
2 6

A Wavelet-Packet Based Speech Coding Algorithm1

Grigor Marchokov, Atanas Gotchev2, Zdravko Nikolov

Institute of Information Technologies, 1113 Sofia

1. Introduction

The trend toward real-time, low-bit-rate speech coders dictates current research ef-
forts in speech compression. Such coders are desirable for a number of applications
including transmission of digital speech signals and multimedia applications. Multi-
media and video conferencing, dynamic web-site access with voice and video intro-
duces the idea of using voice over the Internet. This idea also opens up new commer-
cial opportunities in the area of self-service and other service applicability [1]. An-
other area of interest, where speech compression has gained widespread attention is
the area of cellular and mobile stations. Both Internet and wireless communications
channels are characterized by limited bandwidth conditions, which determine the re-
search efforts of designing low bit-rate speech coders with admissible quality. There
have been a number of speech coders developed for lossy coding of speech signals,
and recently linear predictive coders (LPC) have been widely used for achieving low
bit-rate speech [2]. They are based on the speech production mechanism and widely
use the periodicity and the autoregressive structure of the speech signal. They differ
mainly in the methods, aimed at coding the LPC residual carrying information about
the exciting source. The RLP based GSM standard [3] for mobile communications
and the G.728 CELP based standard for computer network communications are most
commonly applied [4]. They have fixed bit-rate based on the linear predictive models
used.

An alternative, offering variable bit-rate speech coders is based on certain
decorrelating linear transform and successive transform coefficients quantization. The
wavelet transform (WT) has been most widely used because of its nice properties. It is
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closest to the optimum Karhunen-Loeve transform and almost decorrelates a number
of signal classes [5]. The basic functions (the wavelets) are well localized in time and
frequency (scale) that gives a natural possibility to deal with the transform coefficients
in an effective application-oriented manner.

There are several crucial parts when applying WT for compression. First step is
an appropriate choice of the basis. The famous Daubechies family of compactly sup-
ported and orthogonal wavelets has been extremely used for compression [6]. While
applied on digital images it gives excellent results based on their compaction proper-
ties and maximal number of vanishing moments, but for audio signals its application
us limited because of the lack of linear phase. It is well known that the orthogonality,
the compact support and the linear phase can not coexist [6]. Fortunately nice bi-
orthogonal and compactly supported wavelets, most of them based on B-splines has
been designed [5, 6] and corresponding speech coding methods have been introduced.

The second crucial step in designing a wavelet-based coder is the appropriate
transform coefficients quantization. It has been proved that the zero-tree coders (ZTC)
perform better than other quantizators, taking advantage of the hierarchical tree struc-
ture of the wavelet coefficients [7]. And the third step is an appropriate loss-less coder,
most often entropy based.

In this paper, good answers for the three steps mentioned above are given. We
argue the usage of wavelets based on B-spline basic functions. In order to obtain the
best time-frequency tilling possible we apply Wavelet Packet Transform and deter-
mine the best basis by using a perceptual entropy measure. Then we introduce a
modified Zero Tree Coder (ZTC) related with the speech signal’s properties.

The paper is organized as follow: Section 2 gives a brief overview of the concept
of wavelets, wavelet packets and best basis selection. Section 3 argues the usage of B-
splines as generating functions for wavelet bases and describes some of their nice
properties. Section 4 details the modification of the ZTC, aimed at effective usage of
the preliminary knowledge of speech signal nature. Section 5 introduces the loss-less
entropy coder for a higher degree of compression. Section 6 describes various issues
involved in a real-time implementation. Section 7 compares the performance of this
coder with respect to G.728 standard and others unified lossy coders. We summarize
in Section 8 with conclusions and directions for future work.

2. Wavelet packet transform

The main advantage of WT over the other linear transforms (e.g. Fourier or DCT) is
its ability to represent the signal in both time and frequency within the Heisenberg’s
uncertainty principle limits [6]. It has been shown that the wavelets can approximate
time-varying non-stationary signals in a better way that the Fourier T. [6]. More re-
cently, a number of decomposition, leading to an optimized time-frequency tilling has
been proposed, e. g. wavelet packets (WP); frames, local overlapped transforms (LOT),
etc. [6]

2.1. Theory in brief

We consider the Hilbert space L2 of finite energy functions. The wavelet packet for
such space is well localized in time and frequency. It is parameterized by three param-
eters, describing its scale, position and frequency. Fast wavelet packets can be estab-
lished by a pair of quadrature-mirror filters. Let h={hj} is a low-pass filter possessing
the following properties:



2 8

(a) For  > 0,  j|hj||j|
 < ;

          1
(1) (b) h2j+1 = ¦¦  for i = 0,1;

     

2

(c) h2j+1 = k, where  is the Kroneker symbol.

