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The recent experience in mathematic modeling field and the availability of computer
systems with large computing capacity, as well as the constant need for optimization of
the transport (and similar to them) processes, determine the necessity for discussing,
investigating and improving the related models and methods. The tools of flows on
networks have proved in practice as one of the most appropriate directions in transport
processes modeling. The present paper formulates and considers an improved network
optimization model coordinated with the technological requirements of a generalized
transport process and with the computing capacities of modern computers.

Let a transport process be described in terms of flows on graphs by the so called
output graph G= [Y, A], where Y is the set of nodes and 4 — the set of arcs [3, 5, 6,7,
8]. An example of a similar graph is shown in Fig. 1(where 1and 9 are one and the same
finite stations, where unlimited stay of the transport unit is permitted).

According to the terminology accepted in [8], the nodes in the output graph G,
corresponding to the places of loading (unloading) are called
basic nodes and the existence of arcs-loops is characteristic for
them, which expresses possible outage of the load and the
transport vehicles. The rest of the arcs, interpreted as interme-
diate points on the route, are called nonbasic nodes. The
modeling of a real transport process requires that each of the
arcs in the set A be characterized by a function of the transition

time ¢(x, y), for which:
(H 0<t(x, y)<k (% y) €4,

k is a natural number.

The presence of this function of time and of arcs-loops
enables the use of known relations for stationary flows [2]. Let

Fig. 1. Output graph s X
G=[¥,A] the construction of the output graph be realized so that for each
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arc(x, y)ed, inpoweris #(x, y)=1 (a selected unit for time). This enables the expression
of the transport process development in time, transforming the output graph G into a
dynamic graph G,= [X, B] [2, 3]. For this purpose each node x, y of the output graph is
assigned a set of nodes {x,y, =0, 1, .., n}—X in the dynamic graph and each arc
(v, y) —asetof arcs {(x,y,,), 2= 0, 1, .., n}} -B, where ¢ accepts discrete values
according to (1) and # is the length of the dynamic graph or the total duration of the
transport process investigated. The example form of a dynamic graph with length n=15,
corresponding to the output graph indicated in Fig. 1, is shown in Fig. 2.
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As seen from the figure, in order to use the mathematic apparatus of flows on
graphs, the dynamic graph G, thus constructed is completed by two additional nodes ~
a source S and a sink T and their corresponding arcs. The methodology of a dynamic
graph construction on the basis of an output graph and the biunique correspondence
between them is discussed in detail in [8].

Let on the basis of a detailed generalized dynamic graph a mathematic model of
a generalized transport process be developed using the tools of flows on graphs, which
could assure optimal control of this process.

Forthis purpose an integer function of the capacity is set on the arcs of the dynamic
graph G,

@) ¢(59)20,(5y) € B

which expresses the real capacity of the transport route with respect to the transport
vehicles. Their movement is modeled by an arc flow function f subject to:
(<aforx= S,

(3) Sf(x y) - Zf(y, x) {=O0forx=S, T,
yeA(x) yeB() (> a for x= To’

4 fxy)s c(xy),

5) f(x y)=0, integer,

for each (x, y) € B, where
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AXx)={y:(x, y) e B},
B(x)={y:(),x)eB},
and a is the maximum number of the transport units.

Besides the flow of transport units each transport process is characterized by a flow
of loads also, modelled by another flow function @, defined by the conditions:

(< b for x= S
(6) TO(x, y) - IOy, x) {=0forx=S, T,
yeA(x) yeB() (> b for x= T,
@) O(x, y)<C for {(% %, ), =0, .., n-1},
(8) @(x, y) < ¢f(x, y) for the remaining arcs,
® @(x,y)= 0, continuous,

for each (x; y) € B, where x° denotes the basic nodes in the dynamic graph at different
discrete moments of time, b is the maximum quantity of loads and c is the capacity of
one vehicle. The condition (7) expresses the capacity of the loading/unloading places
for the flow of loads @, and condition (8) — the capacity of all the other movement arcs
along the transport route. It follows from (8) that no arcs capacity is defined according
to the classic flow definition and it is dynamically obtained by the values of the transport
units flow. This flow model can be regarded as a generalization of the multiproduct
flows and it is introduced, defined and specified in [8] as an interconnected flow and
the necessary and sufficient conditions for its existence have been proved.

