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1. Introduction

The interactive algorithms are often used [2] to solve multicriteria linear integer pro-
gramming problems (MCIP).  These algorithms [3, 6, 7, 11, 13] are modifications of
interactive approaches solving multicriteria linear problems that include the integral-
ity constraints. Linear integer programming problems are used as scalarizing prob-
lems in these interactive algorithms. These problems are NP-difficult problems [4].
Moreover, finding a feasible integer solution can be as difficult as finding an optimal
solution. That is why in the interactive algorithms solving MCIP the time to solve the
scalarizing problem plays a significant role.  For this reason an effort is made to
reduce the number of the integer problems solved; continuous problems (instead of
integer problems) are solved and continuous (weak) nondominated solutions obtained
are presented to the DM for evaluation (especially in the DM’s learning phase).  Some
of the interactive algorithms work with the aspiration levels of the criteria, others use
weight to denote the relative significance of the criteria.  Many show one while others
show several (weak) nondominated solutions to the DM for evaluation at each itera-
tion.

In the paper a learning-oriented [5] interactive algorithm are suggested. The
main features of the algorithm proposed, which improves the dialogue with the DM,
are:

­ they reduce the number of the integer problems solved because in most of the
iterations the solutions of single criterion linear problems with continuous variables
(which are easy to solve) are presented to the DM for evaluation. This is used under
the assumption [10, 11] that the criteria values for the scalarizing problems with con-
tinuous variables differ relatively little from the solutions with integer variables and
under the assumption that the DM prefers to work in the criteria rather than in the
variable space.;

­ at every iteration the DM provides his/her local preferences in terms of the
desired changes in the criteria values of some of the criteria, the desired directions of
change of the other criteria and permitted deterioration with or without set limiting

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ  .  BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ  НА ТЕХНИЧЕСКАТА  КИБЕРНЕТИКА  И  РОБОТИКАТА, 51
PROBLEMS OF ENGINEERING  CYBERNETICS AND ROBOTICS, 51

София  .  2001  .  Sofia



4 8

value of the remaining criteria, instead of aspiration levels of the criteria. The current
preferred solution and the local preferences of the DM define a reference neighborhood
in which the next preferred solution is searched for;

­ at every iteration in a reference neighbourhood a set of continuous (weak)
nondominated solutions or integer (weak) nondominated solution is searched for solving
continuous or integer scalarizing problems ;

2. Problem formulation

The multicriteria linear integer programming (I) can be formulated as:
(1) "max"{fk(x), k  K}
subject to:
(2)  aijxj І bi, i  M,

jN

(3) 0 І xj І dj, j  N,
(4) xj ­ integer, j  N,

where symbol "max" means that all the objective functions are to be simultaneously
maximized; K = {1, 2, ..., p}, M = (1, 2, ...., m}, N = {1, 2, ..., n} denote the index sets
of the objective functions (criteria), the linear constraints, and the decision variables,
respectively:  fk(x), k  K are linear criteria (objective functions); fk(x) = cj

kxj  and
x = (x1, x2,..., xj,..., xn)

T is the vector of the decision variables.                  jN
The constraints (2)­(4) define the feasible region X1 for the integer variables.
The problem (1)­(3) is a multicriteria linear programming problem (P). The

feasible region for the continuous variables is denoted by X2.  Problem (P) is a relaxa-
tion of (I).

For clarity of exposition, we introduce a few definitions:
Definition 1. A current preferred solution is a near (weak) nondominated solu-

tion (a feasible solution located comparatively close to the (weak) nondominated
solutions) or (weak) nondominated solution chosen by the DM at the current itera-
tion. The most preferred solution is a preferred solution that satisfies the DM to the
greatest degree.

Definition 2. Desired changes of the criteria values are the amounts by which the
DM wishes to increase or to be worsened the criteria in comparison with their value in
the current preferred solution.  The desired directions of change of the criteria are the
directions, in which the DM wishes to improve or to deteriorate the criteria in com-
parison with their values at the current preferred solution.

Definition 3. Reference neighbourhood is defined by the current preferred solu-
tion; the desired changes in the values of some of the criteria, the desired directions of
change of the other criteria and permitted deterioration with or without set limiting
value of the remaining criteria as specified by the DM.

Problems (I) and (P) do not possess a mathematically well-defined optimal solu-
tion. Hence it is necessary to select one of the (weak) nondominated solutions, which
is most appropriate for the global DM’s preferences. This choice is subjective and
depends entirely on the DM.

