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1. Introduction

The trend tonard real-time, lov-bit-rate speech coders dictates current research ef-
forts in speech conpression. Such coders are desirable for a nurber of applications
including transmission of digital speech signals and multimedia applications. Multi-
media and video conferencing, dynamic web-site access with voice and video intro-
duces the idea of using voice over the Intermet. This idea also opens up new comer—
cial gyportunities in the area of self—service and other service applicability [1]. An-
other area of interest, where speech compression has gained widespread attention is
the area of cellular and mobi le stations. Both Intermet and wireless comunications
chamels are characterized by limited bandwidth conditions, which determine the re-
search efforts of designing low bit-rate speech coders with adnissible quality. There
have been a number of speech coders developed for lossy coding of speech signals,
and recently linear predictive coders (LPC) have been widely used for achieving low
bit-rate speech [2]. They are based on the speech production mechanism and widely
use the periodicity and the autoregressive structure of the speech signal . They differ
mainly in the methods, aimed at coding the LPC residual carrying information about
the exciting source. The RLP based GSM standard [3] for mobile communications
and the G.728 CELP based standard for canputer network comunications are most
cammonly gpplied [4]. They have fixed bit-rate based on the linear predictive models
used

-An altemative, offering variable bit-rate speech coders is based on certain
decorrelating linear transform and successive transform coefficients guartization. The
wavelet transform (WT) has been most widely used because of its nice properties. Itis
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closest to the optimum Karhunen-Loeve transform and almost decorrelates a nurber
of signal classes [5]. The basic functions (the vavelets) are vell localized in tine ad
frequency (scale) that gives a natural possibility to deal with the transform coefficients
in an effective goplication-oriented maner.

There are several crucial parts when goplying WT for carpression. First step is
an appropriate choice of the basis. The famous Daubechies family of compactly sup-
ported and orthogonal wavelets has been extremely used for compression [6]- While
applied on digital imeges it gives excel lent results based on their compaction proper—
ties and maximal number of vanishing moments, but for audio signals its application
us limited because of the lack of linear phase. It iswell knoan that the orthogonality,
the compact support and the Tinear phase can not coexist [6].- Fortunately nice bi-
orthogonal and compactly supported wavelets, most of them based on B-splines has
been designed [5, 6] and corresponding speech coding methods have been introduced.

The second crucial step in designing a wavelet-based coder is the appropriate
transform coefficients quantization. It has been proved that the zero-tree coders (Z10)
perform better then other quantizators, taking advantage of the hierarchical tree struc-
ture of the varvelet coefficiants [7]- Ad the third step is an gopropriate loss-less aoder,
most often entropy based.

In this paper, good answers for the three steps mentioned above are given. e
argue the usage of wavelets based on B-spline basic functions. In order to dotain the
best time-frequency tilling possible we apply Wavelet Packet Transform and deter-
mine the best basis by using a perceptual entropy measure. Then we introduce a
modified Zero Tree Coder (ZTC) related with the speech signal ’s properties.

The paper is organized as follow: Section 2 gives a brief overview of the conogpt
of wanelets, wavelet packets and best besis selection. Section 3 argues the usage of B-
splines as generating functions for wavelet bases and describes sare of their nice
properties. Section 4 details the modification of the ZTC, aimed at effective usage of
the preliminary knovledge of speech signal nature. Section 5 introduces the loss-less
entropy coder for a higher degree of compression. Section 6 describes various issues
involved in a real-time implementation. Section 7 canpares the performance of this
coder with respect to 6.728 standard and others unified lossy coders. We summarize
in Section 8 with conclusions and directions for future work.

2. Wavelet packet transfomm

The main advantage of WT over the other linear transfoms (e.g- Fourier or DCT) is
its ability to represent the signal in both time and freguency within the Heisenberg’s
uncertainty principle limits [6]. It has been shown that the wavelets can gpproximate
time-varying non-stationary signals in a better way that the Fourier T. [6]. More re-
certtly, anurber of deconposition, leading to an optimized time-frequency tilling has
been proposed, e. g- wavelet packets (WP); frames, local overlapped transforms (LOT),
etc. [6]

2.1. Theory inbrief

We consider the Hillbert space L, of finite erergy functions. The wavelet packet for
such space isvell localized in time and frequency. It is parareterized by three param-
eters, describing its scale, position and frequency. Fast wavelet packets can be estab-
lished by a pair of quedrature-mirror filters. Leth={hj} isa lovpess filter possessing
‘the folloving properties:
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The praoperty (@) represents the filter decay, and (b) and (C) — its orthogonality.
Letg:{gj}dependson h as folloas:
Q g, = Dh,.
The two discrete sequences form a quadrature-mirror pair. Two fi ltering-decimation
operator then can be defined:

(€) H(®) = Z,hx(t - J) and Gx(t) = Sgx(t - j)
together with their conjugates as well
@ H*x(0) =]2' Zjhjxfz' + ? and G*x(t) :]ézjgjxg +12)_

Assuming hug are with finite length, we define: ¢= lim__H'X, where X is an
indicator function for the interval [-1/2, 1/2] and it is the unique fixed point in the
equation ¢ = H¢ .

