On One Approach for Modification and Expansion of the Information Interactions Models*

Tasho D. Tashev, Hristo R. Hristov

Institute of Information Technologies, 1113Sofia

1. Introduction

The Petri nets (PN) [1], are used for formal description andmodeling of parallel and asynchronous interactions in complex systems. They enablethe simultaneous consideration of the systemstructure and of the dynamics (behaviour) of the running processes.

Theproblem, that attractsconstantly the attentiontoPNapplications, isthe synthesis of new structures with the corresponding systems parameters One of the possibilities introducediby Kron is is the use of tensor methods for its solving [3]. The last have been introducedby Kron [4] for analysis of suchtype of nets, aselectric circuits andelectric machines. The tensor analysis of sets according to Kron can be taken as a base in the modeling of complex systems and applied to their models, described with the help of PN [5]. In this case, accordingto Kul ag in [6], the tensor approach, appliedto a given PN model canbe reduced to the following sequence of stages:

Analysis: a) decomposition - functionally independent PN fragments are determined; b) Themodel obtained is "divided" into a set of linearbase fragments (IBF), which define the so calledreduced system (RS) ; c) aprimitive system (PS) is obtainedfrom the IBF set. The last stepof theanalysis isthedefining of thetransformingtensor (TT) . Forthispurpose the reducedand primitive systems are regarded as projections of the generalized system on different coordinate systems.

Synthesis: The synthesis of the newnet of Petri ($\mathrm{M}_{\text {new }}$) is done by TT and respective operations of union on PS elements.

The digital values for PS and RS are given by Kulagin in [6] . Unfortunately, when solving the equations system, determining TT, the components of the trnsforming tensor havenot one solution only. A solution is proposedin [6], defined.by heuristic procedure implying the constraints suggestedby Kron for ($+1,0,-1$) values of the components.

The subject of the present study is the finding of formal conditions for obtaining a single solution of TT components. This problem is solved introducing a weighing matrix

[^0]for PNarcs. Thealterations, that have to be introduced in theprocess of a newPN synthesis, arediscussed.

2. Aweightingmatrix-basic definitions andproperties

Let the Petri net be definedas 5 rankedelements:

$$
\text { (1) } \quad N=\left(P, T, I, O, \mu_{0}\right) \text {, }
$$

where $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is a nonempty set of positions; $T=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$ is a nonempty set of transitions, $P \cap T=\varnothing$, I and Oare an input and output function, describing the set of transitions inthe set of positions and μ_{0} is the initialmarking [1]. Thedenotationspre (t) andpost (t) are sets of input andoutput positions of the transition t. An elementary set is defined as a PN, consisting of a transition with one input and one output position$P=\left\{p^{\prime}, p^{\prime \prime}\right\}, T=(t)$ and $p^{\prime} \in$ pre (t), $p^{\prime \prime} \in$ post (t). Let *dand d^{*} are vectors describing the set of input and the set of output positions of the transition t. The element s of these vectors get positive integer values. Thevector $\alpha=d^{*}-\star d$ gives the connection of transition t with PNpositions, and at that $d(i)>0$, if $p_{i} \in$ post (t) ; $d(i)<0$ if $p_{i} \in$ pre $(t) ; d(i)=0$ if ($p_{i} \in \operatorname{pre}(t)$ Upost (t)) where $i=1,2, \ldots, n$. Theequation of alteration of PNmarking at transitiontfiringwillbe:

$$
\begin{equation*}
\mu^{\prime}=\mu_{0}+d, \tag{2}
\end{equation*}
$$

where μ is the old vector of PNmarking, μ '-the vector of PNmarking after transition tisfired.

Let the input and output functions be given by thematrices I and O. Then D is called an incidencematrix, comprisingvectors d_{1}, \ldots, d_{m}. The last ones describe the set of input and the set of output positions of transitions t_{1}, \ldots, t_{m} :

$$
D=O-I .
$$

The matrix equation of operating (marking alteration) of PN has the form:
(4)

$$
\mu^{\prime \prime}=\mu^{\prime}+D f(\sigma),
$$

where $f(\sigma)$ is anexisting sequence of firedtransitions (Parih image [1]) .
The matrix D_{T} of the arcs weights in PN [7] is defined as follows.
Abasic PN (BPN) is called an ordinary and without @ net, which satisfies the conditions of Kulagin for start and stoppositions [6] .

