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1. Introduction

The theoretical and applied interest towards network flows in the last decades is
supported by their significant use in modern information technologies.

The most widely spread classical network flows are those of F o r d and F u l -
k e r s o n [1, 2, 3], in which the capacity is defined on each arc of the network. In the
network flows investigated in [6, 7] besides the constraints on the separate arcs, some
inequalities are used, including separate sets of the arc flow functions as variables.

A class of network flows is suggested in [6, 7], where the arc capacities are replaced
by linear inequalities, and the variables are subsets of arc flow functions. This class of
network flows is called a linear flow.

A class of network flows is defined and studied in [8, 9], where the capacity of the
separate arcs is replaced by one [8], or by a set [9] of additional linear equalities with
arbitrary coefficients in the left side and nonzero coefficients in the right. The latter
of these classes of network flows is called an ALE-flow. An ALE-flow is stated  in [9]
and different problems of its existence are studied.

The present paper concerns the definition of the ALE-flow capacity and its
dependence on the maximal and minimal values of the same flow.

2. Definition of the capacity of the ALE-flow and of its  lower and upper
limit

Let the graph G(N, U) be defined by a set of nodes N and a set of arcs U. The set M
contains the indices of all the simple oriented paths from the source S towards the sink
t, in which there are no cycles and each path M includes the separate nodes and arcs
only once [1, 2]. U() will denote the set of arcs of the path with an index M:
(1)      U = U().

M
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The network flow with additional linear equalities (ALE-flow) will be defined by
the following constraints: for each

v, if  x = s;
(2) f(x, N) f(N, x) = 0, if  x  s, t;

v,if x = t;

(3)    bi(x, y) f(x, y) = Ci ; i  I;
          (x,y)Di

(4)  f(x, y)  0; (x, y)U;

where I is the set of the indices of the linear equalities (3); Ci 0 are rational non-negative
numbers; Di U are subsets of the division of U, i.e., for each i, jI, it is true that

(5)                  Di Dj= , Di=U;
                              iI

  an empty set; v and f are a flow and an arc flow function respectively, for which
(6) v0;     f(x, y)0;  (x, y) U;

f(x, N)=  f(x, y); f(N, x)=  f(y, x) ;
   y1(x)                           y1(x)

(7)           (N, s) = (t, N) = ;

R',  if  (x, y) D; iI ;
(8) bi(x, y) 

0otherwise;

R' is a set of all nonzero rational numbers,1(x) and 1(x) are an image and inverse
image of x into N.

It is assumed that each subset Di , iI,  is contained in the arcs set (1) of all the
simple oriented paths, i. e.,
(9)                            {U()}Di= Di.

    M
The ALE-flow is defined in relations from (2) upto (4) in the form of arc-nodes.

Further on the main form for the representation of this flow will be arcs-paths [1]
The following denotations are introduced:
Mi a set of these paths in M, in which at least one arc from  Di  is contained;
Mi  = {M ; U()}Di }, iI ; Ui()  a set of arcs on the path , which

are contained in Di , i. e.,

(10)     Ui() U()Di; iI ; M ;

Bi() the sum of the coefficients, corresponding to Ui(), at that for each iI
and M, the following is satisfied:

     bi(x, y),  if  Ui() ;
(11) Bi() = (x, y)Ui()

0otherwise;

U() a flow, corresponding to the path M [1], for which

f (x, y),  if  (x, y)U();
(12) v() 

0otherwise;
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(13)        v =   v();
         M

 relative coefficients, for which

v()/v,  if  v>0; M;
(14)  = 

0otherwise;

 = 1; 01,  if v >0 and    M.
M

M = mnumber of the elements in the set M, = (1,2,..., m) flow realization.
B(i) is an L(i)- factor [9], for which

(15)         B(i) =  Bi(); iI.
            Mi

The following relations are proved in [9] for the ALE-flow thus defined: for each
realization and iI
(16)     bi(x, y) f(x, y) =    v()Bi() = vB(i).