The wavelet packet is a projection of ¢with successive applications of H and G and
wirth some possible translations and dilatations. The wavelet packets as dotained, are
orthogonal with respect to their translated and dilated versions. e can arrange the
three parareters and index the wavelet packets WF,s,p- 88 follons:

WO,O,O(t):f(t) ; WZ,O,O(t):'-lN f,0,0(t) ; W2f+1,0,0(t):GN f,0,0(t) ? etc.

By wavelet packets we can approximate a continuous-time function x =e L2(R) with
accuracy 0(2*4) by the P sequence of inner products X, =(x, w,, | ,,), for i integer. The
fol loving equation allow recursive corputation of the wavelet packets:

X, W2f,s+l,p> = zjhj<x’ Wf, s, 2p+j>’

<X’ W2f+l,S+l,p> = Z:jgj<x’ Wf,s,2p+j>'

The H and G operators are applicable on discrete sequences (signals):
H:P— PP, Hx :Zjhjxm. ,

(&)

©®
G:F— P, Gx, :ngj@mj .
The wavelet packets form the so-cal led dictionary X
of bases. Considering vectors in R, there are NIog\ /\
bases and more than 2" orthonormal bases exist in
R', then. The basic vector and the corresponding Hx Gx

coefficients are located in nodes of a binary tree.
Nodes fram one level correspond to a particular
scale. They differ in frequency positions. The coef-
Tficients in each vector differ in their tine position
(Fig- 1). Each node is a cartesian sum of 1ts desoen-
dants. Starting from the root we can divide the nodes
forming in such way certain basis from the bases
dicticary.
As we argued, there is a redundancy of bases. Fig. 1. Tree structured WPT
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A question arises: how we can find the best basis. We need an appropriate informa-
tion measure. Once established, it can be searched for a minimum through alll possible
bases. This best basis search can be done by fast algoritims of “divide and conquer””
type [8, 9]- Ooviously in order 1o be gpplicable on tree structured bases, this measure
has to be additive. It can be expressed as a functional M mepping the sequence {X;}
into R', where M({x;}) = 2,M(x;). Since the vector space R' can be factorized on a
product of one-dimensional spaces, the finding of a minimum of M requires O(N)
Qperatians.

In our investigations we use the perceptual entropy measure, as defined in [10].

2.2. The perceptual entropy as a best basis information measure

Our best-basis information measure is based on the psycho-acoustiic model . It iswell
known that the human hearing performs space selection of different frequency bands
called critical bands [11]. Hence two sounds in the same frequency band are
undistinguishable. This property is known as frequency masking effect. Using this
effect one can determine how many birts are sufficient to code the subband signal . The
nurber of bits (quantization levels) influences on the quantization noise. The perogp-
tual entropy (PE) determines the threshold representing the maximum level of the
injected quantization noise, being inaudible while added to the input sigal - We calau-
late the PE using Model 11 of the ISO-MPEG [12] . Hence the determined by the PE
nurber of bits per subband can sene as an information measure M. Instead of build-
ing the complete tree structure of the WPT, we start from the level 0 and at every
stage, a decision is made whether 1o decompose the subband further, based on the M.
It the decamposition results inasmller M, 1t is carried aut. Otrerwise, 1tstops. In this
manner we adapt the WPT tree to approach the critical bands, determined by the PE,
as close as possible.

3. Wavelet bases, derived fraom B-splines

Here we briefly argue our choice to use wavelets, gererated by B-spline basic func-
tions. More theoretical details can be foud in [13, 14].
For the classical B-spline case o(X) = "(X) isa catral B-spline of degree n:

o B" GO = BACIB™ (D,
n {1, ifxe [-1/2, 1/2],
® B = 0 e

They are in the function class C* 1. e. they are the most regular functions of degree n
wi'th a support of n+l and an approximation order L=n+1 [13]. When sampled at
integers, the B-splines are symmetrical finrte-length sequences, whose values are bi-
nanial coefficiants.

