JCF) RTNN architecture is that the described JCF RTNN model is an
universal hybrid neural model which contains one output H- layer and ane recurrent
hidden layer with campletely decomposed dynamics, as the matrix J is block-diago-
nal. So, it has a minimun nunber of parameters and it is corpletely parallel, as the
Jordan canonical form is parallel with respect to the regressive model, which is a
sequential one. The RT\N architecture is described in state-space form (SISO or
MIMO) and could serve as an nonlinear dynamic identificator and one-step ahead
state predictor/estimator. The RTNN model is non-linear in large and linear in small,
S0 the matrices J, B, C, dotained as a result of learming, could be used for analytical
design of linear state/output feedback/feedforward control laws. Finally, the RT\NN
could solve the optimal control problem itselT by means of a NN mapping, [1]- The
obtained RTNN model is a robust model, as the learming method applied for weights
adjustment is a dynamic BP method, which is based on the network sensitivity model,
[1]- It also permits to perform node pruning and weight fixing during the learming,
which permits to obtain the simplest low order dynamic model approximation of the
nonlinear object dynamics.

The identification task could be performed, minimising the instantaneous souared
error between the object and RT\NN outputs with respect to the RT\NN weights. The
cost function is given in the form:
©® &0 = (/D Ldi®- yi()F; 1eC,
where di(K) and yi(K) are the desired response (the object output) and the actual
response (the RT\N output) of the output 1 in the discrete-time morent k, respec-
tively, and the set C includes all 1 output neurones of the RTNN.

The most common used BP updating rule, applied for the two-layer RTNN ca-
nonical mocel, [6], is the following:

® W, (+D)=W, (K) +1 AW, (K,

where W.. isageneral weight, denoting the 1j-th weight element of each weight matrix
(C. 3. B) in the RTNN model to be updated; AW, , (AC,, AJ,,., AB,), is the veight
oorrectlmofW histhe Ieamlngrateparareter Ifﬁerearesmeoscﬂlatlms inthe
error during ﬂ”le learniing, a momentum term can be added in the weightt updating rule
(6) - One of the following two forms can be used:

0] W, (D=, (K) + AW, () + a AW (k - 1),
W, (kD=0 (K + n(@-0) AW (K) + oW (k —1),

where o is a momentum term leaming rate parameter. The second equation of (7)
establishes some inverse dependence between the leaming parareters of the first ad
second updating terms. The weight corrections of the updated matrices in the dis-
crete-time RTNN model, described by equations (1), (2), are performed using the
fol loving weiightt updaite equattions:

— For the output layer
® AC, () = [T,-Y,®1 Y, [-Y,(0] ZK).
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where AC,. is the weight correction of the 1j-th elements of the (Ixn) leamed matrix C;
T, isaj—{h elenant of the target vector; Y. is a j-th element of the autput \vector'; Z Isan
i-th element of the output vector of the Riidden layer.

—For the hidden layer

(9) 4B, (0= RUK); AT (K=RXkD; R=CK MY Z®L-Z K],
where AB,, is the weight correction of the ij-th elementts of the (mxn) learmed matrix
B; C, is a row vector of dimension (1x 1), taken from the transposed matrix C*;
[T-Y] is a (I x1) output error vector, through which the error is back-propagated to
the hidden layer; U, is an i-th elerent of the input vector U; X is an i-th element of
the \vector X; AJ,; is the weight correction of the 1j -th elements of the (< n) block-
diagonal matrix J under learming; R is an auxiliary variable. The applicability of the
RN model for system identification, prediction and control is illustrated by an
appropriate exarmple of nonlinear dynamic system.

3. Indirect adgptive neural control system design

In [8], two FA\Ns are used for self-tuning of PID control system. The first \N is used
for abject identification and an input error estimation and the second ore is used to
tune the PID controller parareters. The great complexity of this control schemre is
evident. In this paper we propose to use all information that gives the RTNN param-
eter and state estimator for state control systens design.