Let $l_{\mathrm{T}}\left(p_{i}, t_{j}\right)$ betheweight of the arc, directedfromposition p_{i} towardstransition t_{j} : $I_{\mathrm{T}}\left(p_{i}, t_{j}\right) \geq 0$ (integervalue), and $I_{\mathrm{B}}\left(p_{i}, t_{j}\right)$ be the value of the incidence function of the same arc, obtainedafter the transformation of the output PN (when $I_{\mathrm{T}}\left(p_{i}, t_{j}\right)$ is available) in the BPN [7]. The coefficients $I_{I}\left(p_{i}, t_{j}\right)$ of thematrix l_{I} of the weights of the input function I are definediby the equation:

$$
\begin{equation*}
I\left(p_{i}, t_{j}\right)=I_{\mathrm{T}}\left(p_{i}, t_{j}\right)+I_{\mathrm{B}}\left(p_{i}, t_{j}\right) . \tag{5}
\end{equation*}
$$

Hence $l_{\mathrm{B}}\left(p_{i}, t_{j}\right)$ accepts values of zero or one; $l_{\mathrm{T}}\left(p_{i}, t_{j}\right)=0$ when $l\left(p_{i}, t_{j}\right)=1$ or $I_{\mathrm{T}}\left(p_{i}, t_{j}\right)=k-1$ when $I\left(p_{i}, t_{j}\right)=k(k>1)$. In case there does not exist an arc between p_{i} and t_{j}, the three values are zeroes.

In a similar way the weight of the output arcs between p_{i} and t_{j} is determined as:

$$
\begin{equation*}
O\left(p_{i}, t_{j}\right)=O_{\mathrm{T}}\left(p_{i}, t_{j}\right)+O_{\mathrm{B}}\left(p_{i}, t_{j}\right) . \tag{6}
\end{equation*}
$$

Passing towards the matrix form of PN functioning accordingto (5) and (6), it is written:

$$
\begin{equation*}
\mu^{\prime \prime}=\mu^{\prime}-\left[I_{\mathrm{T}}+I_{\mathrm{B}}\right] f(\sigma)+\left[O_{\mathrm{T}}+O_{\mathrm{B}}\right] f(\sigma), \tag{7}
\end{equation*}
$$

where I_{T} and O_{T} are matrices of the weights of the input and output arcs towards PN
transitions, and I_{B} and O_{B} arematriœs of the input andoutput function of the corresponding BPN.

After some transformations described in detail in [7], the index form ($|\gamma|=n$, $|\beta|=m)$ is obtained:

$$
\begin{equation*}
\mu^{\prime \prime \gamma}=\mu^{\prime \gamma}+\left(D_{\mathrm{T}}{ }_{\beta}^{\gamma}+D_{\mathrm{B} \beta}{ }^{\gamma}\right) f(\sigma)^{\beta}, \tag{8}
\end{equation*}
$$

Here $D_{T} \gamma_{\beta}=O_{T} \gamma_{\beta}-I_{T} \gamma_{\beta}$ is the common matrix of the weights, and $D_{B} \gamma_{\beta}=O_{B}^{\gamma}{ }_{\beta}-I_{B}{ }_{\beta}{ }_{\beta}$ is the incidence matrix of BPN. The incidence matrix of the output PN is D_{β}^{\prime} and it satisfies equation (4) :

$$
\begin{gather*}
\mu{ }^{\prime \gamma}=\mu^{\gamma} \gamma+\left(D_{\beta}^{\gamma}\right) f(\sigma)^{\beta}, \tag{9}\\
D_{\beta}^{\gamma}=D_{\mathrm{T}}^{\gamma}{ }_{\beta}+D_{\mathrm{B}}{ }^{\gamma}{ }_{\beta} . \tag{10}
\end{gather*}
$$

The check of equation (9) is trivial: if $D_{\mathrm{T}}^{\gamma}=0$, i.e. the output PN is ordinary, then the matrix equation of BPN functioning will coincide with that of the output net.