The property (a) represents the filter decay, аnd (b) and (c) – its orthogonality.
Let g={gj} depends on h as follows:

(2)                gj = (­1)
1­jh1­j .

The two discrete sequences form a quadrature-mirror pair. Two filtering-decimation
operator then can be defined:

(3) Hx(t) = jhjx(2t ­ j) and Gx(t) = jgjx(2t ­ j)

together with their conjugates as well
   1             t        j                1            t        j

(4) H*x(t) = ¦ jhjx(¦ + ¦) and G*x(t) = ¦ jgjx(¦ + ¦).
   2            2      2     2            2      2

Assuming h и g are with finite length, we define:  = limnH
n, where  is an

indicator function for the interval [­1/2, 1/2] and it is the unique fixed point in the
equation  =  H .
The wavelet packet is a projection of with successive applications of H and G and
with some possible translations and dilatations. The wavelet packets as obtained, are
orthogonal with respect to their translated and dilated versions. We can arrange the
three parameters and index the wavelet packets wf,s,p, as follows:

w0,0,0(t)=f(t);  w2f,0,0(t)=Hwf,0,0(t); w2f+1,0,0(t)=Gwf,0,0(t), etc.

By wavelet packets we can approximate a continuous-time function x = L2(R) with
accuracy O(2­L) by the l2 sequence of inner products xi = x, w0, ­L,i, for i integer. The
following equation allow recursive computation of the wavelet packets:

x, w2f,s+1,p = jhjx, wf,s,2p+j(5)
x, w2f+1,s+1,p = jgjx, wf,s,2p+j

The H and G operators are applicable on discrete sequences (signals):

H:l2  l2, Hxn = jhjx2n+j ,
(6)

G:l2  l2, Gxn = jgjx2n+j .

The wavelet packets form the so-called dictionary
of bases. Considering vectors in RN, there are NlogN
bases and more than 2N orthonormal bases exist in
RN, then.  The basic vector and the corresponding
coefficients are located in nodes of a binary tree.
Nodes from one level correspond to a particular
scale. They differ in frequency positions. The coef-
ficients in each vector differ in their time position
(Fig. 1). Each node is a cartesian sum of its descen-
dants. Starting from the root we can divide the nodes
forming in such way certain basis from the bases
dictionary.

As we argued, there is a redundancy of bases. Fig. 1. Tree structured WPT
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A question arises: how we can find the best basis. We need an appropriate informa-
tion measure. Once established, it can be searched for a minimum through all possible
bases. This best basis search can be done by fast algorithms of “divide and conquer”
type [8, 9].  Obviously in order to be applicable on tree structured bases, this measure
has to be additive. It can be expressed as a functional M mapping the sequence {xi}
into RN, where M({xi}) = jM(xi). Since the vector space R

N can be factorized on a
product of one-dimensional spaces, the finding of a minimum of M requires O(N)
operations.

In our investigations we use the perceptual entropy measure, as defined in [10].

2.2. The perceptual entropy as a best basis information measure

Our best-basis information measure is based on the psycho-acoustic model. It is well
known that the human hearing performs space selection of different frequency bands
called critical bands [11]. Hence two sounds in the same frequency band are
undistinguishable. This property is known as frequency masking effect. Using this
effect one can determine how many bits are sufficient to code the subband signal. The
number of bits (quantization levels) influences on the quantization noise. The percep-
tual entropy (PE) determines the threshold representing the maximum level of the
injected quantization noise, being inaudible while added to the input signal. We calcu-
late the PE using Model II of the ISO-MPEG [12]. Hence the determined by the PE
number of bits per subband can serve as an information measure M. Instead of build-
ing the complete tree structure of the WPT, we start from the level 0 and at every
stage, a decision is made whether to decompose the subband further, based on the M.
If the decomposition results in a smaller M, it is carried out. Otherwise, it stops. In this
manner we adapt the WPT tree to approach the critical bands, determined by the PE,
as close as possible.