The mathematical formulation above stated can be used to design a model of a
transport process using the linear programming tools for optimal control of this process
and adjust them with respect to the computing difficulties. For this purpose some
assumptions are accepted which would simplify the mathematical model from the view
point of the variables and constraints number and would be reasonable from a practical
view point. We assume at first that the outage time of the haulage units for loading and
unloading (at the main nodes of G ) is included in the movement time. This is actually
feasible for most of the transport processes and would not cause significant distortions
in the model excluding the cases when the loading and unloading time is commensu-
rable with the time of movement. The result of this assumption is defining the flow f
only on one subset of arcs of the graph G, as shown in Fig. 3.

The reduced dynamic graph G ! thus obtained corresponds to an output graph in
which the arcs between the finite and initial station are replaced by one arc.
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This leads to the reduction of the total number of arcs in
the dynamic graph (and respectively the variables for the flow
of haulage vehicles f) by the number ((X—2)n)—6, where & isthe
number of the last node and n —the length of G'. Inthe example
selected, for k=9 and n =15, the arcs in the dynamic graph are
reduced from 208 upto 109, i.e. they are diminished by 48 %
approximately, which is significant considering the computing
difficulties decrease.

The other assumption, facilitating the computing diffi-
culties is the removing of constraints (4) and (7). This in
practice avoids the limiting of haulage units number for the
movement arcs, as well as the limiting of the outage at the
Fig. 4 places of loading and unloading and is also usual in practice.

The neutralization of this model inacuracy in the objective

function is done introducing elements, expressing the losses
from loads downtime. This assumption reduces the number of constraints by
(k-=1)n+2k +kn, where k is the number of nodes in the output graph and # - the length
of the dynamic graph, k,— the number of the basic nodes. For the example (k=9, n=15,
k,=4), the constraints are reduced by 198, or by 42 % approximately .

An optimization problem with respect to the arcs values of the flows f and ¢ is
formulated on the basis of the model above described with the help of linear
programming tools. Its solution will define the necessary number of transport units and
their traffic, which is one of the main purposes in transport process control. The
optimality of the solution searched for is determined with respect to an objective
function including the profit from transported goods P,, stay losses P, and exploitation
expenses P,.

(10) P= P -P, -P, - max.
The profit of transported goods is expressed as:
(11) P =Zr(xy)o(y)

(o y) e{ (x*, y#¥ )yt =1,.,n k=1,.,n},

where the arc estimate A (x, y) expresses the gain from the dispatch of goods for one unit
on the movement arcs.
The losses from the outage are:

(12) P, =Zu(xy)o(xy),

(xy) e{ (¥, y*¥),t=1,.,n k=1,4,6,9},
where the arc estimate p (x, y) expresses the loss from the outage of one stock unit in
the basic nodes.
The exploitation expenses are determined as

(13) Py =Zv(xy)flxy)
Ey)e{x*y**yt=1.,n k=1.,n

where the arc estimate v (x*, y** 1*+1) denotes the expenses from the use of one vehicle.

Regarding the values of the flow functions f and ¢ as variables in the search of the
maximum of P, the constraints (3) and (6) — (9) are taken into account. Passing from
flow terminology towards this of linear programming, we represent the arc values of the
flow functions for the example shown in the figures, like variables as follows:

u, upto u, — haulage units along the arcs (S, x*), k=1, ..., 9;

u,, upto u,, — haulage units along the arcs (x*, y’,), k=1, ..., 9, #=1, ..., 9, and
(1,9, ), k=1, ..., 15; t=2, ..., 15;
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u,, upto u,, — haulage units along the arcs (x%, y',,

U, upto u, — haulage units along the arcs (x°, y*,,

1

u, upto u,, — haulage units along the arcs (x*;, TI), k=

U, upto u,, — loads along the arcs (S, x*,), k=1, ..., 8;

u,, upto u,, — loads along the arcs o,y ) k=1, ., 9, =1, .., 15;

Uy, upto u,, — loads along the arcs (¥, ¥, ) k=1,4,6,1=1, .., 15;

u,,, upto u ., —loads along the arcs (8, %), k=1,4,6,1=1,..,15;

U.g, Upto u,,, — loads along the arcs ®°,T),t=1,..,15, (%, 1), k=9, ..., L.
The correspondence between the variables and the arcs is shown in Fig. 5 and Fig.

