```
ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 51
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 51
София . 2001. Sofia
```


Computer Aided Synthesis of Interacting Processes Models*

Hristo Hristov, Tasho Tashev

Institute of Information Technologies, 1113Sofia

1. Introduction

The design of modern information systems requires the investigation of interacting information processes occurring in information computing systems and sets, which are characterizedby theirmulti-level structure and the presence of asynchronous interactions and indeterminacy. One of the formal tools used to study such processes, is the apparatus of Petrinets [1].

Petrinets (PN) are an illustrative andwell formalizedmodel, designed for the purposes of parallel systems study, which in a compact form reflect the interactions between the systemelements and their dynamics. The level of model abstraction is high and it is placed between finite automata and Turing' s machine.

Besides amodel, amathematical tool is also necessary for the investigation, which enables not only the analysis of a given variant of interactions, but also provides the possibility to synthesize new interactingprocesses of a specific class. The application of tensor analysis is suggested for the solution of similar problems [2]. Tensor methodology enables the investigation of complex systems inparts, the properties of one systembeing obtained from the simplest one-a "primitive system" of one class on the basis of a "sample" system of another class. The tensor approach proposedby G. Kron includesmethods for analysis, as well as synthesis procedures [3] . Kulagin has developed and applied it for Petri nets [4]. Questions concerning the computer support of this approach for PN are the subject of the present paper.

2. Tensor methodology for PN-models

The tensor approach of Kron assumes the use of a group of transformations that correspond to a geometry of a certain type. In order to define the geometric transformations on interacting structures, represented by Petri nets (PN), some

[^0]denotations are introduced.
Elementary net -defined in [5] and representing a transition with one input and one output position.

Primitive PN-formed by a set of elementary nets not connected one to another. Space of PN-structures - space Rm with the respective dimension, a set of operations Gand a system of coordinates (definedby Kulagin [4]), in which the output model is represented.

In [4] the type of themain tensor equations for PN is given, and also a method for PN-models study on the basis of a primitive system (PS). The disadvantage of the approach described is that for each PN, interpreting any interaction, the construction of separatetensors of the transformation is necessary. Kulagin proposes their avoiding, constructing a tensor of the transformation (TT) in the primitive system of one generalizedPN, definedby himas a reduced net. It consists of a set of linear fragments (LFS) and the stage of its obtaining coincides with the stage of analysis of the interpretedinteraction [6]. Realizing unions on the primitive systemelements, the initial PNmodel can be constructed, as well as a set of other PN-models from the given class of interactions (synthesis stage). The union operations belongto the set Gand the NP models synthesized will belong to the space Rm of NP-structures located in a coordinate system connected with the primitive system. The image of the new structures in the output system of coordinates is done with the help of a transformation tensor C_{r}, as shown in Fig. 1 (according to [6]) .

Fig. 1. NP structurestransformation

The set Uin Fig. 1 indicates the set of NP-structures in the output system of coordinates (in tensor analysis denotations), and W - the set of NP-structures in a coordinate system of the primitive system $R_{m^{\prime}}$; Dand D^{\prime} denote the matrices of incidence of the corresponding systems.

3. Functional scheme of the software realization

Following the logic of the approach formulatedby Kulagin [6] a functional software structure couldbe suggested consisting of five basic blocks implementing separate problems in the aspect of [4] -Fig. 2. Each block will comprise procedures which will call some basic functions for their execution.

The Block 1 will transform the PN-model from an ordinary Petri net into a basic PN (BPN) [7] representing the set U. It must contain the procedures:
-removing loops;

- removing the forbidden situations for start-stop positions;
- check of the elementary transitions.

The Block 2 realizes the decomposition of the BPN to a LFS system. The necessary procedures are:
-definition of the nodes that have to be divided.
Withnecessary functions:

- realization of a help operation Sum;
- realization of a help operation Num;
-division of the nodes.
Withnecessary functions:
-realization of the operations Tear_p1, Tear_p2, Tear_p3v and Tear_p3h; Tear_t1, Tear_t2, Tear_t3v and Tear_t3h;
- arranging according to IFS,
- loops breaking.

As a result of these transformations the number hof LFS is obtained, the number k_{i} of the transitions into each fragment, the dimension of the configured space R.

The Block 3 realizes the stage of coordinates transformation with the help of the followingprocedures:

- constructing the incidence matrix of the primitive system;
- computing the coefficients of the transforming tensor.

Necessary functions:

- computing the coefficients $C_{F 9}$ for IFS with a number of transitions g; - composition of coefficients C_{q}.