The human hearing system can be modeled as successive convolutions with
Gaussian kemels with different scales [15]. B-splines are good gpproximations of the
Gaussian kermel . By the numerical conputations, it was shomn that the aubic B-spline
is already near optimal in terms of time-frequency localization in the sense that Its
variance product is within 2% of the limit specified by the uncertainty principle [16].
Another significant property of the B-spline of a given order n is that it is the unique
conpactly supported refinable spline function of order n which can provide a stable
hierarchical representation of a signal at different scales [17]. Hence, a carpectly
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supported splire is mrefireble ad steble if ad only if it is a shifted B-splire:

()} Sn= {Z:cm(k)ﬁh“(x— hi): ¢ e P@}-

Then

10) SrcS, Viezad UST= L2(R).
h=0

Since B-splines provice a stable nultiresiolution representation of a sigal at nultiple
scales, it is preferable to select B-splines as smoothing kerrels to extract nultiscale
information inherent in a signal. Ifwe choice a B-spline of certain order as a smooth+-
ing (scaling) functions, the corresponding wavelet is easy 1o construct by an approxi-
mation with a linear corbinatiion of B-splines:

a (9 =X g(IB"X - K-

The weightiing coefficients can be chosen wirth different assumptions, e.g. taking first
or second derivatives of B-splines. By using such types of wavelets, we can represent
a signal by its nultiscale maxima or zero-crossings [18] . Higher order of derivatives of
B-splines can represant signal transients wirth higher singularity and the coefficients g
are the binomial-Hermite sequences. This leads t construction of fast algoritins [5]-
For most camnpact representation, needed In conpression tasks, the m-scale relation
is sinplified to two-scale relation, which leads exactly to critically sarpled wvavelet
(wavelet packet) scheme (), where the QW are with binomial coefficients.

4. Modified Zero-tree coder

The original version of the zero-tree coder was found useful inwavelet coding of still
images [7]- The basic assumption is that most of the signal”s erergy is concerttrated In
the lover frequency bands. Under the above assumption there is a high probebility that
if the energy of same frequency band is lover than a certain threshold, the energies of
the higher bands willl remain below the threshold as vell.

We can adapt this assunption for speech signals as well. The speech signal’s
energy is also concentrated in the relatively lover frequencies. In the terms of the
WPT those are the frequency bands with higher scale parameters. They contain the
pitch frequency and the Tirst two high-energy formants. Another reason is that we,
adapting the decomposition by means of the PE, had found the appropriate frequen-
cies bands, whish the hearing system is much sensitive at. Hence, we modify the
thresholding operation by inserting wo different thresholds: one (loner) for the four
most significant lox-frequnecy bands, and second, two tines higher, for the rest bands.

5. Huffman entropy coder

After the ZTC we apply a loss-less coning based on an adaptive zero-order Huffman
algoritim. The first data pass includes checking the counts for each symbol in the
alphabet. The Huffman table is then built using a simple yet elegant procedure in
which the individual symbols are laid out as a string of weighted leaf nodes to be
Joined ad a binary tree. The weight of each node is set by the frequency count of the
symol 1t represents. The binary tree structure is buillt as folloas:

— The two nodes with the lowest weight are allocated.

— A parent node for these two nodes is created. It is assigned a weight equal to
the sum of the two chilld nodes.

- The parent node replaces the two child nodes in the list of free nodes.
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- One of the child nodes is designed as the path taken from the parent node
when decading a 0 bit, while the other is set as the path when decoding a 1 bit.

— The previous steps are repeated until only one free node raemains in the list: this
last nock is therefore the root of the tree.
Longer length words are allocated to symbols with lower counts and shorter length
codes are given to symbols with higher counts.

6. Real-time Implementation
6.1. Implementation of the WT

The wavelet transform module was originally implemented in C. The program’s as-
sembly code was then optimized to eliminate unnecessary address load and branch
instructions. Block repeat and singlle repeat instructions were also used wherever pos-
sible in this version of the program to reduce the nurber of cycles required for each
program run. The block size employed by the program can be anywhere between 512
samples and 4096 samples. Large block sizes typical ly result in superior conpression
and larger run-time memory and time-delay requirements. We chose a block-length of
1024 samples, which is acceptable form the time-consuning point of view and also is
wel l-related with the second-order stationary statistics of the speech sigals.

We exploit the main differences between wavelet-based methods and linear-
prediction based methods. In most window-based vocoders, such as those based on
linear—predictive methods, some sanples from the previous blodk are attached to the
boundaries of the current block to avoid edge discontinuities. In this wavelet based
implementation, boundary artifacts are reduced by symmetric extensions the block
boundaries. This requires symetrical wavelets to be applied.