                           (x,y)Di   Mi

The following four values Ci
1, Ci

2, C1 and C2, play an important role in the
definition of the ALE-flow capacity
(17)               Bi

1 = min  Bi();   Bi
2 = max Bi();

    Mi Mi

Ci
 /Bi

1 ,  if  Bi
1>0;

(18) C i
1= 

+otherwise;

Ci
 /Bi

2 ,  if  Bi
2>0;

(19) C i
2= 

0otherwise.

The values C1 and C2 are defined by the following two linear programming
problems:
(20)          C1 =  v()  max,

M
under the constraints: for each iI
(21)  v()Bi() = Ci;

  Mi

(22)              v()  0; M;
(23)          C2 =    v()  min,

 M
subject to (21) and (22).

When comparing the values from (17) upto (23) it follows that Ci
1 and

Ci
2 define the upper and lower limit of the flow v respectively in the presence of only

one equality from (3) with an index iI , and the parameters C1 and C2  show the same
limits of the flow for a set  of all the equalities of (3) with indices from I.

Definition 1. The values C1 and C2 from (20) and (23) will be called upper and
lower limit of the capacity of the ALE-flow from (2) upto (4).
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Lemma 1. If there exists an ALE-flow from (2) upto (4), it is true for the flow v
that:
(24)       C2    v    C1.

P r o o f. The conformity of relations (13), (15) and (16) with those of (20) upto
(22) show the validity of the right inequality in (24), and the comparison of (13), (15)
and (16) with the relations from (21) upto (23) the validity of the left one from these
inequalities.

At a linear equality I = {i} it is not necessary to solve problems from (20) upto
(23)  for Ci

1 and Ci
2 the use of the values from (17) upto (19) is sufficient. In this case

C1 = Ci
1 and C2 =Ci

2.
In case there exists an ALE-flow, the following consequences can be derived from

Lemma 1.
Consequence 1.1. If for each iI and Mi

Bi() = 0 and Ci = 0,
then
(25)        0    v  + 

Consequence 1.2. In case there exists one realization only of the flow, satisfying
relations from (2) upto (4), and

        0    v  + 
then
(26)       v = C1 = C2.

Consequence 1.3. If for every iI and Mi
Bi() > 0 and Ci = 0,

then
(27)  v = C1 = C2= 0.

Consequence 1.4. If for each iI and Mi
Bi() < 0 and Ci = 0,

then
(28)  v = C1 = C2= 0.

Consequence 1.5. If for every iI
         Ci = 0

then
(29)        0    v  C1

The following  two confirmations follow directly from inequalities (24) of
Lemma 1.

Confirmation 1. If there exists an ALE-flow from (2) upto (4), its maximal value
vmax is equal to the upper limit of the capacity C

1.
Confirmation 2. In case there exists an  ALE-flow from (2) upto (4) its minimal

value vmin is equal to the lower limit of the capacity C
2.

Confirmation 1 can be regarded as an analogue for the ALE-flow of the mincut-
maxflow theorem of F o r d and  F u l k e r s o n [1] for the equality of the minimal cut
and maximal flow in the classical network flow. For an ALE-flow the statement of this
relation is different and according to confirmation 1 it defines the equality of the upper
limit of the capacity C2 of the maximal ALE-flow.

Unlike the other classes of flows, according to Lemma 1, there may exist a lower
bound of the capacity C1 with a positive value, equal to the minimal possible value of
the flow vmin. This can also be regarded as a specific mincut-maxflow analogue of the
fundamental theorem of Ford and Fulkerson.
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3. Capacity of ALE-flow at different subsets of  linear equalities

We will consider the cases when the defining of the upper and lower limit of the capacity
is realized  not only by all the equalities of (3), but also using different subsets of these
equalities.