Let us consider the linearised state-space model of the discrete-time RT\N, to
be given in the form:
(@0)) X(k+1) = IX()+HBUK) ; Y(K) = CX(K).-

The given state space model could be transformed into Luenberger’s canonical
fom[9], asitis:
(A1) V(k+1) = AV(K) + H U (K); U (K) = HUK); Y(K) = AV(K); V(K) = TX(K);

@ A=T'JIT;H=TB=HH ;D=CT,
where T is a nonsingular transformation matrix, [9], ad the matrices A, H, H,, Dare
given in the fom:

AA ...A

AVAT A" {0 |} { 0 }
@ A= ; A= ° s A= ;

.. . o (o

AmlAmZ -t Amn " !

[H, 1 [1b,... b, 1
L W
- H=|.. ;H = ; A= .. . ;

S U T A K I T

H ]

The correspondent blocks of the matriices A, H so as the matrix H, have follow-
ing dimensions:
(]5) aij = | 0Lci_1+1’ T OLGi | ’ aij :| 0Lci_1+1’ T 0% | ’
h =100 0 1,....,0fithpsition.
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The controllabi lity indices o, are determined fram the nurber of linearly inde-
pendent colums of the controllabi lity matrixI" = | B, B, FB,..., J*B |, associated to
the j—th colum of the control matrix B (the j-th cormtrol input Uj(K)) - So the nurbers
of the significant roas of the matrix A are determined as it folloas:

1
@»®) =20, J=1, ..., m
A
Now, Tt is possible to design a pole-assigrmment cortrol using the given in [10]
methodology . Let us to introduce a state state Tfeedback to the system, given by the
eqation (1), as it is:

an U,(K) =-6V(K),
where G is a (mxn) gain matrix. The closed-loop state equation (11) dotains the form:
@) V(k+1) = (A- H G HV(K) = AV(K)

where A_is a (nxn) state closed loop matrix with the sare structure, as the open loop
matrix A, [10], which significant roaxs form the matrices b, a with dimensions (mxn).
Following [10], we can assign a blodk- diagonal structure of the closed loop state
matrix Ac and to choose the significant rowns of each diagonal block Bl with dimen-
sion (Ixoi) o be coefficients of an assigned stable daracteristic polynomial of order
ol with prescribed dynamics. Then it is possible to write the fol loving expression for
the correspondent blocks of the gain matrix and the correspondent control :

@  B;=o; - G35 G =o, By 5 Gy =0y U =-KX(E); K=H*GT,
where B, , o, , G, are i-lines of the correspondent matrices; G; , o, , f;;; are (Ixci)
diagonal blocks of the correspondent matrices; G, , o, are off diagonal blocks of
correspondent matrices; K is gain matrix of the original system, T and H, are state ad
control transformation matrices, regeectively. In the particular case of dead-beat con-
trol, the (mxn) matrix § =0, so the gain matrix G =o.

Another control system design approach is the state gptimal control system de-
sign, minimising a quadratic cost criterion. The relation between this gpproach and
the pole assigment control system design could be find in [11]. There are some opti-
mal control system design method for synithesis of state optimal P, PD, Pl and PID
comtrol lers, given in [12]. The case of P control system design has been considered
above. Now, the case of Pl cortrol system design will be considered. Here we shall
apply the same pole assignment method, by means of system equation expansion add-
ing another vector- matricial equation to system state equation (17). This equation is
the discrete-time integral of system output (18), which could augrent the state equa-
tonof the systam, as it is:

20) X, (k+1) =T, Y(K) + X, (K)= To CX(K)+X,(K); X (k+1) = A X (kK)+B,U(K),
where X (K) is a I-vector of the integral term and T, is a period of discretization;
X, isan [(mDx(+1)] augrented state vector, and the state and control matrices
A , B, of the augmented system have appropriate dimensions. For this augrented
system, following the same procedure, it is easy to adotain the corresponding control .