6, where the letters u are omitted for clarity and only their numbers are shown.
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As seen in Fig. 6, arcs for the flow of loads have been added towards the arcs of
the example graph G', expressing the possibility for loads supplying at arbitrary discrete
time moments to the basic nodes. Their corresponding variables (for the flow of loads
¢) are denoted by u,,, upto u . It is possible to use them in order to set the loads that
have to be dispatched (as fixed values of the corresponding variables), i.e., the initial
conditions for the dispatch process.

Let the arc estimates in (11), (12) and (13) be denoted by p,, p, and p,. Then the
optimization problem corresponding to the reduced dynamic graph G! will have the
form:

99 141 31
(14) 2p,u;~Z pyu; — X pyu; —> max,

i=78 i=100 i=10
under constraints corresponding to the equations for flow reservation [2]

9

(15) Z u, = a, number of available vehicles;

i=1
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(16) > u =a

=59
(17) u-u =0
for the pairs (i, j) e{(1, 17) 2, 16), ..., (8, 10),
(31, 18), (32, 19), ..., (43, 30),
(24, 60), (25, 61), ..., (30, 66), (44, 67)}.

(18) Uy (u,+ u,)=0;
(19) (upt ug)—uy=0;
(20) u+u —(u, +u)=0
for the quarters (i, j, m, n) €{(10, 45, 32, 46}, (11, 46, 33, 47), ...,
(22, 57, 44, 58)},
76 181
(21) 2 u;+ X u, = b, number of loads;
i=68 i=140
204
(22) Xu =b
i=182
(23) u, —u =0

for the pairs (i, j){(69, 83), (70, 82), (72, 80), (74, 78), (75, 77),
(76, 182), (77, 183), ..., (92, 198), (94, 200),
(96, 202), (97, 203), (111 204)},
24) ,+u)—(u,+u)=0
for the quarters (3, j, m, n) €{(68, 140, 84, 98), (98, 141, 99, 85), (99, 142, 100, 86),
(98, 141, 99, 85) , (110, 153, 111, 97), (71, 154, 112, 81),
(112, 155 113 82), (113 156, 114 83), ..., (138, 181 139 92),
(139, 93, 199)

(25) (Ut Ug) — Uy = 0;
(26) (st Ug) — uy, = 0.

The constraints corresponding to (5), (8) and (9) have to be added to the
constrains above given
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(27) u, 20, integer, [ = 1, 2, ..., 64;
(28) cu, —u20, I =10,11,..,39,i =77, 78,97,
29) u, >0, noninteger, I = 68, 69, ..., 204.

In order to complete the model, the initial conditions for the flow of haulage units
f must be given as values of the respective variables indicating the presence of moving
transport vehicles on the route.

The solution of the optimization problem of linear programming thus formulated
will enable the control of a transport process with some initial conditions, including the
necessary number of haulage units, their loading, their optimal traffic with respect to
a given objective function. The experimental investigations of the improved network
transport model described, including the solution of practical examples, their compari-
son with similar models, some inferences and recommendations are an object of
another publication.
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VyamenHast ceTeBas ONTHMM3ANHOHHAS MOJEIb
VISl yOPaBJIEHAS TPAHCIIOPTHBIX NPOIECCOB

HBan Mycmakepo8

Hucmumym ungopmayuontwil mexuosozuid, 1113 Copus

(PeswomMme)

Ilpennaraercsi MpUMEHEHHME TCOPUM TIOTOKOB B rpadax [uisi uened aHanusa U
yIpaBieHusi TPAHCHOPTHBIX nporeccoB. C UCXOaHOro rpada, COOTBETCTBYIOLIETO
peanbHOM TPAHCIIOPTHON CETH, MEPEXORUTCA K JMHAMHUUECKOMYy rpady,
NO3BOJIONIEMY OIMCAHKE TPAHCTIOPTHBIX IIPOLIECCOB BO BpeMEHMU. BBejieHa uenesast
$YHKUMS ¥ YCIOBHUS, KOTOPBIE YMEHBINAIOT PasMEPHOCTDb MONYYCHHOH 3ajfayuM
JIMHEHHOrO MporpaMMHpoBaHHsi. IIpHBOIUTCA MILTIOCTPUPYIONIMIA IIPHMED.
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