3. Scalarizing problems

We formulate the scalarazing problems [1, 16] under the assumption that the set of
criteria K can be divided into three subsets ­ K1, K2 and K3.  The set K1 contains the
indices k  K of the criteria for which the DM wants to improve their values compared
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to the values in the current preferred solution. The set K2 includes the indices k  K of
the criteria for which the DM agrees to worsen their values not setting the exact values
of deterioration.  The set K3 contains the indices k  K of the criteria whose values the
DM wants to preserve or agrees to be worsened by the value k.  The set K1 is divided
into two subsets ­ K1' and K1''; K1' contains indices of the criteria k  K1 that the DM
wants to improve by desired values k, and K1'' consists of indices of the criteria k  K1,
that the DM wants to improve and for which he/she is not able to set the exact values
of improving.

The following scalarizing problem, named E1, is proposed to obtain a (weak)
nondominated solution of the multicriteria integer problem (I) in the reference neigh-
bourhood of the current preferred solution.

Minimize

(5)    S(x) = max[max(f
­
k ­ fk(x))/|fk'|, max(fk ­ fk(x))/|fk'|] + max(fk ­ fk(x))/|fk'|,                       kK1'                                kK2                           kK1''

subject to:
(6) fk(x) і f

~

k, k  K3  K1'',
(7) x  X1,
where

fk ­ the value of the criterion with an index k  K in the current preferred solu-
tion,  f

­
k = fk + k  is the desired level of the criterion with an index kK1';

fk, if k K1'',
fk, if k K3 and the DM wants to preserve the current value of the criteria

    f
~

k =  with index k,
fk ­ k, if k K3 and the DM is agree to be worsen with value k the current
 value of the criteria with index k,

fk' ­ a scaling coefficient,

fk, if fk 0,     fk' = 
1, if fk =0.

Theorem 1. The optimal solution of the scalarizing problem E1 is a weak effi-
cient solution of the multicriteria integer programming problem (I).

P r o o f.
Let  K1' and K1''  .
Let x* be an optimal solution of problem E1. Then the following condition is

satisfied:
S(x*) І S(x), x  X,

            fk(x*) і f
~

k, k  K1''  K3.
Let us assume that x* is not a weak Pareto optimal solution of the initial multiple

criteria integer problem (I). In this case there must exist, x'  X for which:

(8)          fk(x') >  fk(x*) for k  K and fk(x*) і f
~

k, k  K1''  K3.

After transformation of the objective function S(x) of the scalarizing problem,
using the inequalities (8), the following relation is obtained:
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(9) S(x') = max[max(f
­
k ­ fk(x'))/|fk'|, max(fk ­ fk(x'))/|fk'|] + max(fk ­ fk(x'))/|fk'| =                  kK1'                           kK2                      kK1''

 = max[max(f
­
k ­ fk(x*)) + (fk(x*) ­ fk(x')))/|fk'|,                   kK1'

   max(fk ­ fk(x*)) + (fk(x*) ­ fk(x')))/|fk'|] +
       kK2

+ max(fk ­ fk(x*)) + (fk(x*) ­ fk(x')))/|fk'| <
         kK1''

 < max[max(f
­
k ­ fk(x*))/|fk'|, max(fk ­ fk(x*))/|fk'|] + max(fk ­ fk(x*))/|fk'| = S(x*). kK1'                           kK2                           kK1''

It follows from (9) that  S(x') <  S(x*) and fk(x*) і f
~

k, k  K1''  K3,
which contradicts to (8). Hence x* is a weak efficient solution of the multiple criteria
integer problem (I).

Consequence. Theorem 1 is true for arbitrary values of  fk, k  K.
The proof of this consequence follows from the fact that the proof of Theorem 1

does not assume any constraints on the values of the criteria  fk, k  K.
To obtain a (weak) nondominated solution for the problem (P) in the reference

neighbourhood of the current preferred solution, we may use the scalarizing problem
E2, which is obtained from E1  replacing constraint (7) by constraint:
(10) x  X2.

Theorem 2. The optimal solution of the scalarizing problem E2 is a weak effi-
cient solution of the multiple criteria linear problem (P).

The proof of Theorem 2 is analogous to the proof of Theorem 1 because nature
of the variables xi*, i = 1,

¦
n
­
, is not used explicitly.

