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1. Introduction

Insignal analysis the detection of relevant feature is of great importance because they
carryout the information about signal and genesis. Most often, the important signal
features, suchasedges, spikes, transients, etc., are local izedeither intimeor in
Trequency (scale) or inboth. For this reasonthewaveletbasesarevery attractive for the
local feature detectiontasks [1], [2] - Theyofferwel l organized and flexible coordinate
systems which can decompose the signal in the time-frequency plane using fast
algorithms. Themost widely used wavelet bases are the orthonormal bases with
compact support and maximum number of vanishing moments [3] - The orthonormal ity
isery inportant for perfect signal reconstruction and for fastalgorithms construction
and that iswhy these bases are used especial ly for image and speech compression [4],
[5]- Hovever, they have two drawbacks complicating their application for transient
detection:

—theyare notshift-invariant, ad

—they have asymmetric shape.

The shift-invariance has been got over using redundant representations without
domnsampling at each scale, continuouswavelet transforms, etc. [6], [7], alsocalled
orthonormal waveletshel L.

The symmetric basic functions are preferred for their linear phase and for easy
Tinding of zero-crossings and extrema. The symetricbasis functions, honever, are
eitherwithout carpact supportor biorthogonal [8], [9]-

The presentwork studiesawavelet approach for local signal features detection,
based on segrental wavelet transformwi th basis biorthogonal of the Haar basiswhich
uses the information about the (potential ly) transitionpoint.

*This work is partially supported by the Institute of Inf. Technologies (project 010016) and by the National Science
Fund under contract No 1626/96.
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11. Segrentedwavelet transform

Segmented Wavelet Transform (SWT) is signal decomposition into a basis of
biorthogonal wavelets, which is dependertt on prel iminary choice of the segrentation
pointwhich is inthe vicinity of signal abrupt transition. Wavelets are obtained using
average-interpolation refinement scheme [12] -

11.1. Average-interpolatingnuitiresolution

Segrentedmultiresolutionanalysis (SMA)VJF for the interval [0,1] isnultiresolution
analysis (MRA), where intenals [0, t] and [T, 1] are considered separatelyand it isnot
necessary that functions inV} arecontinuous in t.

Letoorlslderanarray(a Dwhich consistsof averages of a function f indyadic
intervals I = k721, (k+1)/21] There is selected polynomial T ofevendegreeD,
whichal |0NS reoeptloncf mterpolatedsewenoescfflnerscalebyreﬁnementproce—
dureforaverage interpolating described in [13] .-

The vector space Vi of functions obtained by refining sequences (g, ), hasan
altemative description. Refining the Kronecker sequence g, =3, ,, weobtain the
fundamental functions ¢=¢, . These functions and their integer translationsand dyadic
dilations¢, () =22 ¢(2 t-K) generate the spaces Vj ={f: =2, 8 03 (O} The space
Vj makes upMRA, which is biorthogonal to the classical Haar basis.

Ifwe have averages inscale j+1we can obtainaverages inscale j because

=(a,., +ta /2. The vector space Wi obtained by refinement of sequences

j K J+1,2k J+1,2k+1-
@0 - Were &, ,=-a, ., ,consistsentirely of functionswhich averages in the
coarsest scaleare zero; infactthis is the difference space W=V, —Vj.-

There are 2J basiis functions both mﬂﬂespaoesvj and mWJ V\hlcharedenoted¢ X
and .  respectively. Here j  is fixed sothat 2o>2 (D+2). Thenevery function T |n
L?[o, i] has an expansion:

2do-1 2i-l
Q) F=2B, (0 FX oy v, -
k=0"° =i, k=0 0

Themapping franfto its coefficients ((Bjo'k)k, (aioyk)’ (ajm,k)k, -..) isnon-segrented
wavelet transform. There isafastalgorithmassociatedwith it. Given, | inscale
20 << 230, thecoefficients (Bjo'k) and (o ) ofall coarser levels j<j<j, canbe
computed for time n, wheren=24 _

11._2. Segrented refinement

We consider segmented refinement with segmentation point t, which is inthe “heart”
of theobserved interval, so that D/ 2 <t< (21 -D/2)) . Givena sequence of averages
(%,k) ,0<k<2 | we synthesise “pseudo’ averages by the fol lowing procedure:

