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I. Introduction

In signal analysis the detection of relevant feature is of great importance because they
carry out the information about signal and genesis. Most often, the important signal
features,   such as edges, spikes, transients, etc., are localized either in time or in
frequency (scale) or in both. For this reason the wavelet bases are very attractive for the
local feature detection tasks [1], [2]. They offer well organized and flexible coordinate
systems which can decompose the signal in the time-frequency plane using fast
algorithms. The most widely used wavelet bases are the orthonormal bases with
compact support and maximum number of vanishing moments [3]. The orthonormality
is very important for perfect signal reconstruction and for fast algorithms construction
and that is why these bases are used especially for image and speech compression [4],
[5]. However, they have two drawbacks complicating their application for transient
detection:

they are not shift-invariant, and
they have asymmetric shape.
The shift-invariance has been got over using redundant representations without

downsampling at each scale, continuous wavelet transforms, etc. [6], [7], also called
orthonormal wavelet shell.

The symmetric basic functions are preferred for their linear phase and for easy
finding of zero-crossings and extrema. The symmetric basis functions, however, are
either without compact support or biorthogonal [8], [9].

The present work studies a wavelet approach for local signal features detection,
based on segmental wavelet transform with basis biorthogonal of the Haar basis which
uses the information about the (potentially) transition point.
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II. Segmented wavelet transform

Segmented Wavelet Transform (SWT) is signal decomposition into a basis of
biorthogonal wavelets, which is dependent on preliminary choice of the segmentation
point which is in the vicinity of signal abrupt transition. Wavelets are obtained using
average-interpolation refinement scheme [12].

II.1. Average-interpolating multiresolution

Segmented multiresolution analysis (SMA) V tj  for the interval [0,1] is multiresolution
analysis (MRA), where intervals [0, t] and [t,1] are considered separately and it is not
necessary that functions in V tj  are continuous in  t.

Let consider an array (aj,k)k=
 which consists of averages of a function f in dyadic

intervals Ij,k= [k/2 
j , (k+1)/2 j ]. There is selected polynomial j,k of even degree D,

which allows reception of interpolated sequences of finer scale by refinement proce-
dure for average interpolating described in [13].

The vector space Vj  of functions obtained by refining sequences (ai,k)k has an
alternative description. Refining the Kronecker sequence a0,k = k,0, we obtain the
fundamental functions D. These functions and their integer translations and dyadic
dilationsj,k(t) = 2

j/2 2j tk)generate the spaces  Vj = {f: f=kjk(t)}. The space
Vj  makes up MRA, which is biorthogonal to the classical Haar basis.

If we have averages in scale  j+1 we can obtain averages in scale j  because
aj,k= (aj+1,2k + aj+1,2k+1)/2. The vector space Wj obtained by refinement of sequences
(aj+1,k)k , where  aj+1,2k=aj+1,k+1, consists entirely of functions which averages in the
coarsest scale are zero; in fact this is the difference space Wj= Vj+1 Vj.

There are 2j basis functions both in the spaces Vj and in Wj which are denoted j,k
and  j,k respectively. Here j0 is fixed so that  2

j0  2 ( D2). Then every function f in
L2[0, 1] has an expansion:

         2j0   2j 

(1)  f = 
j
0
,k
 

j
0
,k   
+       

j
0
,k
 

j
0
,k
 .

                         k=0                     j� j0     k=0

The mapping from f to its coefficients  ( (
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, ...) is non-segmented

wavelet transform. There is a fast algorithm associated with it. Given 
j1,k 
in scale

2j1 << 2j0,   the coefficients (
j
0
,k
)  and (

j,k
) of all coarser levels  j0j <j1  can be

computed for time n, where n = 2 j1 .