The programwas original ly written to test diverse wavelet families, which were
specified by the length and impulse response coefficients of the low-pass and high-
pess filters required. Also sare possibilities o test different decamposition tednigues
(e.g- DAT, frames, WPT) were included. As It tumed out, this approach requires o
processor overhead fram a speed perspective so the program was redesigned to handlle
only a partiaullar set of wavelet filters.  In our final version we deal wirth the bi-orthogo-
nal set of B-spline based wavelets. A final gptimization technigue involved repllacing
branched loop structures with repeated instructions wherever possible. This avoided
several types of instructions and their associated overhead at the expense of program
memory .

6-2. Implementation of the modified ZTC

In the zero-three algoritim the ordering of the transmission of coefficients values In
not done by sending the indices, but by sending coefficient significance information.
Accefficient ¢ is called significantwith respect toagiven I, if it satisfies | | 1 2%;
otherwise It is called an irsignificant coefficient. Asubset S is defired ke asignifi-
cant subset with respect to agiven k, i it contains at least are significant coefficient
wirth respect to a given k; otherwise it is defined as an insignificant subset. For the
ordering process we have split the set of WP coefficients into subsets and check for
the significance of each subset. 1T a subset is foud to be insignificant then all of its
merbers are insignificant; it a subset is significant the decoder needs more informa—
tion about the significant members. This is done by an gppropriate subset splitting.
The process is repeated until a megnirtude check is applied to all significant subsets
that include only one member . Since the splitting rules are cormon for the coder and
the decoder, there is no need to send the Indioes of the transmitted coefficiants.
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The algorithm can be represented in a pseudo-code as
Tolloas: Source Material
Treshold == max(abs(Ck)) /7 2, k = 0..N-1
While(Treshold > LimitTreshold)

Begin 8-bit ADC
DominantPass
SubordinatePass
Treshold := Treshold / 2 1024 pt
End DWT

The Iinrtial threshold is taken to be wo times loer the
meximal element in the subset. CTlreSTO'.d
For efficient compression the significant-subset split- alculation
ting rules shaulld satisfy the folloving: a subset that is ex-
pected to be insignificant should have as meny coefficients, Zerotree
as possible, while a subset that s expected to be significant Coding
should have the lanest possible nurber of coefficients (pref-
erable only one — the significant coefficient). That is the To channel
reason we use the WPT decomposition since the frequency
bands are expected to have the best possible energy com- Fig. 2. Flon-diagram of the
pection, related with the psydho-acoustic reception. e take proposed algorithm
advantage also of the features of the speech signal and use
‘two different thresholds for lov-frequency and high-frequency bands.

6.3. Implementation of the entropy coder

As was described in the previous section, an adaptive order-0 Huffman coder was
implemented in assembly language. This coder function employs a two-pass algo-
rithm: The first pass counts each symbol whi le bui lding the Huffman table, and the
second pass gererates the coded bitstream from the input symbol data. The coder was
written in assenbly. Each node of the Huffman code is stored using a data structure
wirth symbol count, parent, child-0 and child-1 as 1ts menbers. Existing symols are
counted and included in the header of each block of data sert to the decoder, which
then uses these counts 1o build the required Huffman tablle for block processing. This
table is employed in the second pass of data processing to decode the bitstream.

7. Bxperimental results

The performance of the proposed techniques was compared with the existing speech
coding technique LD-CELP G.728 [4]- The compression results were compared in
terms of peak-signal-tonoise ratio (PS\R) and the compression ratio. The output bit-
rate of the G.728 standard-based coder is 16 kbits/s. This inplies that an 8 bit/sarple
p—law signal would achieve a compression ratio 4:1, and an 8 bit/sanple speech signal
would achieve a compression ratio of only 2.5:1.
Four different test sets separated at segrents of 1024 sanples each were tested:
“First sentence” — male woice Bglish
“Second sentence” —female woice English
“Third sentence” — male voice Bulgarian
“Fourth sentence” — female woice Bulgarian.