1) Ateach pointk, which ismore than D/2 points away from the boundaries
0 and 1 and more than D/2 points away from the segmentation point t, we use

interpolation procedure to find the polynanial rrj,korfdegree Dwhichgenerates thesame
values in the neighbourhood (%,k, k*=k-D/2, ..., k+D/2) [13].
2) Ateach pointk, which is atmast D/2 poirnts away from the boundaries Oand
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1 we Find the polynomial L of degree D, which generates the same averages in the
neighbourhood (&, 'k-)k' o where N(k) consists of D+1 nearest neighbours of k.

3) Ateach point k, which is at nomore than D/2 points fromthe segmentation
point twe consider two cases:

3a) IT 1¢ [ 27k, 23 (k+1)] then find the polynomial n, of degreeD, which
gererates the same averages intheneighbourhood (%'k')k- e where N(K) consists of
D+1 nearest neighbours of k, which are at one and the same side of the segmentation
pointask.

3b) Ifte [ 27k, 273 (k+1)] then construct by constrained least squares
polynomials =, and n; , of degree Dfor block averages inthe neighbourhoods on the
rightand left of the segrentation point; the constraint isthat the polynanial 5o which
is t-onthe leftof tand ™ onthe rightof t should havean average equal to the average
%

4 Incases ), 2) and 3a) we define “pseudo’” averagesat the next fine scales as

averages of the polynomial 7, , . Onthe lefthalfof the sub-interval weget:

Q) aTJ+1 2k Avej+1,2kﬂ:j,k 4
andontherighthalf:
(€)) a’. = Ave. .

J+1,2k+1 J+1,2k+1 gLk T
In case 3b) the steps are the same, only using the piecewise polynomial -

5) Afterhavingall the &, , setj:=j+landgotol).
The basic property of SWT isthat ifthe isthe piecewise polynomial of degree
Dwithone knot at 7, then the refinement process recovers 'exactly.

11. 3. Minimumentropy segmentation principle

Segrented wavelet transformdepends essential ly on the exact choice of the segmen-
tationpoint t. Unfortunately inmost caseswe do not have informationabout it.

Donoho proposes adaptive determination of an appropr iate segmentation de-
pending ondata [13] . Let denote with e=¢(0) the entropy considered as functional
having lowvalues for sparse vectors (wWitha fewnon-zero elements) and highvalues for
vectorswith many non-zero components.

The basic Minimum Entropy SegmentationPrinciple (MESP) isdescribed by this
procedure: with x we denote avectorcwith dyadic length n=2 which contains block
averages atscale 21, with W: xwe denote a vector with dyadic length n=21, whiich
contains block averagesat scale 23, with we denote segrented wavelet coefficients (

@G, k) (o )) obtainedwith segmentationpointt. The ideaof MESP is toselect from
alfpos&bi”ebassesmemhldwglvesooefﬁaentSWlﬂ]srralIesterrtropylnﬂﬂemavelet
domain.

A -
() t=argmin__ e (W X).
Coifman and Wickerhauser used a Shannon entropy as an information measure
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for best-basis selection:® (0) =-Xp, , Ig (p; ) wherep, = (o} )*-
ik
Inaddition to the original C-Wentropy Donoho proposes a fami ly of entropy
measures ¢*,a €[0,2]:
© £%(0)=2p; 5 -

3ok
We are interested inentropiese!, ¢#2and 2.

11. 4. Fast computationofal | segrentations

The SWT needs n of order operations and seems that we need procedure of order O(?)
for calaulationall pixel-level segrentations. There isafastalgoritimforcalaulatingall
passiblenpixel-level segrentations intime proportional tonlg(n) . The methad isbased
onthe assumption that in the segmented refinement onlly the blocks at a distance not
more than D/2 away fromthe block containing the segmentation pointare influenced
by the latter. Therefore for calculation of each pixel-level segrentationt=1i/n,
i=0, ..., n-1, weneedonly the coefficientswhichdiffer fromthe non-segmented
transform. Letdenote these coefficientswith:

® 8, (O, 30y -0 41, 1=-D/2, ., D/2.

where index j denotes theresollution level, 1-theoffsetintheblock [12],, containingthe
segnentation point. Suppose we have coefficients atagiven segrentationpoint tand
an unsegmented transform. By copying values fromthe array n into the appropriate
location of the array of non—-segnentedwavelet coefficientswe obtain the segrented
wavelet transformat the segrentationpoint t.