According to the tensor approach a tensor transformation is applied onequation (10) and inthe transition from the system of coordinates ${ }_{\beta}^{\gamma}$ towards thenew system of coordinates $\gamma^{\prime}{ }_{\beta}$, the following incidencematrices are obtained:

$$
\begin{equation*}
D_{\beta^{\prime}}^{y^{\prime}}=D_{T} \gamma^{\prime}{ }_{\beta},+D_{B} \gamma^{\prime}{ }_{\beta}^{\prime} \cdot \tag{111}
\end{equation*}
$$

The tensor form of PN equations leads to the equations, fromwhich the components of the transformedtensor C can be obtained [5] :

$$
\begin{gather*}
D^{\prime}=C D, \tag{12}\\
\mu^{\prime}=C \mu_{0},
\end{gather*}
$$

where thereare two projections of $P N$ in two coordinate systems (CS) respectively-Nand N^{\prime}, with incidence matrix Dand initial marking μ_{0} (for N); and D^{\prime} and μ_{0}^{\prime} (for N^{\prime}) respectively. Accordingto thepostulates, the transition from the first towards the second CS is determinedby the transforming tensor.

As a result of introducing the weightsmatrix, anewpossibility is achievedthanks to (11) - the transformation of the weightingmatrix canbe addedas another equation instead of equation (13) (the BPNtransformation is usedas equation (12)), which formally means solving the systemofequations:

$$
\begin{align*}
& D_{\mathrm{T}}^{\prime}=C D_{\mathrm{T}}, \tag{14}\\
& D_{\mathrm{B}}^{\prime}=C D_{\mathrm{B}}, \tag{15}
\end{align*}
$$

The systemhas only one solution if the arcs of eachtransition have different weights. Then the TT coefficients are uniquely defined.

In case PN has no multi-arcs, and all the arcs are singular (as in BPN), this corresponds to the degeneration of the system of equations (14) and (15) and the appearance of a set of solutions.

3. Determining of TT coefficients with the help of D_{r}

Determining of TT coefficients with the help of equations (11)-(15) is illustratedbelow solving a system of LBF with two transitions. According to tensor methodology, the solutions of LBF with more transitions (of higher order) have a similar form.

The components of the incidence matrix ($D_{B} \gamma^{\prime}{ }_{\beta}$) are shown in the first two columns in Fig. 1 for a LBF of second order, and the components of the weighting matrix $D_{B} \gamma^{\gamma^{\prime}}{ }^{\prime}$, in the third and forth column (for aRS).

The components of the incidence matrix $D_{B}{ }^{\gamma}$. are shown in the first two columns in Fig. 2 for the respective primitive system, and the components of weighting matrix $D_{B}{ }_{\beta}^{\gamma}-$ in column 3 and 4.

The arcs weights are a, b, c, d (integer numbers). A solution of thematrix equation $R=X^{\star}$ Tis searched for. The problemhas only one solution subject to condition

$$
\begin{equation*}
a+b \neq 0, \quad c+d \neq 0 . \tag{16}
\end{equation*}
$$

It can beproved that the conditioneach transition to have different weights for the input and output arcs is reproduced for IBF of a higher order, which is not shown here for convenience.

Fig. 3a shows the solution of the coefficients of transformation for LBF of second order, whilethe coefficients a, band c, dsatisfy condition (16) .

$R\left(R_{\mathrm{B}} \mathrm{II}\right.$
$\left.R_{\mathrm{I}} \mathrm{II}\right)$
-1
---:
1
1
0

Fig. 1.
RS components

Fig. 2.
RS components

X

$$
\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}
$$

Fig. 3.
Solution of the system for LBF of second andthird order

Fig. 3b shows a solution of IBF of third order. The components of LBF of higher order arewithasimilar structure.

It is interesting that the solution obtainedwith the help of the weight ingmatrixhas the same coefficients values as the one suggested in [6] by an heuristic procedure.