Let the family of subsets {I(r)| r G} be defined in the set of indices I such that
(30)         I = I(r); I(r) I;  rG

  rG

where G is a set of the indices of the family of the subsets in I.
Further on we shall discuss only these subsets in I, for which for each arbitrary

index  rG and  p G the subsets of arcs corresponding to I(r) and I(p) block the whole
set of paths from S towards t, i.e., for each M it is true that

      U() {   Ui() };
      iI(r)   Mi

      U() {  Ui() }.
      iI(p)   Mi

In an analogous way, as in relations from (20) upto (23) it can be written: for each
rG
(31)           C1 (r) = v()  max

       M
under constraints
(32) v() Bi() = Ci; Mi ; i I(r);

           Mi

(33)                       v()  0; Mi; i  I(r);
(34)           C2 (r) = v()  min

       M
and constraints (32) and (33).

Lemma 1 has the following form for the subset I(r):
(35)    C2 (r)vC

1 (r).
Five consequences can be derived from (32), analogous to those from (25) upto

(29), for I(r), C1 (r) and C2(r).
Theorem 2. If for two subsets  I(r), rG, and I(p),  pG, the respective ALE-flows

exist and it is true that
(36)                  I(p) I(r);
then
(37)      C1 (r)C1 (p);
(38)      C2(r)C2 (p).

P r o o f. The parameters C1 (p) and C2 (p) can be defined similarly to those for  rG,
and exactly:
(39) C1 (p) =   v()  max; C2 (p) =   v()  min.

         M            M

satisfying constraints (32) and (33), but for each i I(p).
A. It is assumed that

(40)   C1 (r)C1 (p).
Since the objective functions (31) and the first one in (39) are equal for  C1 (r) and

C1 (p), and it follows from (36) that the equalities I(p) are a part of I(r), but do not
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coincide with them, assumption (40) means that there could be found a plan {v()|
 M} for which the equalities from I(r) and I(p) are satisfied and for which
(41)             v()  C1 ().

     M
But this contradicts to the first one in relations (39) and shows the impossibility

of (40).

B. Let the graph G(N, U) be defined in such a way that

                        {'"} = M; I(p) = {i); I = I(r) = {i, j};

           Ui(') = {(x, y)};    Ui(") = {(x, z)};

           Uj(') = {(y, t)};    Uj(") = {(z, t)}.
Then it follows from (3), (11), (15), and (16) that for each  i  I

           v(') Bi(')  +  v(") Bi(") = Ci.
Since it follows from (41) that  v(")= v v('), then

(42) v Bi(")  +  v(')( Bi(') Bi(")) = Ci.
In a similar way for  j  I it will be obtained:

(43) v Bj(")  +  v(')( Bj(') Bj(")) = Cj.
If it is assumed that

Bi(') =  Bi(") = 0 and Ci = 0,
        Bj(') =  Bj(") = bj > 0 and Cj > 0,

then from (42), (43) and the above assumptions for equality from {i} = I(p), it will be
obtained:

vmax = + = C
1(p),

and the simultaneous satisfying of the equalities from {i, j} = I(r) leads to
           vmax = Cj /bj  = C

1(r).
Hence the following strict inequality is true:

(44)                 C1(r) < C1(p).
If it is assumed that Cj=0 or bj + , then we shall reach the equality:

(45) C1(r) = C1(p).
From the invalidity of (40) and the cases (44) and (45), the relation (37) follows.

In a similar way (38) can be proved.
The following useful results can be derived from this theorem.
Definition 2. If for two groups of indices I(r), rG, and I(p),  pG, it is true that

(46)    I(p)I(r);
(47) C1(p) = C1(r),
then the set I(r) will be called r-minimal.

If I(r*)= I, then the class of equalities I(r*) will be called complete, the r*-minimal
class I(p) will be called just minimal.

Consequence 2.1. If at least one of the two subsets I(r1) or I(r2) is  r-minimal, then
ALE with constraints from I(r3), for which
(48) I(r3) = I(r1)I(r2)I(r3),
is also r-minimal.

P r o o f. It is assumed that  I(r1) is r-minimal, and hence
(49)      C1 (r)C1 (r1).