Let 6° denote the coordinates of non-segmented wavelet transform. We define
differental entrgpyas:
@) de() =e(09)—<(0°).

The minimum of the entropy ¢(6%) wi Il be at the same point tas the minimum of
thedifferentiatedentropy, so it issufficient tominimise the latter. Ifwe denote
coefficients inthe non-segrented transform that could be replaced with

(8) MjJ(t)’J:.loi "'1.]1_11 I:_D/21 "'1D/21
it isnecessary tocamute theentropies of the v-coefficientsand of the p—-coefficients
and tominimise difference between themasa functionof t.
The improved algoritim isas fol lows:
1) Calculate the ordinary non-segmented transform.
2)Fori=0,...,n-1do:
2a) Calculate the v- coefficients for t=i/n.
2b) Bvaluate the entropy difference between the v-coefficientsand the
corresponding p—coefficients from the non-segrented transform.
3) After obtaining the best i at step 2 compute segmented transform for
=798
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111 . Application of the methods for ECG denoising

111. 1. The problemwith ECG signal denoising

One of the most serious problems in the registration of electrocardiographic (ECG)
signals is the parasite interference of muscle active potentials—electromiographic
E6) signals. This leads todifficulties indetermining of the signal parameters and
making diagnoses.

Electromiographic (BVG) signal isaresultofsuperpositionofthe biopotentials
of the muscles, arising between the electrocardiograph’selectrodes. The BMG signal
has widespread spectrun—99%of its spectral energy is located withinthe frequency
band fron10Hz to 1 kHz [14] - Since the spectral energy of ECGsignal is locatedwithin
the frequency band from 0.05 Hz to 125 kHz, the ECG and EMG spectra are
overlapped.

Theproblem is partial ly avoided by loypass fi ltering of the signal . This approach
improves the S\R but decreases the ampl i tudes of the high frequency Q, Rand Swaves,
whichcanbe fatal indiagnostics of some diseases.

Our goal has been to suppress the parasite EMG and in the same time to preserve
the parameters of the ECG.

Solving the task of denoising, ECG signal could be considered asa superposition
of the signal waves —P waves, QRS complexes and T waves. Each wave carryes
information for diferentsignal parareters. Since the characteristicsofthevaves-the
frequency band and duration - arediferent for each kind of waves It is important to
know i1'ts location inorder to process them indiferentways.

111. 2. Denoising viawavelet transform

Let us consider the denoising task. Suppose we have N noisy samplles of functiont
©)) y,=f(t)+z,i=1, ...,N,

where t =(i-/N, andthe z, isavwhitenoisewithdistributionN(0,5%). Ourgoal isto
estimate the vector F=F(t))f',_ withsmall mean-squarederror i.e. tofindanestimation
f depending on y with small risk R(F, ) = N* E||[f - F|2=
EAve, (F(t ) - F(O)-

The basic property of thewavelet transforms is itsorthogonal itywhich leads to
important statistical conseguence: thewhite noise remainswhite noise inthe transform
domain. Therefore if (y, ,) denoteswavelet coefficientsof (y; )| M taccording tothe
model (9) andw; |, denoteswavelet coefficientsof f(t,), then

(10) yj k: Wj, k+Zj, k?
v\herezLk isnoisysequencewithdistributionN(0,c%) . Therefore thewavelet coefficients
of anoisy sequence are simply noisy versions of the original wavelet coefficients.

So the problemof recovering T becomes the problem of recovering by using only
these coefficients (oftena few in number) which are essential ly non-zero in the
background of white Gaussian noise. This leads to usinga threshold dependant scheme
which“cuts” the littley, , and“preserve” thebigonesy;, | -

The classical Wavelet Shrinkage (WS) denoising approach has three steps [15]:

i . Pyranmidwavelet decompositionof thenoisy signal ;

i1. Shrinkage of the noisywavelet coefficientswith threshold dependingonthe
statistical pararetersof thesigal;

iii. Inversevavelet transform, producing the estimated signal .
2 4



111 3. Denoising usingwavelet shrinkage and time-frequency dependent threshold

Inthe present study the algorithm for ECG signal denoising viaWs isfurther modified
by time-frequency dependent threshold [16] . The algorithm isbased on finding a
threshold appropriate for ECGs and depending on the scale and time position of the
transformcoefficients. Fig-2shons the threshold as a functionof thewavelet coeffi-
cients” positioninscalej .

