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1. Introduction

The theoretical and applied interest tovards network flows inthe last decades is
supported by their significant use inmodem information technologies.

The most widely spread classical network flovs are thoseof FordandFu I -
kerson[l, 2, 3], inwhichthe capacity isdefined oneacharc of the network. Inthe
network flows investigated in [6, 7] besides the constraints onthe separatearcs, sane
inequal itiesareused, includingseparate sets of thearc flovfunctionsasvariables.

Aclassofnetwork flons issuggested in[6, 7], where thearc capacitiesare replaced
by linear inequal ities, and thevariablesaresubsets ofarc flovfunctions. Thisclassof
network floas iscal leda linear flow.

Aclassofnetwork floas isdefinedand studied in [8, 9], where the capecity of the
separatearcs isreplacedbyone [8], orbyaset [9] of additional linearequalitieswith
arbitrary coefficients in tre left side andnonzerocoefficients- inthe right. The latter
of these classes of network flows is calledanALE-Flow. An ALE-Flow isstated in [9]
anddifferent problems of itsexistenceare studied.

The present paper concerns the definitionof the ALE-Flow capacity and its
dependence on the maximal and minimal values of the same flow.

2. Definitionof the capacity of the ALE-Flovand of 1ts lower and upper
Imit

Let the graph G(N, U) be defined by a set of hodes Nand aset of arcs U. The setM
contains the indices of al 1 thesimple oriented paths fran the source S tonards the sink
t, inwhich there areno cycles and each path ueM includes the separate nodes and arcs
onlyonce [1, 2] - U(w) will denote the set of arcs of the pathwithan index pueM:

O U=uu(u).-
peM
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The network Flovwithadditional linearequalities (ALE-Flow)will bedefinedby
thefol lowing constraints: foreach

(v, ifx=s;
(%) (x, N) —F(N, X) = 10, ifx=s, t;
v, if x=1t;
(€©)) 2 b, VT, Y=C ;iel;
(X,y)eD;
&) (X, ¥)=0; (X, eU;

where | isthesetofthe indicesof the linearequal ities (3) ; C >0Oare rational non-negative
nurbers; D cUaresubsetsof tredivisionofU, i.e., foreachi, jel, itistruethat

(©) D, r\Dj: g, wD=U;
iel
Y—anenpty set; vand Fareaflovandanarc flovfunction respectively, forwhich
©® 205 (X, ¥)20; (X,¥)eU;
T N=2F, y); TN, X)=X (Y, X ;
yel'(X) yel' *(X)

N, s)=(t, N)=J;

[eR", if (x,y)eDsiel;
bG.y) |
|=Ootherwise;

R® isasetofall nonzerorational nunbers, () and I (X) arean imageand inverse
image of X intoN.

Itisassuned thateachsubset D, , i<l, iscontained inthearcsset (1) ofall the
simpleorientedpaths, i-e.,
©) {UU(}ND=D,.

peM

The ALE-Flow isdefined in relations from (2) upto (4) inthe formofarc-nodes.
Further on the main formfor the representation of this flovwi 1l bearcs—paths [1]

The fol lowing denotations are introduced:

M,—asetof these paths inM, inwhichat least onearc from D, iscontained;

M, ={upeM ; UQIND= D}, iel; U.(u) - asetofarcs on the path u, which
arecontairedinD,, i.e.,

@) U,(w) =U@)ND;siel; peM;
B, () —the sumof the coefficients, corresponding to U, (1), at that foreachiel
andpueM, the folloving issatisfied:
[ X by), ifU@=d;
@ B,() = 1 cu»Uw
|Ootherwiise;
U@ - aflow, corresponding to the pathpeM[1], forwhich

[<F(X,Y), iF (X, Y)U@;
[6) v 1
|=Ootherwise;
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€9)) v=2v(;

peM
o, relative coefficients, forwhich

(V@A , i F v>0; peM;
adH a, = 1

| Ootherwise;

2a=1;0<a<1, ifv>0and peM.
peM

IM=m-number of the elements inthesetM, o= (o, ,0.,, - - - , 0. )— Flow real ization.

B(o, i) isanL(i)-factor [9], forwhich
@) B(a,i)= Za B,(W);iel.

ue M,

The following relations areproved in [9] for the ALE-Flowthus defined: foreach
realizationo andiel
e 2 b(x, y) F(x, y) = X v(WB, (W) =vB(a, ).

(X,y)eD, u e M

The following four values-C', C?, Ctand C?, play an important role in the

definitionof the ALE-flowvcapacity

an B! =min B,(n); BZ=max B,(1);
ueM, n eM,
(c/B! , if B>0;
@8) cr=A1
|+ otherwise;

(c/B? , if B>0;
19 Cc2=1
| Ootherwise.

