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1. Introduction

In many application areas —engineering, comunications, logistics, manufacturing,
transportation, different non-homogeneous comoditiies are distributed over the same
underlying network. Usual ly the separate commodities share common arc capacities
that restrict the integrated flow of the gross comodities on the arc. Furthermore,
there exists amutual interaction between the comodities. The generic multicomodity
Tlow is a corparatively carplex generalization of the standard single-caomodity flow
[1, 2, 4]. Another more general class of single-comodity flow is introduced and
investigated in [3] —a network flow with inverse linear constraints (ILC-flow). The
values of this flov are bounded doan by linear inequalities with real non-zero coeffi-
cients. Both generalizations do not have the specific properties as the standard single-
commodity Flow. The respective problems do not necessary provide integer flows not-
withstanding the input data - the supply/demand and the capacity, is integer valued .
Still they are linear programs with special structures that allov the use of the decaon-
position approach.

The present paper discusses a multicamodity network Flow with inverse linear
oconstraints. The results dotained for the ILC-Flow are extended 1o this flov. The net-
work properties of the investigated flowv, although reduced, are exploited consider-
ebly.

2. Definttion of amulticaomodity ILC-Flow

Let several non-hamogeneous Flons with indices keK be given on the directed con-
nected graph G(N,U), where N is the set of nodes |[N|]=n and U is the set of arcs
JUl=m. For each carmodity the Flow is preserved at every intermediate node and
the values of these flons F(x, y) on the separate arcs (X, y)<U are bounded domn by
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inverse linear constraints. At amultiterminal case the set of sources S={S{keK} ad
the set of sinks T={14 keK} are reduced to single source s and single sirk t, and the
respective arcs are added. Further, this two-terminal case is concermed.

The multicomodity ILC-Flow is defined in the folloving way: for each kekK,

xeN and 1<l
J Vifx=s
(€)) OGN) —FN,X) = 0ifxzs, t
- ifx=t,
(4] Y XY X2, iel,
keK  xy)eD,,
(©)) X, y)20; X, y)eU,

wherec,, i el are real nomegative nunbers, D, ,, 1 €l —anarbitrary subset of U, such
that D, cUand U UD, =U, J- anempty set,
icl keK

eR", iIfieland(X,y) eD. ,
B: ) { stendCen) b
=0otherwise;
R" — a set of real non-zero nurbers.
The Investigated flow, defined by (1)-(3), differs fram the standard multico-
mmodity Flowwith lower bound of the capacity. This flow is defined by (1), (3) ad
the folloving constraints:

© Z:kg, y)>c(X,y); (X, y)eU.

3. Characteristics of the multicomodity ILC-Flow

Further on the feasible multicomodity ILC-Flows

©® VDR

ke K

and the minimal multicomodity ILC-Flows
O vV = min XV
ke K

will be considered.

The necessary and sufficient conditions for the existence of the single coomod-
ity ILC-flow, if the values {c } are positive real nurbers, are derived in [3]. The proof
for the existence of multicomodity ILC-Flow, on the same assumption, may be ac-
carplished in similar way.

A minimal multicomodity ILC-Flow {\/} is determined by the following linear
programming problem:

® min Y\
ke K
subject to the costraints (D)-Q).
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Lema 1. If {f) is amulticomodity ILC-Flow between s and t with values {/},
and (X, X) isan arbitrary cut, separating the source from the sink, then for each keK
() v (X, X) - (X, X),

The proof can be constructed by successively summing the equations of flow
oconservation (D) inall nodes xeX®

At autting sets the functions g and w are used instead of fand v.

The capacity c(r) of the cutting set U(r) in case of nulticomodity ILC-Flow is
determined, as is for the single-comodity ILC-Flow, by the folloving linear program-
ming problem:

)} c()— min Xw
ke K
sLbject to constraints
(@) g, N) - g\, X)=0, xeN(P), keK,
(%) XD, X)) - FK @), XIO)=w, keK,
(€5)) @, Y () - Y (D, YO0, keK,
a ) 2 P, y) gk Y=g, icl(),
keK (%, y)eDi’kO(r)
€3)) g, Y)=0, (xy)eU(),
where
@®) IO={UMD,=J, T el , kek};
o > (1= l UDND, ificl(r), kek,
’ | ¢y otherwise;
 \D' ifi
® D,() = {Dw\Dw(r)_' i) keK,
¢y otherwise;
@ D, =D (r)w D", (r);
@ D', =D, \D", (N v ( v D, (N);
o keK\ k|
X(r) ad Y(r) are autting s=ts;

@  NOYOAXO,UO=CE)XOIUX @, YD), AU O -

The existence of a solution of this linear programing prablem may be proved in
an analogous way as for the single coomodity ILC-Flow considering that all flows
g, keK, are nonzeroes and dom bounded.

The following theorem is esserttial for elucidation of the cutting set capacity
significance in multicomodity ILC-Flow optimality.

Theorem 2. IT In a network with multicomodity ILC-Flow there are given two
cutting sets U(r) and U(p), such that

@ uNU(P),
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then

€2)) o) ic@).
The proof may be constructed in a similar way as for the single-cormodity 1LC-
flow.