3. Wavelet bases, derived from B-splines
Here we briefly argue our choice to use wavelets, generated by B-spline basic func-
tions. More theoretical details can be found in [13, 14].
For the classical B-spline case (x) = ''(x) is a central B-spline of degree n:
(7) ''(x) = 0(x)n­1(x),

 1, if x  [­1/2, 1/2],
(8) 0(x) = 

 0 otherwise.

They are in the function class Cn­1 i. e. they are the most regular functions of degree n
with a support of n+1 and an approximation order L=n+1 [13]. When sampled at
integers, the B-splines are symmetrical finite-length sequences, whose values are bi-
nomial coefficients.

The human hearing system can be modeled as successive convolutions with
Gaussian kernels with different scales [15].  B-splines are good approximations of the
Gaussian kernel. By the numerical computations, it was shown that the cubic B-spline
is already near optimal in terms of time-frequency localization in the sense that its
variance product is within 2% of the limit specified by the uncertainty principle [16].
Another significant property of the B-spline of a given order n is that it is the unique
compactly supported refinable spline function of order n which can provide a stable
hierarchical representation of a signal at different scales [17]. Hence, a compactly
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supported spline is m-refinable and stable if and only if it is a shifted B-spline:
            

(9) Sh
n = {cm(k)hn(x­ hk): cm  l2(Z)}.

           k­

Then
            ¦¦¦­¦

(10) Slm
n  Sm

n ,  i  Z+ and  Sh
n = L2(R).

             h>0
Since B-splines provide a stable multiresiolution representation of a signal at multiple
scales, it is preferable to select B-splines as smoothing kernels to extract multiscale
information inherent in a signal. If we choice a B-spline of certain order as a smooth-
ing (scaling) functions, the corresponding wavelet is easy to construct by an approxi-
mation with a linear combination of B-splines:

(11) (x) =  g(k)n(x ­ k).

The weighting coefficients can be chosen with different assumptions, e.g. taking first
or second derivatives of B-splines. By using such types of wavelets, we can represent
a signal by its multiscale maxima or zero-crossings [18]. Higher order of derivatives of
B-splines can represent signal transients with higher singularity and the coefficients g
are the binomial-Hermite sequences. This leads to construction of fast algorithms [5].
For most compact representation, needed in compression tasks, the m-scale relation
is simplified to two-scale relation, which leads exactly to critically sampled wavelet
(wavelet packet) scheme (), where the QMF are with binomial coefficients.

4. Modified Zero-tree coder

The original version of the zero-tree coder was found useful in wavelet coding of still
images [7]. The basic assumption is that most of the signal’s energy is concentrated in
the lover frequency bands. Under the above assumption there is a high probability that
if the energy of some frequency band is lover than a certain threshold, the energies of
the higher bands will remain below the threshold as well.

We can adapt this assumption for speech signals as well. The speech signal’s
energy is also concentrated in the relatively lover frequencies. In the terms of the
WPT those are the frequency bands with higher scale parameters. They contain the
pitch frequency and the first two high-energy formants. Another reason is that we,
adapting the decomposition by means of the PE, had found the appropriate frequen-
cies bands, whish the hearing system is much sensitive at. Hence, we modify the
thresholding operation by inserting two different thresholds: one (lower) for the four
most significant low-frequnecy bands, and second, two times higher, for the rest bands.

5. Huffman entropy coder

After the ZTC we apply a loss-less coning based on an adaptive zero-order Huffman
algorithm. The first data pass includes checking the counts for each symbol in the
alphabet. The Huffman table is then built using a simple yet elegant procedure in
which the individual symbols are laid out as a string of weighted leaf nodes to be
joined ad a binary tree. The weight of each node is set by the frequency count of the
symbol it represents. The binary tree structure is built as follows:

­ The two nodes with the lowest weight are allocated.
­ A parent node for these two nodes is created. It is assigned a weight equal to

the sum of the two child nodes.
­ The parent node replaces the two child nodes in the list of free nodes.
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­ One of the child nodes is designed as the path taken from the parent node
when decoding a 0 bit, while the other is set as the path when decoding a 1 bit.

­ The previous steps are repeated until only one free node remains in the list: this
last node is therefore the root of the tree.
Longer length words are allocated to symbols with lower counts and shorter length
codes are given to symbols with higher counts.