The values C* and C?are defined by the following two linear programming
problens:

@ Ct = Y v(p) > max,
pn eM
under the constraints: foreachiel
@ Y V(B (W) =C;;
uoe M
@ v(n)>0; peM;
¢2)) C2 =3 v(u)—min,
eM

subjectto D) and (2). "

When comparing the values from (17) upto (23) it follows that C' and
C? defire the upper and lover limitof the flowv respectively inthe presence of only
one equal ity from (3) with an indexi el , and the parameters C! and C? show the same
limitsof the Flowforaset ofall theequalitiesof (3)with indicesfroml.

Definition 1. Thevalues Ctand C? from (20) and (23) wil Il be cal led upper and
lover limitof the capacity of the ALE-Flowfrom (2) upto (4) -
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Lemmal. IT thereexists an ALE-Flownfrom (2) upto (4), 1tistruefor the flowv
tet
(€) C2 <v< Ct.

P roof. The conformity of relations (13), (15) and (16) with thoseof (20) upto
(22) shavthevalidityof theright inequal ity in (24) , and the canparisonof (13), (15)
and (16) with the relations from (21) upto (23) —the val idity of the left one fron these
ineLalrties.

Ata linear equality I ={i} it isnot necessary to solve problems from (20) upto
(23) —for C! and C? the use of the vallues from (17) upto (19) issufficient. Inthiscase

'=C!and C?=C2.

Incase there existsan ALE-Flow, the fol loving consequences can be derived from
Lemma 1.

Consequence 1.1. ITforeachieland peM,

B,(w)=0andC, =0,
then
> 0 <v<+ oo
vence1.2. Incase thereexists one real izationonlyof the flow, satisfying

relations from 2) upto (4),, and
0 <v<+ o

then
(¢29)) v=Cl=C2.
Consequence 1.3. ITf foreveryieland peM,
B,(w)>0andC, =0,
then
@) v=C'=C?=0.
Consequence 1.4. ITforeachieland peM,
B,(w) <O0and(C, =0,
then
> v=C'=C?=0.
Consequence 1.5. ITforeveryiel
C,=0
then
@ 0 <v<C.

The following two confirmations follow directly from inequal ities (24) of
Lemma 1.

Confirmation1. Ifthereexistsan ALE-Flovfrom (2) upto (4), itsmaximal value
v Isequal to the upper limitof the capacity C'.

Confirmation 2. Incase thereexists an ALE-Flowfrom (2) upto (4) itsminimal
valuev . isequal tothe loner limitof the capacity C°.

Confirmation 1 can be regarded as an analogue for the ALE-Flow of the mincut-
mexflow theoremof Fordand Fu I ker son [1] for the equal ity of the minimal cut
and maximal flow in the classical network flow. For an ALE-Flow the statement of this
relation isdifferentand acoording to confimation 1 itdefines theequal ity of the upper
limit of the capacity C? of themaximal ALE-flow.

Unllike the other classes of flons, according to Lemma 1, theremay exista lover
bound of the capacity C*withapositive value, equal totheminimal possible value of
theflowv, . This canalso be regarded as a specificmincut-maxflow analogue of the
fundamental theoremof Ford and Fulkerson.
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3. Capacity of ALE-Flowat different subsets of linearequalities

Wewi 11 consider the caseswhen the defining of the upper and lover limit of the capacity
isrealized notonlybyall theequal itiesof (3), butalsousingdifferent subsetsof these

Let the family of subsets {1() | r e G} bedefined inthe set of indices | suchthat
(€0)) I=uI(M; I cI; reG

reG

where G isasetof the indicesof the family of the subsets in 1.

Further onwe shall discussonly these subsets in 1, forwhichfor eacharbitrary
index reGand p G the subsets of arcs corresponding to 1(r) and 1(p) block thewhole
setofpaths fronStonards t, i.e., foreachpeMitistruethat

Uy ~{v v Ui(w)=3};
icl(DueM,

u@w) n{v v V(=9 }-
icl(P) peM,
Inananalogouswvay, as in relations from (20) upto (23) itcanbewritten: foreach
reG

@D CI(r) =X v(u) — max
eM
under constraints "
@ V() B, (W) =C,3 peM, ;s ie 1();
pe M,
(€9)) V() =035 peM; i e I(r);
€D) c2(r) =X v(p) — min
eM
and constraints (32) and (3) - "
Lemma 1 has the Tol lowing form for the subset 1(r):
€3)) C2(N=<v<CL(D).