Because the objective function of the scalarizing problem E1 is nondifferentiable,
one may solve the following equivalent mixed integer programming
(11) min( + )
subject to:
(12)  і (f

­
k ­ f(x))/|fk'|, k  K1' ,

(13)  і (fk ­ fk(x))/|fk'|, k  K2,
(14)  і (fk ­ fk(x))/|fk'|, k  K1'',
(15)  fk(x) і f

~

k, k  K1''  K3,
(16) x  X1,
(17) ,  ­ arbitrary.

Problems E1 and E1' have the same feasible sets of the variables. The value of the
objective functions of problems E1 and E1' are equal which can be easily proved.

The scalarizing problem E1' has two properties, that help to improve the dialogue
with the DM, as with respect to the required from him/her information  and with
respect to the reducing of the waiting time for evaluation of new solutions also.  The
first property is connected with the required information from the DM. Instead of the
aspiration levels of every criteria for the defining of the reference point [7, 9, 11], the
DM has to provide only changes in the criteria values of some of the criteria and the
directions of change of the remaining criteria to specify the reference neighbourhood.
The second property of the problem E1' is that with it the DM can realize the search
strategy “no great benefit ­ little loss”. The solutions obtained in the reference neigh­
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bourhood are comparatively close, which makes it easier for the DM to compare
several solutions and choose the next preferred solution

The scalarizing problem (E2) is equivalent to the following linear programming
problem E2'
(18) min( + )
subject to:
(19)  і (f

­
k ­ f(x))/|fk'|, k  K1' ,

(20)  і (fk ­ fk(x))/|fk'|, k  K2,
(21)  і (fk ­ fk(x))/|fk'|, k  K1'',
(22)  fk(x) і f

~

k, k  K1''  K3,
(23) x  X2,
(24) ,  ­ arbitrary.

The parametric extension of the scalarizing problem E2' (denoted by E
¦
2') has the

fallowing form (similar to the one in [13]):
(25) min( + )
subject to:
(26) f(x)|fk'| і fk + (f

­
k ­ fk)

t, k  K1' ,
(27) f(x)|fk'| і fk ­ t, k  K2,
(28) f(x)|fk'| і fk + t, k  K1'',
(29)  fk(x) і f

~

k, k  K1''  K3,
(30) x  X2,
(31) t і 0,
(32) ,  ­ arbitrary.

Problems E2' and E
¦
2' have the same properties as problem E1', but they give con-

tinuous solutions.
Let us assume that we have found a (weak) nondominated solution of problem

(P) with the help of the scalarizing problems E2' and E
¦
2' and wish to find a (weak)

nondominated solution of problem (I), which is near the (weak) nondominated solu-
tion of problem (P).  Let us denote by f^ =(f^1, ..., f

^
p)

T a (weak) nondominated solution
of problem (P).

To find a (weak) nondominated solution of problem (I), close to the (weak)
nondominated solution f^k of problem (P), the following Chebychev’s problem E3 may
be used [26]:

Minimize

(33) S(x) = max(f^k ­ fk(x))/|fk'|,                                                           kK
subject to
(34) x  X1,
where

f^k, if f
^
k 0,     f^k = 

1, if f^k =0.
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This problem is equivalent to the following mixed integer programming problem
E3':

(35) min
under the constraints
(36)  і (f^k ­ fk(x))/|f

^
k'|,

(37) x  X1,
(38) ­ arbitrary.

4. A user-friendly interactive algorithm of multicriteria linear integer
programming

A user-friendly interactive algorithm solving multicriteria linear integer problems can
be suggested on the basis of the scalarizing problems E1', E2', E

¦
2' and E3'. The dialogue

with the DM has been improved with respect to the information required from him/
her and to the learning possibilities of the specifics of the problem solved.

The basic steps of the algorithm are the following:
Step 1. An initial (weak) nondominated solution of the multicriteria problem (P)

is defined, setting  fk = 1, k  K,  f
­
k= 2, k  K, and solving problem E2'.

Step 2. Ask the DM to specify the reference neighbourhood of the current pre-
ferred solution defining desired changes in the values of some criteria, desired direc-
tions of change of other criteria and permitted deterioration with or without set limit-
ing value of the remaining criteria.

Step 3. Ask the DM to define whether to search for a (weak) nondominated
solution of the multicriteria problem (P) or (weak) nondominated solutions of the
multicriteria problem (I). In the first case, Step 4 is executed, in the second case go to
Step 6.