6. Real-time implementation

6.1. Implementation of the WT

The wavelet transform module was originally implemented in C. The program’s as-
sembly code was then optimized to eliminate unnecessary address load and branch
instructions. Block repeat and single repeat instructions were also used wherever pos-
sible in this version of the program to reduce the number of cycles required for each
program run. The block size employed by the program can be anywhere between 512
samples and 4096 samples. Large block sizes typically result in superior compression
and larger run-time memory and time-delay requirements. We chose a block-length of
1024 samples, which is acceptable form the time-consuming point of view and also is
well-related with the second-order stationary statistics of the speech signals.

We exploit the main differences between wavelet-based methods and linear-
prediction based methods. In most window-based vocoders, such as those based on
linear-predictive methods, some samples from the previous block are attached to the
boundaries of the current block to avoid edge discontinuities. In this wavelet based
implementation, boundary artifacts are reduced by symmetric extensions the block
boundaries. This requires symmetrical wavelets to be applied.

The program was originally written to test diverse wavelet families, which were
specified by the length and impulse response coefficients of the low-pass and high-
pass filters required. Also some possibilities to test different decomposition techniques
(e.g. DWT, frames, WPT) were included. As it turned out, this approach requires too
processor overhead from a speed perspective so the program was redesigned to handle
only a particular set of wavelet filters.  In our final version we deal with the bi-orthogo-
nal set of B-spline based wavelets. A final optimization technique involved replacing
branched loop structures with repeated instructions wherever possible. This avoided
several types of instructions and their associated overhead at the expense of program
memory.

6.2. Implementation of the modified ZTC

In the zero-three algorithm the ordering of the transmission of coefficients values in
not done by sending the indices, but by sending coefficient significance information.
A coefficient cn is called significant with respect to a given l, if it satisfies |cn| і 2

2;
otherwise it is called an insignificant coefficient. A subset Sm is defined to be a signifi-
cant subset with respect to a given k, if it contains at least one significant coefficient
with respect to a given k; otherwise it is defined as an insignificant subset. For the
ordering process we have split the set of WP coefficients into subsets and check for
the significance of each subset. If a subset is found to be insignificant then all of its
members are insignificant; if a subset is significant the decoder needs more informa-
tion about the significant members. This is done by an appropriate subset splitting.
The process is repeated until a magnitude check is applied to all significant subsets
that include only one member. Since the splitting rules are common for the coder and
the decoder, there is no need to send the indices of the transmitted coefficients.
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The algorithm can be represented in a pseudo-code as
follows:
Treshold := max(abs(Ck)) / 2, k = 0..N-1
While(Treshold > LimitTreshold)
Begin

DominantPass
SubordinatePass
Treshold := Treshold / 2

End

The initial threshold is taken to be two times lower the
maximal element in the subset.

For efficient compression the significant-subset split-
ting rules should satisfy the following: a subset that is ex-
pected to be insignificant should have as many coefficients,
as possible, while a subset that is expected to be significant
should have the lowest possible number of coefficients (pref-
erable only one – the significant coefficient). That is the
reason we use the WPT decomposition since the frequency
bands are expected to have the best possible energy com-
paction, related with the psycho-acoustic reception. We take
advantage also of the features of the speech signal and use
two different thresholds for low-frequency and high-frequency bands.

6.3. Implementation of the entropy coder

As was described in the previous section, an adaptive order-0 Huffman coder was
implemented in assembly language. This coder function employs a two-pass algo-
rithm: The first pass counts each symbol while building the Huffman table, and the
second pass generates the coded bitstream from the input symbol data. The coder was
written in assembly. Each node of the Huffman code is stored using a data structure
with symbol count, parent, child-0 and child-1 as its members. Existing symbols are
counted and included in the header of each block of data sent to the decoder, which
then uses these counts to build the required Huffman table for block processing. This
table is employed in the second pass of data processing to decode the bitstream.

7. Experimental results

The performance of the proposed techniques was compared with the existing speech
coding technique LD-CELP G.728 [4]. The compression results were compared in
terms of peak-signal-to-noise ratio (PSNR) and the compression ratio. The output bit-
rate of the G.728 standard-based coder is 16 kbits/s. This implies that an 8 bit/sample
-law signal would achieve a compression ratio 4:1, and an 8 bit/sample speech signal
would achieve a compression ratio of only 2.5:1.
Four different test sets separated at segments of 1024 samples each were tested:
‘First sentence’ – male voice English
‘Second sentence’ –female voice English
‘Third sentence’ – male voice Bulgarian
‘Fourth sentence’ – female voice Bulgarian.