Definition 1. A cutting set U(r?), for which
@ u(ro=u
isafull attingsst.

Definition 2. I for o cutting sets U(r) and U(p)
> UE)U(r) and c(p)=c(r),

then the cutting set U(p) is called r-maximal; r— maximal cutting set is called maxi-
mal..

Lemma 3. For each network the minimal value of a multicommodity ICL-Flow

franstot, V¥, , iseqal 1o the capecity of the full autting set o(r), that is
@) min > =c(r").
ke K

P r o o f. For the multicommodity 1CL-flow the following relations hold, too:
@) TN, $)=0, T«(t, N)-0, keK.

At r=r" the folloving relations hold:
(¢23)) NID\N\G U D), I(ND=1; U(N=U, AUN=T;
@ g" X, XM G, N, kek;
@ g"(Y(D, Y M)W, 1), keK.

Therefore, both linear prograiming problems — for determination of > v and

keK
c(r) have one and the same forms and constraintsil
The next theorem follows from Lemma 3 and Definition 2.

Theorem 4. (Theorem for the minimal multicormodity ICL-flow and the capac-
ity of the maximal cutting set). For each network the minimal value of the
multicomodity ICL-Flow from s towards t is equal 1o the capacity of the maximal
atirng st

Letma 5. 1T {¥X} is a multicomodity ILC-Flow on a network the sufficient
condrtion for 1ts minimal ity is the presence of a autting set wirth index r, not coinciding
with the full autting set with index r*, for which it holds:

(€1D) vk =c(r).
kekK

P roo f. The sufficient condition (31) for minimality of the multicomodity
ILC-flow follows from Theorem 2 and Lemma 3 B

On the other hand relation (3L) is a sufficient condition for maximality of the
autting setwith index r.

Lemma 6. If {F} is amulticomodity ILC-Flow from s towards t with value >\

kekK
and U(r) is an arbitrary cutting set separating s front, then
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€2 TV =ZF), X)X @), X)) > (1),

ke K ke K
€9)) Tk =T, Y O (0, YD) = ().
ke K ke K

Proof. Thearc sets (X(), X(M) ad ({r),Y(r)) are cuts under construction.
Therefore the equalities in (32) and (33) follow fran Lemma 1. From U(NcU and
Theorem 2 the folloving relation holds

o)< o).
This result and (26) lead 1o the strict inequalities in () and ()W
From the exposition upto here it folloas that all results for the capecity of the
single-comodity ILC-Flow can be extended on the multicommodity ILC-Flov with a
given in analogous way capacity.
Denote by c(r, K) the capacity c(r) of the cutting set at multicomodity ILC-
Tlows K on a network.

Theorem 7. At Fiixed constrairts (14), if

(€D) KK,

then

€9) or, K) <o, K.
Proof. Let

(€9)) K=K, u{k"}.

After the determination of c(rr, K) and c(r, K) the values of g and w* are denoted
respectively by g, w andg, w.

a) Assume

€2)) w, > Xw.
keK keK

The multicommodity ILC-fllow realization g, w, at keK is extended to g, w/
at keK in the following way: for each (X, y)eU and keK
0iflek®,
(€3)) 95,0, V)= _
Lgl(x, y) otherwise.
The values ¢f(X, y) are a feasible realization for determination of c(rr, K). From
0 o (2D, () ad (37), it follos that

K — Kk Kk
(€2)) Twhk=Xwr > FTwk
keK keK keK

In (39) the ineguality means that a realization can be found, which is better than
the gptimal one. This is a contradiction.

b) The following case is examined: for each icl, (X, y)eU(r) and keK
“@ D, (DD, (N, bjX, D, y)
From (10)-(21) and (40) it folloas
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“@n c(r, K)=c(r, K.
©) Let I(N={1, 2} and for each keK

(2@, I k=K,

@ DM 3
’ |= @5 otherwise;

(=05, iF k=k*,
(CS)) D, _

l= @ atherwise.
(7)) Ifc>c,
then from (10)-(21) and (42)-(44) it is dbtained
“® c(r, K)<c(r, K.

Because of the assurption (39), the incorrectness of (37) and the exanples for
which (41) and (44) hold, (45) follons. By induction the relation (45) may be proved
for an arbitrary KcK'®

Definition 3. IF for an arbitrary cutting set U(r) and two multicormodity ILC-

floas K and K:
“@) KK,
@ c(r, K)=(r, K

then the multicomodity ILC-Flow K 1is called (rr, K)-minimal .

(r", K-minimal multiconmodity ILC-Floas are denoted as K-minimal .

From Definition 4 it folloas that for each multicommodity ILC-flow there exists
at least one (r, K)-minimal multicamodity ILC-flow.

Theorem 8. IT at least ore of the multicommodity ILC-Floas K and K, is (I, K)-
minimal, then the multicomodity ILC-flow K, for which

(¢3)) K=K, UK, and K cK,
is (r, K-mininal, too.
Proof. IfK is (r, K-minimal then
@) c(r, K=c(r, K)
As KcK,, from Theorem 7 it follows that
€Y c(r, K)<c(r, K).
From these two relations it is dotained
GD o(r, K) i, K.
As KK, frram Theorem 7 the following inequal ity is dbtained:
€% o, K< c(r, K).