The synthesizedmatrix is computed in Block 4, joining nodes with the help of the followingprocedures:
-check of the restricting conditions.
Withnecessary functions:

- constructing the line A_{w};
-determining the number of LFS, to which the node belongs;
- joining nodes.

Withnecessary functions:
-execution of the operations

$$
\begin{aligned}
& \text { Con_p }(q, r) ; \\
& \text { Con_t }(q, r) \text { : }
\end{aligned}
$$

As a result matrix $D_{\text {new }, T}$ is obtained.
The last Block 5 is designed to give a description of the PN synthesized. The necessary procedures are:
-transition towards the new coordinate system.
Withnecessary functions:
-standardmathematical operations (multiplying the coefficients of TT by the elements of $D_{\text {new }, T}$).

- cancellation of equivalent nodes.

Withnecessary functions:
-discovering coinciding rows;
-discovering coinciding columns.
As a result a coincidence matrix of the synthesizedmodel will be obtained.

4. Modelling capacity. Using the matrix of arcs weights

The model thus obtained will be of the class of ordinary and homogeneous PN. This is a sequence of the requirement for completeness of the operations of analysis and

Fig. 3. Functional scheme of Block 2 (with a MW)
synthesis [8], which implies the exclusion of themulti-arcs in BPN and the model of the generalized PM is reduced to a simple PN.

The problem for analysis and synthesis of models of generalizedPN is studied in [9]. For this purpose the notion matrix of arcs weights (MW) has been introduced and its properties and the corresponding equations have been investigated.

Some additions to the functional scheme have to be introduced in order to obtain models of generalized PN. The use of the matrix of arcs weights does not alter the method, it only requires each operation executed on the matrix for $B F S$, to be executed for MN as well. This is demonstrated in Fig. 3 with the example of Block 2. Naturally, the first procedure for Block 1 has to be the obtaining of $M \mathbb{N}$, and the last procedure in Block 5-the accounting of arcs weights (according to the equations in [9]).

The connection between the blocks and the researcher will be realizedby user' s interface. It is convenient to have an additional block with the task to visualize graphically the PN.

We would like to note that though the algorithm description is oriented towards matrix operations, thematrices storing and theirprocessing as list structuresmay prove more suitable for large dimension PN .

5. Conclusion

The time complexity of the operations division and uniting is not greater for a polynom of second order than the number of nodes of the initial PN, and hence the software realizationwill have sufficient speedon personal computers also.

References

1. Peterson, J.L. Petrinets. - Computing Surveys, Vol. 9, September, No 3, 1977, $225-252$.
2. Peterson, J. Theory of PN and Systems Modelling. M., Mir, 1984, p. 264.
3. Petrov, A. E. Tensor Methodology in Systems Theory. M., Radio I sviaz, 1985, p. 152.
4. Kron, G. Tensor analysis of networks. N.Y., J. Wiley \& Sons, 1965, p. 720.
5. Kotov, B., E. PetriNets. M., Nauka, 1984. p. 160 (in Russian) .
6. Vashkevich, N. P., V. P. Kulagin. Tensor analysis of computing networks models. Theses of reports of Federal Conference. Riga, 1987, 239-243 (inRussian) .
7. Kulagin, V. P. Algebra of networkmodels describing parallel computing structures. - Automation and Modern Technology, 1993, No 2, 25-30 (in Russian).
8. Tashev, T. D., M. B. Marinov. Basic structures and operations in tensor transformations of PN. - In: Proc. of Bulgarian-Russian Seminar "Methods and Algorithms for Distributed Information Systems Design, Theory and Applications. May, 28-20, 1996, Sofia, Bulgaria, 152-162.
9. Kulagin, V. P. Following tensor technology in the design of a concurrent computing system. - In: CAD94 - New Information Technology for Science. Education, Medicine andBusiness. Rousija, Yalta (Gurzuf), May 4-13, 1994. M., 87-89.
10. Tashev, T.D., H. R. Hristov. Introduction of thematrix of arcs weights in tensor transformations of PN. - In: Proc. of Bulgarian-Russian seminar "Methods andalgorithms for distributed information systems design. Theory andApplications. Sept. 29-Oct. 5, 1997. Sofia, Bulgaria, 121-132.

Компьютерно-дополненый синтез моделей взаимодействующих процессов

Христо Христов, Ташо Ташев
Институт информационных технологий, 1113 София
(Резюме)
Рассматривается общая функциональная структура программной системы для синтеза моделей взаимодействующих процессов с заданными свойствами. Модели описаны при помощи аппарата сетей Петри. Определяются основные блоки системы и процедуры, необходимы для их конструирования. Синтез основается на тензорное преобразование сетевых структур.

[^0]: * The investigations are partially supportedby the National Scientific Fund, contract NoИ-703/97.