Table 1 summarizes the results got.  A segment of the ‘First sentence’ signal is
presented in Fig. 3.  Four segments decoded with different quality are given on Figs.
4–7. It can be seen that the energy behavior of the speech segment has been preserved

Source Material

8-bit ADC

DWT
1024 pt

Calculation
Treshold

Coding
Zerotree

To channel

Fig. 2. Flow-diagram of the
proposed algorithm
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 Compression 
rate 

bits/sample 

PSNR, 
 [dB] 

PSNR for LD-CELP, 
fixed compression 

rate, [dB] 
Bulgarian Male Speaker 1.336  27.06   
Bulgarian Male Speaker 2.399  30.24  
Bulgarian Male Speaker 3.648  33.80  
Bulgarian Male Speaker 4.948  34.35  31.03 
English Male Speaker 1.164  29.50  
English Male Speaker 2.129 31.04   
English Male Speaker 3.251  32.67   
English Male Speaker 4.515 40.14  37.00 

Bulgarian Female Speaker 1.898 36.45   
Bulgarian Female Speaker 3.314 42.19  
Bulgarian Female Speaker 4.794 46.25   
Bulgarian Female Speaker 6.290 48.47 36.00 
English Female Speaker 1.467 33.19  
English Female Speaker 2.551 37.36  
English Female Speaker 3.766 39.93  
English Female Speaker 5.143 41.51  31.70 

 

Table 1. Experimental results of the proposed algorithm and the LD-CELP (G.728)
algorithm over four sentences with different compression rates

Fig. 3. A segment from the ‘First sentence’

3      Problems of Engineering Cybernetics and Robotics, 51
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Fig. 4. The same segment as in Fig. 3 compressed with a compression ratio 1.336 bits/sample
and then decompressed

Fig. 5. The same segment as in Fig. 3 compressed with a compression ratio 2.399 bits/sample
and then decompressed

3      Problems of Engineering Cybernetics and Robotics, 51
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Fig. 6. The same segment as in Fig. 3 compressed with a compression ratio 3.648 bits/sample
and then decompressed

Fig. 7. The same segment as in Fig. 3 compressed with a compression ratio 4.948 bits/
sample and then decompressed
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for all four compression rates.
Subjective tests were also carried out on the decompressed samples. It was ob-

served that for the LD-CELP coder, the decompressed sound samples had a back-
ground noise, which was objectionable to the listener, though a post-filter would have
improved its subjective quality by removing these artifacts. For the rates up to 1bit per
samples our wavelet-based coder has shows good subjective quality.

8. Conclusions

A wavelet-based speech coder has been proposed, and a program has been realized
and tested. The speech signals were sampled at 8 KHz at 8 bits/sample. The proposed
vocoder was compared with the G.728 standard LD-CELP vocoder. Results indicate
that the proposed vocoder performed best in terms of SNR, PSNR and in terms of
subjective tests.

Adaptive model to choose the number of quantization levels for each of the
subbands would be warranted.

Using wavelets, the compression ratio can be easy varied while other compres-
sion schemes have fixed compression rate. This fact makes the algorithm highly useful
for Internet and other bandwidth-dependent applications.

The algorithm can be further improved by incorporating the modified ZTC or
other advanced quantification techniques [19] into the best-basis selection step.
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Алгоритм кодирования речевого сигнала
при помощи пакетных волн

Г. Марчоков, А. Гочев, З. Николов

Институт информационных технологий, 1113 София

(Р е з ю м е)

Предлагается новый алгоритм для эффективного кодирования речи. В нем
реализуется пакетно­волновая декомпозиция  речевого сигнала при помощи
пакетных волн и на второй степени энтропийное кодирование Huffman.
Применяется модифицированное волновое кодирование с нулевым деревом,
которое использует факт, что большая часть энергии речевого сигнала
концентрирована в первых 4­ех нискочастотных обхватах. Так устанавливаются
два порога в кодере нулевого дерева, которые разные для ниских и
высокочастотных обхватах. Существенные коэффициенты кодированы при
помощи ентропийного кодера нулевого порядка.

Обсуждены некоторые аспекты практического применения алгоритма.
Показанные эксперименты показывают лучшее объективное и субъективное
качество по сравнении с  LD­CELP кодером.