One very important particular case is when we have a SISO system and the
matrix J is considered to be a diagonal one. Then the correspondent state and control
matrices have the form:

@ Jdiag (3);  B=lb, b,-oon b1 ClGLGaelnu Gl

The state and control matrices of the transformed in controllable companion

canonical form system for this case could be obtained from (13) for m=I1=1. The
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elements of a could be obtained using the well known Leverier—Fadeeva’s algoritims,
which for diagonal matrix J leads to the following simple recurrent formulae

1 n k k—j+1
@ o =— X Zan_j+lJi ;k=1,2, ..,n.
k iz j=1
The same expression could be used to canpute the coefficients of the closed-
loop state matrix § from the desired systens poles, 1o be assigned. Pl cormtrol system
design could be resolved in the same manner augrenting the systemwith the integral
equation, as Itwas done above. The dead-beat cortrol system design coulld be done

supposing =0.
Ancther particular case is the SISO abject set point tracking system control,

[13]- Inthis case of n=1, the system corttrol law has the form:
€S)) u = (cb)* [-CAX(K) +y () + o, (v ‘(k+D) - y(k+D))],
where yU(K) is the output set+oint o track.
Simulation results of an indirect P- state and set point tracking indirect adaptive
control of nonlinear dbject, are given inthe next part.

4. Simulation results

In this section we show some simulation result of an indirect adaptive corntrol of
nonlinear object. The nonlinear SISO object is described by the following
equatios [5]:
(2] YD XXX O — DX I/ [1+x,4x 7] 5

X =y, X, =y(k-1), X, = y(k-2), X= u(K), X=u(k-1).
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Fig- 1. Continuous line —output of the closed-loop state control led abject; dashed Tine —R\N output;
RTN\N topology (1, 2, 1), T=0.01s, h=a=0.5, MSE % for t=20 s =1.% (a); continuous line- control
variable of the dhject ()

Fig- 1 represents the results of an P state indirect adaptive control of the
nonlinear dbject, described by equations (24), during last 20 iterations of leaming.
Note that the overshoot in the beginning of the graphics is caused by the poor R\N
identification, but in few instants of time the R\N improved its leaming and the
control goes better.

For the special case of a SISO set—oint tracking control system design, We use
the technique, describe in [13] where the control is given by the equation (0) ad the
sinulation results are given on Fig-2, and Fig-3, for different set—point signals.
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Fig. 2. Continucus lire - output of the closed-loop state controlled doject; dashed line — R\NN output, -
RT\N topology (1, 1, D, T,/0.01 s, h=a=0.5, MSE% for t=30 s = 0.017% (&) ; continuous line —cortrol
variable of the doject (b)

Fig- 2 represents the resullts of a set—point tradking indirect adgptive cortrol of
the nonllinear dbject, described by equatios (24), during last 20 iterations of leaming.
Note that the overshoot in the beginning of the graphics is caused by the poor R\N
identification, but in few instants of time the R\N improved its leaming and the

control goes better.
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Fig- 3. Continuous line — output of the clased-logp state control led dbject; dashed line - RWN output, -
RTN\N topollogy (1, 1, 1), T=0.01 s, h=a=0.5, MSE % for t=30 s = 0.00698 % (a); continuous line -
control variable of the dbject. The overshoot in the beginning is caused by the R\N poor iderntification when
the system starts to work, but in the next time the system performance goes better (b)

5. Conclusions

A parametric Recurrent Neural Network model and an improved dynamic Back-
propagation method of i1ts learning, are applied for nonlinear objects identification
and state estimation. The obtained parameters of the RNN model are used for
control system design of an indirect adaptive control system. The paper suggests
three main types of state-space control with R\N state estimation: a proportional ; a
proportional plus integral and a trajectory- tracking— control . The applicability of
the proposed neural indirect adaptive control schemes is confirmed by simulation
reslts.

6 3



References

1.Narendra,K.S.,K.Parthasarathy. ldentification and control of dynamic systens using neural
networks. — In: IEEE Transactions on N\s, 1(1), 1990, 4-27.

2 Narendra,K. S.,K.Parthasarathy. Gradient Methods for the optimisation of dynamical
systems containing neural networks. —In: IEEE Transactions on \N\s, 2(2), 1991, 252-262.

3.Yip,P.P.C., Y. H. Pao. Arecurrent neural net approach to one-step ahead control problems. — In: 1EEE
Transactions on SVC, 24(4), 1994, 678-683.