2     Problems of Engineering Cybernetics and Robotics, 51
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It follows from (48) that
     I(r1)I(r3).

The relation above given and Theorem 2 lead to
(50)      C1 (r1)C

1 (r3).
From (49) and (50) it follows that

(51)      C1 (r)C1 (r3).
It can be written from condition (48) that

      I(r3)I(r)
and according to Theorem 2
(52)   C1 (r3) C

1 (r).
The r-minimality of the equalities subset I(r3) follows from (51) and (52).
Due to the arbitrary choice of  r1 the following  can be proved in a deductive way.
Sequence 2.2. If at least one of the sets I(rj), j = 1, ..., n, for which

(53)   I(r1)I(r2) ...I(rn)= I(rm),
is r-minimal, then the set I(rm) is also r-minimal.

Similar relations can be obtained for the upper limit of the capacity C2 (r), rG.
Definition 3. If for two groups of indices I(r), rG, and I(p),  pG, (46) is true and

(54) C2 (p)C2(r),
then the set I(p) will be called r-maximal, the r*-maximal class I(p) is called simply
maximal.

Consequence 2.3. If at least one of the two subsets  I(r1) or  I(r2) is r-maximal, then
the ALE-flow with constraints from I(r3), for which (48) is true, is also r-maximal.

Consequence 2.4. If at least one of the sets I(rj), j = 1, ..., n, for which (53) is true,
is r-maximal, then the set I(rm) is also r-maximal.

The last two consequences can be proved with the help of the same logical scheme
as consequences 2.1 and 2.2.

4. Conclusion

1. A nonclassical network flow with additional linear equalitiesan ALE-flow [9] has
been studied in the paper. The arc capacities in the flow of Ford and Fulkerson in it are
replaced by a set of linear equalities, the left part of which is a sum of multiplied by
coefficients arc flow functions, and the right one consists of non-negative coefficients.

2. A method is suggested for the definition of the upper and lower limits of the
capacity of the ALE-flow by linear equalities. The coefficients in the left and right side
of the linear equalities play a significant part. A relation has been proved, indicating that
if there exists an ALE-flow, its value is found between these two limits.

3. Theorems have been proved verifying that the maximal ALE-flow is equal to
the upper limit of the capacity, and the minimal ALE-flowto the lower limit of the
capacity. They can be regarded as specific analogues of the famous mincut-maxflow and
maxcut-minflow theorem of the classical network flow.

4. Results have been obtained for the behaviour of the upper and lower limits of
the ALE-flow capacity using different, mutually contained one in another subsets of a
set of linear equalities.
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Пропускная способность и максимальный и минимальный сетевой
поток с дополнительными линейными равенствами

Васил Сгурев

Институт информационных технологий, 1113 София

(Р е з ю м е)

В работе исследован неклассический сетевой поток с дополнительными
линейными равенствами  ДЛРпоток. В нем дуговые пропускные способности
в потоке ФордаФулькерсона заменены множеством линейных равенств, левая
часть которых является суммой дуговых потоковых функций, помноженных на
коэффициенты, а правая часть состоит из неотрицательных коэффициентов.

Предложен способ определения верхней и нижней границ пропускной
способности ДЛРпотока с помощью линейных равенств. В нем существенное
значение имеют коэффициенты левой и правой части линейных равенств.
Доказана зависимость, которая показывает, что если существует ДЛРпоток,
то его значение находится между двумя этими границами.

Доказаны теоремы, согласно которых максимальный ДЛРпоток равен
верхней границе пропускной способности, а минимальный ДЛРпоток нижней
границе пропускной способности. Их можно рассматривать как аналог известных
mincut-maxflow теоремы и maxcut-minflow теоремы классического сетевого
потока.

Получены результаты о поведении верхней и нижней границ пропускной
способности ДЛРпотока при исспользовании разных, содержающихся одно в
другом подмножеств множества линейных равенств.