II.2. Segmented refinement

We consider segmented refinement with segmentation point , which is in the “heart”
of the observed interval, so  that  D/ 2j < < (2j D /2j ). Given a sequence of averages
(a

j,k
) , 0  k < 2j  , we synthesise “pseudo” averages by the following procedure:

1) At each point k, which is more than D/2 points away from the boundaries
0 and 1 and more than D/2 points away from the segmentation point , we use
interpolation procedure to find the polynomial 

j,k
of degree D which generates the same

values in the neighbourhood  (a
j,k
, k' = k D/2, ..., k+D/2 ) [13].

2) At each point k, which is at most D/2 points away from the boundaries 0 and
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1 we find the polynomial 
j,k
 of degree D, which generates the same averages in the

neighbourhood (a
j,k'
)
k' N(k) 

 where N(k) consists of D+1 nearest neighbours of k.

3) At each point k, which is at no more than D/2 points from the segmentation
point t we consider two cases:

3a) If   [ 2 jk, 2 j (k+1)] then find the polynomial 
j,k 
of degree D, which

generates the same averages  in the neighbourhood (a
j,k'
)
k' N(k)

, where N(k) consists of
D+1 nearest neighbours of k, which are at one and the same side of the segmentation
point as k.

3b) If  [ 2 jk, 2 j (k+1)] then construct by constrained least squares
polynomials  R

j,k 
and  L

j,k
 of degree D for block averages in the neighbourhoods on the

right and left of the segmentation point; the constraint is that the polynomial 
j,k 
, which

is  L on the left of t and R  on the right of t should have an average equal to the average
a
j,k
.

4) In cases 1), 2) and 3a) we define “pseudo” averages at the next fine scales as
averages of the polynomial 

j,k 
. On the left half of the sub-interval we get:

(2)            a
j+1,2k 

 = Ave
j+1,2k 


j,k 
,

and on the right half:

(3)          a
j+1,2k+1 

 = Ave
j+1,2k+1 


j,k 
.

In case 3b) the steps are the same, only using the piecewise polynomial 
j,k
 .

5) After having all the  a
j+1,2k 

 set j:=j+1 and go to 1).
The basic property of  SWT is that if the  is the piecewise polynomial of degree

D with one knot at then the refinement process recovers exactly.

II. 3. Minimum entropy segmentation principle

Segmented wavelet transform depends essentially on the exact choice of the segmen-
tation point t. Unfortunately in most cases we do not have information about it.

Donoho proposes adaptive determination of an appropriate segmentation de-
pending on data [13]. Let denote with =(0) the entropy considered as functional
having low values for sparse vectors (with a few non-zero elements) and high values for
vectors with many non-zero components.

The basic Minimum Entropy Segmentation Principle (MESP) is described by this
procedure: with x we denote a vectorc with dyadic length n=2j which contains block
averages at scale 2j1, with  Wn  x we denote a vector with dyadic length  n=2

j, which
contains block averages at scale  2j1, with  we denote segmented wavelet coefficients (
(

j
0
,k
)
k
, (

j
0+1
,k
)
k
), obtained with segmentation point  The idea of MESP is to select from

all possible basses one which gives coefficients with smallest entropy in the wavelet
domain.

(4) 

= arg min 

 [ 0, 1]
 (W

n  x).
Coifman and Wickerhauser used a Shannon entropy as an information measure
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for best-basis selection  CW () =p
j,k
 lg (p

j,k
) where p

j,k
 = (

j,k
)2.

          
             j,k

In addition to the original C-W entropy Donoho proposes a family of entropy
measures  [0,2]:
(5) p

j,k
 /2  .

            
j,k

We are interested in entropies j, j/2 and  2.