Five consequences can be derived from (32) , analogous to those fraom (25) upto
), forI(nN, Ct(NandC(r).

Theorem2. Iffortwosubsets I(I), reG, and 1(p), peG, the respective ALE-Flons
existaditistruethat

€9 HOI=IQF
then

€0 Ct(N=<C'(P);
€3)) C2(N=C*(p)-

ProoT. TheparanetersC! (p) and C? (p) can be defined simi larly to those for reG,
adeactly:
€°)) Ct(P) =2 v() »max; C*(p) =X v(u) — min.

peM peM

satisfying constraints (32) and (33), but foreachie 1(p)-

A. Itisassured that
“@ Ct(N>C'(P)-

Since the dbjective functions (31) and the Firstone in (39) areequal for C* () ad
C!(p), and it follows from (36) that the equalities I(p) areapartof 1(r), but donot
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coincide with them, assumption (40) means that there could be found aplan {v(W)|
u eM} forwhich the equal itiesfrom 1(r) and 1(p) are satisfiedand forwhich

“@ > v >C(n)-

peM

But thiscontradicts tothe firstore inrelations (39) andshons the impossibi lity
of (40).

B. Let the graph G(N, U) be defined in such away that
o =M 1@E) ={i); 1=1(ND ={i, j};
U™ ={C. 9} U@)={X, 2)};
U@ ={y. D} U@)={E D}
Then itfolloas from (3), (11), (15), and (16) thatforeach i e |
VBT + VDB W)=C,
Since it follows fran (41) that v(u')=v-v(u"), then
@ VB, + v (B, -B,w))=C,.
Inasimilarwayfor j < I itwill be obtained:
@ VB, + V(B (") B, ) =C,.
Ifitisassumedthat
B,(u")=B,(u")=0andC, =0,
B,(u") = B;(u"") =b,;>0andC,>0,
then from(42) , (43) and the above assumptions for equal ity fron{i}=1(p), itwill be
dotaired:

Vi = t0 = CH(P),
and the sinultaneous satisfying of theequal itiesfrom{i, j}=1(r) leadsto
Vo =C; /b, =CH(N).
Hence the fol lowingstrict inequal ity istrue:

@) C'(r) <C'(p)-
Ifitis assunedﬁath:O or bj —+0 , thenwe shall reach the equality:
“@®) M =C(P)-

Fromthe invalidityof (40) and the cases (44) and (45) , the relation (37) follows.
Inasimilarway (38) canbe proved.
The followinguseful results canbederived fromthis theorem.

Definition2. Iffor wogroupsof indices I(), reG, and 1(p), peG, itistruethat
€9) 1P 1();
@n C=C,
thentheset I(N)will becalled r—-minimal .

IF1()=1, thentheclassofegualities 1(r*)will becalledcorplete, the r*minimal
class 1(p)will becalled justminimal .

Consequence2.1. Ifat leastoneof the twosubsets 1(r) or 1(r) is r-minimal, then
ALEwith constraints from I (), forwhich

(GY)) 1) =1MuIr)cI(),
isalsor-minimal .

Proof. Itisassumed that I(r) isr-minimal, and hence
(G2)) Ct(N=C'(r)-
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Itfolloas fron(48) that
1ar)ci(r).
The relation above given and Theorem 2 lead to

(€Y)) Ct(r)=C'(r)-
From (49) and (50) it fol lows that

@D Ct(NcCH (-
It canbewritten fromcondition (48) that

1r)c ()

and according to Theorem 2

& Ct(r)=C ().
The r-minimal ity of the equal ities subset I (1) fol loxs from (51) and (52) .
Due to the arbitrary choice of r, the following canbe proved inadeductive vway .
Sequence2.2. Ifat leastoneof the sets I(rj),j =1, ..., n,forwhich

(69)) I)uI)u.. VI )=I(T),
is r-minimal, thentheset I(r) isalsor-minimal.
Simi lar relations canbe dotained for the upper limitof the capacity C? (), reG.

Definition 3. Iffortwogroupsof indices I(), reG, and 1(p), p<G, (46) istrueand

(€D C2(M=C(n),
thentheset 1(p)will becalled r—maximal , the r*-maximal class 1(p) is calledsinply
maximal .

Consequence2.3. Ifat leastoneof the wosubsets 1(r)or 1(r) isr-maximal, then
the ALE-flowwith constraints from I(r,) , forwhich (48) istrue, isalso r-maximal.