Fron (51) and (52) the (r, K)-minimality of K follons.

Corollary 9. The union of several multicormodity ILC-Flows, from which at
least one is (r,K)-minimal, isalso (r, K)-minimal multicomodity ILC-Flow.

Corollary 10. IT U(r) is maximal cutting set, then the (r,K)-minimal
multticommodity ILC-Flow K is K-minimal.
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This result fol lows from Definition 2, Lemma 3 and Theorems 4 and 78

Corollary 10 shows that for the determination of a minimal multicommodity
ILC-Flow there nust not use all floas fromK, but only those which are included in the
K-minimal multicormodity ILC-Flow K cK.

For the determination of the capecity c(rr, K) it is also sufficient to use the (r,K)-
minimal multicomodity ILC-Flow K cK.

Upto here, the given results concemn the problems for minimality of the
multicommodity ILC-flow.

There is a class of problems for feasibility of the multicormodity ILC-Flow:
given the values {v|keK} or 2 v,; to find a realization of the mukticomodity ILC-

kekK

Tflow, which satisfies those values.

In case of a specific total value X v, according to Lemma 3, anif risthe

keK

meximal cutting set, and the following relation holds

o) S vk o),

kekK
then there exists a multicomodity ILC-Flow, by which this value can be dbtained. At
inerse inequality there is no such flow.
At given values {v/“|keK} and inequal ities
D 2 vf<cn),

kekK

there is no multicomodity ILC-flow that satisfies them. According to Theorem 7 the
folloving inequalities are necessary conditions for the flow existence:

&) vkic(r, K), keK, k=K.
According to Lemma 3 the fol lowving inequal ities are sufficient:
(69)) V1w, keK,

where w* are the values of w* at c(r).

4_ Conclusion

A class of multicormodity network flow with bounded lower and upper un-
bounded vallues of the Tlow is defined. This flow is called amulticomodity flow with
inverse linear constraints or multicomodity ILC-Flow. The introduced flow iIs an
extension of the single-commodity ILC-flow.

The cgpacity of the respective cutting sets is defined on the besis of the Inverse
linear constraints and a number of relations are proved, characterizing the
multicomodity ILC-Flow and the capecity of these cutting sets. It is proved that the
minimal value of the multicomodity ILC-Flow is equal to the capacity of the maximal
autting set (minflov-maxcut theorem).

Some praoblems for the minimal ity and feasibility of the multicomodity ILC-
Tflow are considered.
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MHOI‘OHpO,JIyKTOBbIe IIOTOKM C O6paTHbIMM
JIVHEVIHEIMI OI'PaHMYEHMAMN

ATaHac T. ATaHacoB

UHCTUTYT MHYOPMALMOHHEIX TexXHOoJormi, 1113 Cogpusa

(PesoMe)

[lpenjoxeH ¥ MCCJeOOBaH KJlaCC CeTeBHX IIOTOKOB, Ha3BaHHEIX
MHOT'OINPOOYKTOBEMM [IOTOKAMM C ODPATHEMY JIMHEMHEMY OT'PaHUUEHUSAMY WA
MHOTONPOOYKTOBEMM OJIO-nnoTokamMM. [Ipy 3TOM MHOTONPOOYKTOBOM IIOTOKE
3HAUEHMS yT'OBBIX [TOTOKOBBIX OYHKIN, HEOTPAHMUEHHEX CBEPXY M OTPaHMUEHHBIX
CHMBY MHOXECTBOM JIMHEMHEIX HEPABEHCTB C HEVCTBUTEJILHEMM ITOJIOKUTEIIEHEMA
¥ OTpUUATEeJIbHEMM KO3QbMUMeHTaMu. BoJsbliad dYacTb TeOopeTUUeCKUX
pPesybTaTOB OOHONPOOYKTOBEIX OJIO-NIOTOKOBR PaCIPOCTPaHAKNTCS Ha MCCIe-—
IOOBAHHOM IOTOKe. JICIIOJIBE30BAHEL paCCeKanlye MHOXeCTBa OyT, OJIOKMpPYyIUMe
BCe Leny otuero QUKTMBHOT'O MCTOUHMKA K ofleMy OMKTMBHOMY CTOKY. BBermeHa
GYHKILMSA NIPONYCKHOM CIIOCOOHOCTM pacCekKallMxX MHOXECTB M JOoKasaH pPAaAll
3aBUCKMOCTEN IJId B3TOM QyHKIM. JaHO IOKa3aTEeJIbCTBO TOT'O, UTO MMHMMAJIBHOE
3HAUeHMEe MHOT'ONPONYyKTOBOT'O OJIO-IIOTOKa PaBHO MIPOIIYCKHOM CIIOCODHOCTU
MaKCMMAaJIbHOTO pacceKaiuero MHoxecTBa (minflow-maxcut Teopema) . [pMBEIEHE
pesysbTaThl, OTHOCAIMECH K 3alade OONYyCTMMOCTM MHOT'ONPOOyKTOBOTO OJIO—
[IOTOKA .
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