Step 4. Ask the DM to specify parameter s ­ maximal number of (weak)
nondominated solutions of the multicriteria problem (P) which can be saved in the set
M1.  Solve the scalarizing problem E

¦
2' with the help of an algorithm of linear paramet-

ric programming.  Present the set M1 to the DM for evaluation and selection. In case
the DM wants to see a (weak) nondominated solution of the multicriteria problem (I),
close to the current preferred solution of the multicriteria problem (P), Step 5 is ex-
ecuted, otherwise ­ Step 2.

Step 5. Solve problem E3'. Show the (weak) nondominated solution of multicriteria
problem (I) obtained by the exact integer algorithm chosen for solving problem E3'.  If
the DM approves this solution as current preferred solution of the multicriteria prob-
lem (I) go to Step 7. If this solution is the last preferred solution ­ go to Step 8.

Step 6. Solve problemE1'. Show the (weak) nondominated solution of the
multicriteria problem (I) to the DM. In case the DM approves this solution as a
current preferred solution of the multicriteria problem (I) go to Step 7. If  the solution
is the last preferred solution ­  go to Step 8.

Step 7.  If the DM wants to store the current preferred solution of the multicriteria
problem (I) ­ check if it has been saved before, if not, add it to LIST – a set of stored
preferred solutions ­ Go to Step 2.

Step 8.  Does the DM want to compare the last preferred solutions of the
multicriteria problem (I) with the solutions selected and stored in LIST ­ go to Step 9.
If no ­ Stop. That is, the last preferred solution is the most preferred solution of the
multicriteria problem (I).
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Step 9. Show the final set of solutions, saved in LIST and the last preferred
solution to the DM for comparison and selection of the most preferred solution of the
multicriteria problem (I). Stop.

The proposed algorithm for solving multicriteria linear integer problems is a
learning oriented [5] interactive algorithm and the DM controls the dialogue, the
computations and the stopping conditions.

Problems of linear parametric programming (scalarizing problems E
¦
2') are solved

in the interactive algorithm. The linear parametric programming problems are easily
solved problems and the DM must not wait long for the obtaining and estimation of
new solutions. Problems of mixed integer linear programming (scalarizing problems
E1' and E3') are also solved. The number of the integer problems solved can be very
small. They are solved only in the cases when the DM feels uncomfortable to operate
with continuous variables or when he is searching for an integer solution near to the
current preferred continuous solution.

The DM operates mainly in the criteria space, because in most of the cases the
criteria have physical or economic interpretation and this enables the more realistic
estimation and choice. The information required from the DM refers only to the de-
fining of a reference neighbourhood of the current preferred solution and sometimes,
if he/she wants, to the presenting of inter- and intra-criteria information.

5. Illustrative example

With the purpose to illustrate the interactive algorithm proposed the following
multicriteria problem is solved. It is solved with the help of a developed small re-
search software system and the DM is supposed to use all the possibilities that the
algorithm provides.

max f1(x) = 5x1 ­ x2 + 2x4,
max f2(x) = ­x1 + 2x2 + x3,
max f3(x) = 4x2 ­ 8x3 + 2x4

under the constraints
­x1 + 2x2 + x3 + 2x4  І 34,
2x1 + x2 ­ 3x3  ­ x4  І 16,
3x1 + 2x2 + 4x3  ­ x4  І 28,
x1 + 6x2  ­ x3 + 4x4  І 43,
x1, x2, x3, x4 ­ integer.

Let us denote the feasible region for the integer variables by X1 and the feasible
region for the continuous variables by X2.

In order to find an initial non-dominated solution, a scalarizing problem of E2'
type is solved, at apriori set fk = 1, k  K,  f

­
k= 2, k  K and  K1'  = {1, 2, 3};

min ,
 і 2 ­ 5x1 + x2 ­ 2x4,
 і 2 + x1 ­ 2x2 ­ x3,
 і 2 ­ 4x2 + 8x3 ­ 2x4,
x  X2,
 ­ arbitrary.
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The solution found is: x1= 3, x2= 6.17, x3= 1.98 and x4= 1.25. The values of the
criteria for this solution are: f1= 11.3, f2= 11.3, f3= 11.3.  Let us assume that the DM
would like to improve the first criterion and sets only the reference point  f

­
1= 15,

K1' = {1} for it; he agrees to deteriorate the second criterion, not defining by what
value, K2 = {2}, and to improve the third criterion, not defining any certain values,
K1''  = {3} and K3 =  . The DM would like to see integer solutions at this iteration,
but not more than 3, i. e., s = 3. A problem of E1'  type is formed:

min( + ),
 і (15 ­ 5x1 + x2 ­ 2x4)/11.3,
 і (10 + x1 ­ 2x2 ­ x3)/11.3,
 і (10 ­ 4x2 + 8x3 ­ 2x4)/11.3,
4x2 ­ 8x3 + 2x4 і 11.3,
x  X1,
,  ­ arbitrary.