The parameters of the threshold function are:

—b, , e,— beginning and end of the i1-th QRS complex

-1, ~ threshold of thewavelet coefficients, describing QRS complexes

- 1 — threshold of the coefficients, describing the areas outside of QRS
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Fig-1. Thresholdversusthevavelet coefficients” position inscale j

The exact determination of the beginnings and the ends of QRS complexes is
essential for preservationof the QRS compllexes” important signal parameters. Inthe
present study thedetectionofb, ande, isbased onthealgorithmproposedbyLi, Zeng
and Tai [17] modified by uswith the use of autocorelationshell expansion instead of
orthonormal sell.

In the decomposition of the signal via Continuous Wavelet Transformthe local
maxima/minima in the time domain correspond to the local maxima/minima in the
scales of the orthonormal shell . The positions of the extrema throughout the scales are
shifted in reference to the position of the extremun in the time domain. The shift
depends on the QWF length, the number of the scalle and the steepness of the fronts of
the extremum. The presence of shifts carpicates the determinationof the position and
thetypeof signal feature.
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Table 1 shows the variance of the residual signal P i i for different levelsof
noisevariancec, . Thevariance of thenoisedsignal y iSGy=l- The resultsare canpared
withthe resultsof lonpass filteringwith 20 order FIR fi lterwith cut-of f frequency 40Hz.-
Table 1

Variance of the residual signal after Variance of the residual signal after
No denoising with the proposed technique lowpass filtering

c,=0.1 c,=0.2 c,=0.3 c,=0.1 c,=0.2 c,=0.3
174 0.05 0.08 0.11 0.09 0.11 0.14
157 0.05 0.09 0.13 0.09 0.11 0.14
137 0.05 0.09 0.14 0.06 0.09 0.12
106 0.06 0.10 0.14 0.06 0.09 0.12
147 0.07 0.10 0.13 0.09 0.12 0.14
154 0.05 0.09 0.13 0.06 0.09 0.12
IV. Conclusions

Avaveletmethod for local signal featture detectiion has been presented. Autocorrelation
functions of canpactly supported wavelets seemto be the best choice for signal edges
and transientsdetection. They have canpact support and lead to redundant decompo-
sitionpreservingexactly the transitionpointswithout time shifts. Theyaresuperior in
comparison to the quadraticand cubic splinewavelets for detectionof QRS complexes
Oof ECG signals.

Further studieswill involve the investigationof AC-derived fromother orthonormal
waveletsand other interpolation schemes for constructionofwavelet bases appropriate

for segrented transforms.
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JeTeKTUPOBAaHME JIOKAJIbHBIX OCOOEHOCTEN CUTHAJIOB IIPM [TOMOLIM
BOJIHOBEIX TpaHCchopMalmi

AraHac I'oueB, BnpaBrko HukojioB, EjeHa PaHresona,
HukoJgiar Hukosiaen

MHCTUTY'T MHYOPMALIMOHHEIX TexHOoOoTMI, 1113 Coprsa

(PesowMme)

[IpenyioxeH OO NOAXON K e TEKTMPOBaHMM JIOKAJIBHEIX OCOOEHOCTEN B PA3HBIX
KJIaCcCCax CMTHAaJIOB TP [OMOLM BOJIHOBBIX TpaHChopMalnst (wavelet transforms) .
MeTon UCIOJIb3yeT aBTOKOPPEJIALMOHHEE QYyHKLVIM BOJIH C KOMIIAKTHBIM HOCUTEJIEM .
BasucHele QyHKLUM OEeTEeKTUPYIT TOYHO MOMEHTEL [I€PeX0N0B, UTO JOKABEBASTCHA
skcrnepuMeHTamm ¢ EKT' curuasiamm.
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