II. 4. Fast computation of all segmentations

The SWT needs n of order operations and seems that we need procedure of order O(n2)
for calculation all pixel-level segmentations. There is a fast algorithm for calculating all
possible n pixel-level segmentations in time proportional to nlg(n). The method is based
on the assumption that in the segmented refinement only the blocks at a distance not
more than D/2 away from the block containing the segmentation point are influenced
by the latter. Therefore for calculation of each pixel-level segmentation t = i/n,
i= 0, ..., n1,  we need only the coefficients which differ from the non-segmented
transform. Let denote these coefficients with:
(6) 

j, l 
( t), j = j

0
, ..., j

1 
1,  l =D/2, ..., D/2.

where index j denotes the resolution level, l  the offset in the block [t2j], containing the
segmentation point. Suppose we have coefficients at a given segmentation point t and
an unsegmented transform. By copying values from the array n into the appropriate
location of the array of non-segmented wavelet coefficients we obtain the segmented
wavelet transform at the segmentation point t.

Let 0 denote the coordinates of non-segmented wavelet transform. We define
differential entropy as:
(7)         ( t) = ( t)( 0).

The minimum of the entropy ( t) will be at the same point t as the minimum of
the differentiated entropy, so it is sufficient to minimise the latter. If we denote
coefficients in the non-segmented transform that could be replaced with
(8) 

j, l 
( t), j = j

0
, ..., j

1 
1,  l =D/2, ..., D/2,

it is necessary to compute the entropies of the v-coefficients and of the -coefficients
and to minimise difference between them as a function of t.

The improved algorithm is as follows:
1) Calculate the ordinary non-segmented transform.
2) For i=0,..., n1 do:

2a) Calculate the v- coefficients for t=i/n.
2b) Evaluate the entropy difference between the v-coefficients and the

corresponding -coefficients from the non-segmented transform.
3) After obtaining the best i at step 2 compute segmented transform for

t=i/n.
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III. Application of the methods for ECG denoising

III. 1. The problem with ECG signal denoising

One of the most serious problems in the registration of electrocardiographic (ECG)
signals is the parasite interference of muscle active potentials electromiographic
(EMG) signals. This leads to difficulties in determining of the signal parameters and
making diagnoses.

Electromiographic (EMG) signal is a result of superposition of the biopotentials
of the muscles, arising between the electrocardiograph’s electrodes. The EMG signal
has widespread spectrum 99 % of its spectral energy is located within the frequency
band from 10 Hz to 1 kHz [14]. Since the spectral energy of ECG signal is located within
the frequency band from 0.05 Hz to 125 kHz, the ECG and EMG spectra are
overlapped.

The problem is partially avoided by lowpass filtering of the signal. This approach
improves the SNR but decreases the amplitudes of the high frequency Q, R and S waves,
which can be fatal in diagnostics of some diseases.

Our goal has been to suppress the parasite EMG and in the same time to preserve
the parameters of the ECG.

Solving the task of denoising, ECG signal could be considered as a superposition
of the signal waves P waves, QRS complexes and T waves. Each wave carryes
information for diferent signal parameters. Since the characteristics of the waves - the
frequency band and duration  are diferent for each kind of waves it is important to
know its location in order to process them in diferent ways.

III. 2. Denoising via wavelet transform

Let us consider the denoising task. Suppose we have N noisy samples of function f
(9)        y

i 
= f(t

i 
) + z

i 
, i = 1, ..., N,

where t
i 
=(i1)/N, and the z

i 
 is a white noise with distribution N(0,2). Our goal is to

estimate the vector f=f(t
i 
)N

i =1
  with small mean-squared error i.e. to find an estimation

f

  depending on y with small risk R(f


, f) = N1 Ef


  f

2
2

E Ave
i 
(f


(t

i 
)  f (t))2.

The basic property of the wavelet transforms is its orthogonality which leads to
important statistical consequence: the white noise remains white noise in the transform
domain. Therefore if (y

j, k
) denotes wavelet coefficients of  ( y

i 
 )

 i=0
 N1 according to the

model (9) and w
j, k
 denotes wavelet coefficients of f(t

i 
), then

(10)    y
j,k
= w

j, k
+z

j, k
,

where z
j, k
 is noisy sequence with distribution N(0,2). Therefore the wavelet coefficients

of a noisy sequence are simply noisy versions of the original wavelet coefficients.
So the problem of recovering f becomes the problem of recovering by using only

these coefficients (often a few in number) which are essentially non-zero in the
background of white Gaussian noise. This leads to using a threshold dependant scheme
which “cuts” the little y

j, k
 and “preserve” the big ones y

j, k
.