4_Pham,D.T.,S.Yildirim. Robotcontrol using Jordan neural networks. — In: Proc. of the Intermat.
Conf. on Recent Advances in Mechatronics, Istanbul, Turkey, Aug. 14-16, 1995. (O. Kaynak, M.
Ozkan, N. Bekiroglu, I. Tunay, Eds.) . Bogazizi University Printhouse, Istanbul, Turkey, 1995),
\ol. 11, 838-8%3.

5.Sastry,P.S.,G.Santharam, K. P.Unnikrishnan. Memory networks for identification
and control of dynamical systems. — IEEE Transactions on NNs, 5(2), 1994, 306-320.

6.Baruch,l.,lI.Stoyanov, E.Gortcheva. Topology and learning of a class RNN.
— ELEKTRIK, Vol. 4 Supplement, 1996, 35-42.

7-Hunt,K.J. ,D.Sbarbaro,R. Zbikowski,P. J. Gawth rop. Neural network for control
systems — a survey. — Automatica, 28, 1992, No 6, 1083-1112.

8.0matu, S.,MKhalil,R.Yusof. Neuro-Control and Its Applications. Springer Verlag, London, 1995.

9.Baruh, 1. S. Analgoritim and a program for transformation of nultivariable autoratic control systems
into the Luenberger”s canonical form. — In: Theory and Application of Cybemetic Systems, vol . 1,
“Structure and Organization of Control Systems”, (Ed. P.Petrov, N.1liev, K_Tropolov). Sofia,
Publ _House of the Bulgarian Academy of Sciences, 1982, 93-100.

10. Baruch, I. Use of the Luenberger Canonical Form in The Synthesis of Multivariable Control Systens.
— Problems of Engineering Cybemetics, BAS, Sofia, 6, 1977, 35-39.

1. Baruch, 1. Synthesis of optimal discrete time control systems with prescribed dynamics. — Problems
of Engineering Cybemetics and Robotics, 12, 1981, 68-73.

. Baruh, 1.S., J.G. Benko ff. Software package for conputer-aided design of optimal P, PI, PID
Controllers. - Preprints of the 6-th IFAC/IFIP Conf. on “Digital Computer Applications to
Process Control””, 14-17 Oct., 1980, Dusseldorf, F.R. Germany, .377-381

B. Isidori,A. Nonlinear, Control systems. Third Edition. London, Springer-Verlag, 1995.

[Tonxon PeKYPPEeHTHOM HEMPOHHOM CeTU IJIS MOeHTUQUKALINN
U YIPaBJIEHUS HEJIMHEMHEIX OOBEKTOB

Jlepoxam Bapyx*, Xoce Maprme &ropec AnOMHO**, Borika HeHKOBa*

*UHCTUTYT MHPOPMALAOHHEIX TexXHoJorwi, 1113 Cogusa

**CINVESTAV - IPN, Mekcuro

(PesoMme)

OnmMcEBaeTCHa MOOXON IJIS UINEeHTUQMKAUMMM HEeJIMHEMHBIX OOBEeKTOB IIPU ITOMOLM
HEVPOHHOV ceTu. [IpMMEeHSeTCs CXeMa PEKYPPEHTHOM oOydaeMOoM HeMPOHHOM
cetu (POHC) . Monesib HEVMPOHHOM CETU NapaMeTpUUeCcKMy, UTO I[IO3BOJIAET
IpVYMEHEHVE TTapaMeTPOR, IOJIyYUeHHEIX B [IpoLiecce ODydeHMs, IPM IPOSKTVPOBAHVIA
yhopapisomert cucreMel. POHC MCHOJNB3yeTCsa KakK MHCTPYMEHT MIOeHTUOUKALINN
Y OLEHKM COCTOSHUS HEJIMHEMHBIX OUCKPETHBIX IMHAMUUECKUX OOBEKTOB.
[IpenJIOXEeHHBN TOAXON MJUIOCTPUPYETCS CUMMYJISLUMOHHEIMU IIpMMepaMy, IpU
yeM CPAaBHSAKTCS BEIXOIBl IIPY 3aMKHTYTOM LIMKJIIE YIPaBJIEHUS COCTOSHUS C
npuMeHeHreMm POHC.
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