Table 1 sumarizes the results got. A segrent of the “First sentence” sigmal is
presented in Fig. 3. Four segrents decoded with different qual ity are given on Figs.
4-7. It can be seen that the energy behavior of the speech segrment has been preserved
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Table 1. Experimental results of the proposed algorithm and the LD-CELP (G-728)

algoritim over four sentences with different compression rates

Compression PSNR, PSNR for LD-CELP,
rate [dB] fixed compression
bits/sample rate, [dB]
Bulgarian Male Speaker 1.336 27.06
Bulgarian Male Speaker 2.399 30.24
Bulgarian Male Speaker 3.648 33.80
Bulgarian Male Speaker 4.948 34.35 31.03
English Male Speaker 1.164 29.50
English Male Speaker 2.129 31.04
English Male Speaker 3.251 32.67
English Male Speaker 4.515 40.14 37.00
Bulgarian Female Speaker 1.898 36.45
Bulgarian Female Speaker 3.314 42.19
Bulgarian Female Speaker 4.794 46.25
Bulgarian Female Speaker 6.290 48.47 36.00
English Female Speaker 1.467 33.19
English Female Speaker 2.551 37.36
English Female Speaker 3.766 39.93
English Female Speaker 5.143 41.51 31.70
Original sgnal
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Fig- 3. Asegnent fram the “First sentence”
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Decoded signal — quality 3
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Fig. 4. The same segment as in Fig. 3 compressed with a compression ratio 1.336 bits/sample
and then decompressed
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Fig. 5. The same segment as in Fig. 3 compressed with a carpression ratio 2.39 bits/sanple
and then decompressed
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Decoded signal — quality 5
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Fig- 6. The same segment as in Fig. 3 compressed with a cotpression ratio 3.648 bits/sample
and then decompressed
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Fig. 7. The same segment as in Fig. 3 compressed with a compression ratio 4.948 bits/
sample and then decompressed
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for all four compression rates.

Subjective tests were also carried out on the decompressed sarples. It vwas ob-
served that for the LD-CELP coder, the decompressed sound samples had a back-
ground noise, which waes abjectionable 1o the listener, though a post-filter would have
improved its subjective qality by removing these artifacts. For the rates up to 1bit per
sarples our wavelet-based coder has shows good subjective quality.

8. Conclusions

A wavelet-based speech coder has been proposed, and a program has been realized
and tested. The speech signals were sanpled at 8 KHz at 8 bits/sample. The proposed
vocoder was compared with the G.728 standard LD-CELP vocoder. Results indicate
that the proposed vocoder performed best in terms of SNR, PSNR and in terms of

Adaptive model to choose the number of quantization levels for each of the
subbands would be warranted.

Using wavelets, the campression ratio can be easy varied while other compres-
sion schemes have Tixed compression rate. This fact makes the algoritim highly useful
for Intemet and other bandwidth-dependent applications.

The algoritim can be further improved by incorporating the modified ZTC or
other advanoed quantification tedniques [19] into the best-basis selection step.
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AJITOPUTM KOIOMPOBAHMSA PEUEBOT'O CHTHAJIA
MIPM [IOMOUM [TaKETHEIX BOJIH

I'. Mapyokos, A. I'oueB, 3. HMKOJIOB

UHCTUTYT MHOOPMALIMOHHEIX TeXHOoJIorwMit, 1113 Cogusa

(PesoMme)

[lpenyaraeTcsa HOBBM alllOPUTM 0718 30OeKTMBHOIO KOOMPOBaHMS peur. B HeMm
peammsyeTcs NaKeTHO—BOJIHOBASA OEKOMIIO3ULMSA PeUueBOI'O0 CHMI'HAJA IIPM [TOMOLR
IIaKeTHEIX BOJIH M Ha BTOPOM CTENEeHM— SHTPONMMHOe komypoBaHme Huffman.
[IprMeHAeTCAa MOIMOULIMPOBAHHOE BOJIHOBOE KOIMPOBAaHME C HYJIEBHM IEPeBOM,
KOTOPOE MCIIOJIE3YyeT QaKT, UTO OOJkllasd YaCThb SHEPTVM PeUYeBOT'O CHUI'HAJa
KOHLIEHTPMPOBaHa B IIEPBLIX 4—eX HMCKOYACTOTHEIX OOXBaTax. TaK yCTaHABIMBAIOTCSH
IBa [IOpOora B KOIEepe HYJIEBOI'O IOepeBa, KOTOPHE pasHEE OJIA HUCKUX U
BEICOKOWACTOTHEIX OOxBaTax. CylleCTBeHHBE KOSQOULIMEHTE KOOMPOBAHEL IIPU
TIOMOIM €HTPOIMMHOI'O KOoOepa HYyJIEBOT'O IOpAnKa .

OBCyXIeHEl HEKOTOPEE ACIIEeKTHL IPAKTUIECKOI'O IPUMEHEHNA aJINOPUTMA .
[IokasaHHBIE 3KCIIEPMMEHTEL [IOKABEBAIT Jiydllee OOBEKTHMBHOE U CYyOBEKTUBHOS
KauecTeo o cpaBHerwm ¢ LD-CELP xozmepoM.
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