With the help of an algorithm of mixed integer programming the following solu-
tion is found:   f1 = 14, f2 = 8 and f3 = 24. But the DM decides that the value of the
second criterion does not satisfy him/her and chooses to continue with one iteration
more, in order to search for a better solution. He defines aspiration level of the second
criteria ­  f

­
2= 12, K1'  = {2}. He agrees to deteriorate the first and third criteria, but he

wants the first criterion to be worsened by the value 1= 4, i. e. K2 = {3} and K3 = {1}.
A following scalarizing problem of E

¦
2' type is solved and 3 new continuous solutions

are found.
min ,
 ­ x1 + 2x2 + x3 + 8 і 8 + 4t,
4x2 ­ 8x3 + 2x4 + 24 і 24 ­ t,
5x1 ­ x2 + 2x4  і 8,
x  X2,
t і 0,
 ­ arbitrary.

The DM selects the third solution as the current preferred solution of the
multicriteria continuous problem. A problem of  type is used in order to consider
which is the nearest integer solution.

min ,
 і (8 ­ 5x1 + x2 ­ 2x4)/8,
 і (12.5 + x1 ­ 2x2 ­ x3)/12.5,

fi f1 f2 f3 T 

1 8 10,42 26,7 0 

2 8 11,4 21,17 1 

3 8 12,5 11,5 2 
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 і (11,5 ­ 4x2 + 8x3 ­ 2x4)/11.5,
x  X1,
 ­ arbitrary.

The values of the criteria for the solution obtained are  f1 = 11, f2 = 10 and
f3 = 10. This solution does not satisfy the DM either and he sets new conditions for the
criteria: to improve the first and the third criteria, K1'' = {1, 3}, the second one may be
deteriorated by 1 unit,  f

~

2= 9, K3 = {2}.  A following scalarizing problem of E1' type is
solved with the help of an exact algorithm of mixed integer programming.

min ,
 і (11 ­ 5x1 + x2 ­ 2x4)/11,
 і (10 ­ 4x2 + 8x3 ­ 2x4)/10,
5x1 ­ x2 + 2x4 і 11,
4x2 ­ 8x3 + 2x4 і 10,
­x1 + 2x2 + x3 і 9,
x  X1,
 ­ arbitrary.

The solution found is:  f1 = 14, f2 = 9, f3 = 18.
The DM selects this solution as the most satisfactory for him/her. With this the

operation of  algorithm is brought to an end.

7. Conclusion

A user-friendly interactive algorithm is proposed based on the reference neighbour-
hood approach to solve multicriteria linear integer programming problems. The
scalarizing problems, E1', E2', E

¦
2' and E3' provide the opportunity to improve the dia-

logue with the DM with respect to several features:
­ according to DM’s wish, he/she may set different type and different quantity

of information at each iteration;
­ the time during which the DM is expecting solutions for evaluation and

choice is reduced, because in most of the time he/she works with the continuous
solutions;

­ his/her possibilities for learning the specifics of the multiple criteria integer
problems being solved can be increased.

These features of interactive algorithm proposed characterise it as an appro-
priate and user-friendly algorithm solving multicriteria linear integer programming
problems.
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Потребительски ориентированный алгоритм для решения задач
многокритериального линейного целочисленного программирования

Красимира  Генова

Институт информационных технологий, 1113 София

(Р е з ю м е)

Предложен потребительски ориентированный интеррактивный алгоритм,
предназначеннный  для  решения линейных целочисленнных  задач  многокритериального
программирования. Этот алгоритм основан на формированной оттправной области при
помощи заданных предпочитаний  лицом принимающем решения (ЛПР) для изменений
стоимостей критерий. Формулированные скаляризирующие  задачи открывают
сравнительно близкие недоминированные непрерывные  или целочисленные решения в
этой отправной области. Текущее  использование непрерывных недоминированнных
решений редуцирует значительное время  поиска и  позволяет  ЛПР быстрее  понимание
спесифику  многокритериальной задачи.