The classical Wavelet Shrinkage (WS) denoising approach has three steps [15]:
i. Pyramid wavelet decomposition of the noisy signal;
ii. Shrinkage of the noisy wavelet coefficients with threshold depending on the

statistical parameters of the signal;
iii. Inverse wavelet transform, producing the estimated signal.



2 5

III. 3. Denoising using wavelet shrinkage and time-frequency dependent threshold

In the present study the algorithm for ECG signal denoising via WS is further modified
by time-frequency dependent threshold [16]. The algorithm is based on finding a
threshold appropriate for ECGs and depending on the scale and time position of the
transform coefficients. Fig.2 shows the threshold as a function of the wavelet coeffi-
cients’ position in scale j.

The parameters of the threshold function are:
b

i 
, e

i 
 beginning and end of the i-th QRS complex


qrs
  threshold of the wavelet coefficients, describing QRS complexes

 
st
  threshold of the coefficients, describing the areas outside of QRS

complexes.

Fig.1. Threshold versus the wavelet coefficients’ position in scale j

The exact determination of the beginnings and the ends of QRS complexes is
essential for preservation of the QRS complexes’ important signal parameters.  In the
present study the detection of b

i
 and e

i
 is based on the algorithm proposed by Li, Zeng

and Tai [17] modified by us with the use of  autocorelation shell expansion instead of
orthonormal sell.

In the decomposition of the signal via Continuous Wavelet Transform the local
maxima/minima in the time domain correspond to the local maxima/minima in the
scales of the orthonormal shell. The positions of the extrema throughout the scales are
shifted in reference to the position of the extremum in the time domain. The shift
depends on the QMF length, the number of the scale and the steepness of the fronts of
the extremum. The presence of shifts compicates the determination of the position and
the type of signal feature.
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Table 1 shows the variance of the residual signal z'

= ff '


  for different levels of

noise variance 
z
. The variance of the noised signal y is 

y
=1. The results are compared

with the results of lowpass filtering with 20 order FIR filter with cut-off frequency 40Hz.
Table 1

Variance of the residual signal after Variance of the residual signal after
    No denoising with the proposed technique lowpass filtering

z=0.1 z=0.2 z=0.3 z=0.1 z=0.2 z=0.3

  174 0.05 0.08 0.11 0.09 0.11 0.14

  157 0.05 0.09 0.13 0.09 0.11 0.14

  137 0.05 0.09 0.14 0.06 0.09 0.12

  106 0.06 0.10 0.14 0.06 0.09 0.12

  147 0.07 0.10 0.13 0.09 0.12 0.14

  154 0.05 0.09 0.13 0.06 0.09 0.12

IV. Conclusions

A wavelet method for local signal feature detection has been presented. Autocorrelation
functions of compactly supported wavelets seem to be the best choice for signal edges
and transients detection. They have compact support and lead to redundant decompo-
sition preserving exactly the transition points without time shifts. They are superior in
comparison to the quadratic and cubic spline wavelets for detection of  QRS complexes
of ECG signals.

Further studies will involve the investigation of ACF derived from other orthonormal
wavelets and other interpolation schemes for construction of wavelet bases appropriate
for segmented transforms.
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Детектирование локальных особеностей сигналов при помощи
волновых трансформаций

Атанас Гочев, Здравко Николов, Елена Рангелова,
Николай Николаев
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(Р е з ю м е)

Предложен общий подход к детектировании локальных особеностей в разных
класссах сигналов при помощи волновых трансформаций (wavelet transforms).
Метод использует автокорреляционные функции волн с компактным носителем.
Базисные функции детектируют точно моменты переходов, что доказывается
экспериментами с ЕКГ сигналами.