Consequence 2.4. Ifat lesstoneof tresets I(r), J =1, ..., n, foruhich (53) istrue,
iIsr-maximal, thentheset I(r) isalsor-maximal.

The last two consequences can be proved with the help of the same logical scheme
asconsequences?2.1and2.2.

4_ Conclusion

1. Anonclassical network flovwith additional linear equalities—anALE-Flow [9] has
been studied inthepaper . Thearc capacities inthe flovofFordandFulkerson initare
replaced by a setof linear equal ities, the leftpartofwhich isasumofmultiplied by
coefficientsarcflovfunctions, and the right one consists ofnon-negattive coefficients.

2. Amethod is suggested for the definitionof the upper and loner limitsof the
capecity of the ALE-Flowby linear equal ities. The coefficients inthe leftand righitside
oftre linearequalitiesplayasignificantpart. Arelationhasbeenproved, indicating that
it thereexistsan ALE-Flow, itsvalue isfound between these two limits.

3. Theorems have been proved verifying that the maximal ALE-Flow isequal to
the upper 1imit of the capacity, and theminimal ALE-Flowv—to the lower limitof the
capacity. They canbe regarded as specificanalogues of the famous mincut-maxflovand
maxcut-minflow theoremof the classical network Tlow.

4._ Resul'ts have been adbtained for the behaviour of the upper and lower limits of
the ALE-Flow capacity usingdifferent, mutual Iy containedone inanother subsetsof a
setof lincarequal ities.
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[IponyckHasg ClIOCOOHOCTE U MaKCUMAJIbHEL M MMHVMAJILEHEL CETEeBOM
[IOTOK C OOIOJIHUTEJIbEHEIMU JIMHEVHEIMM PaBEeHCTBaMU

Bacwi CrypeB

MHCTUTY'T MHYOPMALIMOHHEIX TexXHOoJI0Twi, 1113 Codrmsa

(PeszowMme)

B paboTe ucciyenoBaH HeEKJIACCUUECKUM CETEeBOM ITIOTOK C IOIOJIHUTEJIbHEIMIU
JIMHEVHBEIMY PaBeHCTBaMy — IJIP-110TOK . B HeEM OyT'OBHIE IIPOITYyCKHEIE CIIOCOOHOCTU
B nnoToke dopna-dysibKepCOHa 3aMeHeHEl MHOXECTBOM JIMHENHEIX PaBEHCTB, JIeBas
YaCTb KOTOPHIX ABJISETCS CyMMOM IYyT'OBEIX [IOTOKOBEIX QYHKIIMM, [TOMHOXEHHBIX Ha
KO2OQUIIMEHTE], a [IpaBas YaCTb COCTOUT U3 HEOTPULIA TEJILHEIX KODOQMIIMEHTOB .

[IpensyioxeH crioco® onpeneJieHNs BepXHEN M HXHEM I'PaHML] [IPONYyCKHOM
criocobHocTM JJIP-1TOTOKA C IIOMOUIBI0 JIMHEMHEIX PABEHCTB . B HEM CYyLIECTBEHHOE
3HaUeHUE MMEeT KO2b0OULIMEHTEH JIEBOM U IPaBOM UaCTU JIMHEVMHEIX PABEHCTR .
IokasaHa 3aBUCKMOCTL, KOTOpas IIOKa3kBaAET, UTO eCJM CylleCcTByeT JJIP-IIOTOK,
TO €I'0 3HaUeHMe HaxXOIUTC I MEXIY IBYMS 3TVMM I'PaHULIaMH .

IokaszaHbl TEOPEME], COIJIaCHO KOTOPRIX MakKCUMaJlbHED [IJIP-IIOTOK paBeH
BEepPXHEV I'paHMLIe IIPOITY CKHOV CIIOCODHOCTHY, a MMHMMAJILHEL JJIP-TIOTOK — HYDKHEN
TPaHMLIe [IPOITYCKHOM CIIOCOOHOCTH . VX MOXHO PaCcCCMaTPUBATE Kak aHaJIOT MB3BECTHEIX
mincut-maxflow reopemer 1 maxcut-minFlow Teopemer klaccuueckoro ceTeBoTo
TIOTOKA .

[ToJTy4eH:l pesyJib TaThl O [IOBEIEeHUNM BEPXHEN U HIDKHEV TPaHMLL [IPOITYy CKHOM
criocobHoCTH OJIP-TIOTOKA 1PV MCCIIOJIb30BaHMM Pa3HEIX, COISPXAIMXCSI OIHO B
OPYyTOM [TIONMHOXECTRB MHOXECTRBA JIMHEVHEIX PABEHCTB .
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