4. Weightingmatrix in synthesis

The analysis stage is accomplished on the incidencematrix of BPN , i.e. in the absence of multi-arcs. The weightsmatrixis used in the stage of synthesis of the newPN, themainpart of which is the use of union operations on the arcs of the primitive system obtained in analysis.

The union operations and their features have been investigated in [6] . In order to validify one synthesis algorithm, we shall add the following constraints:

- union operations of a node with itself are not allowed;
- union operations of nodes, belonging to one LBF are not allowed;
- repeating of an operation already executed is not allowed.

The input data of the synthesis algorithmare: an incidence matrix of PS $-D_{p r}$ with r transitions and $2 r$ positions, the number of LBF of PN h; the numbers of the transitions in every LBF (together with their coincidence with the numbers of the output model transitions); finite number of union operations $C_{\phi}(q, s)$ - together with the numbers qand s of the nodes they include. The results of the operations $C_{o p}(q, s)$ are stored in amatrix $D_{\text {new }}$, which is initially equalledto $D_{\text {pr }}$.

In order to satisfy constraint 1 , it is is ways required the indices to be different at $C_{\text {p }}(q, s): q \neq s$.

In orderto satisfyconstraint 2, thebelongingofevery transition to the corresponding LBF should be determined. The procedure for this will be based on the following prerequisites.

The matrix $D_{p r}$. contains h in number LBF and $k_{1}, k_{2}, \ldots, k_{i}, \ldots, k_{h}$ - the number of transitions ineach fragment is known. The total number of transitions is r. They will have numbers $t_{1}, t_{2} \ldots, t_{r}$ which are different from the numbers $1,2, \ldots$, mof transitions $t_{1}, t_{2} \ldots, t_{m}$ inthe incidencematrix of the initial BPN , since the last ones are not subjected to division in the general case. But the correspondence is known, because it is a result of thedivision.

The transitions in RS are rankedas follows:
$t_{1}, t_{2} \ldots, t_{k 1}$-belongingto the first IBF;
$t_{(k 1)+1}, t_{(k 1)+2}, \ldots, t_{k 1+k 2}$-belonging to the secondLBE;
$t_{k 1+k+k(i-1)+1}, t_{k 1+\ldots+k(i-1)+2}, \ldots, t_{k 1+\ldots+k i}$-belonging to the i-th LBF;
$t_{k 1+k 2+\ldots+k(h-1)+1}, t_{k 1+\ldots+k(h-1)+2}, \ldots, t_{k 1+\ldots+k h}=t_{r}$-belonging to the h-th LBF .
The elementary transitions in $D_{p r}$ are ranked in the same way.
The positions in D_{pr} arealso ranked. The transition t_{i} is assigneda startingposition with number $2 i-1(p(2 i-1))$ anda stop position with number $2 i$. If transition t_{j} belongs to the i-thIBF, it is accepted that itspositionsin $D_{\text {pr }}$ alsobelongto this fragment respectively.

Hence for the positions and the transitions in the primitive system the record $k_{1}, k_{2}, \ldots, k_{i}, \ldots, k_{h}$ canbeused. Thebelongingrecord-whichtransitionbelongstoa given fragment, has the form:

1, k_{1}-number of the first and the last transition in the first IBF;
$k_{1}+1, k_{1}+k_{2}$-number of \ldots in the second LBF;
$1+\sum_{i=1}^{W-1} k_{i}, \sum_{i=1}^{w} k_{i}-$ number of \ldots in the w-th LBF;
$1+\sum_{i=1}^{h-1} k_{i}, \sum_{i=1}^{h} k_{i}-$ number of \ldots in the h-th (last) LBF;
If A_{w} is the sumof the transitions of the first wLBF:

$$
A_{w}=\sum_{i=1}^{w} k_{i},
$$

k_{i} - number of transitions in k-th LBF.
Let uswritethe row $A_{1}, A_{2}, \ldots, A_{i-1}, A_{i}, \ldots, A_{n}$.
Consequence 1. The necessary and sufficient condition to find the transition t_{j} from D_{pr} inthe i-thLBF is to satisfythe condition:

$$
j>A_{i-1} \text { AND } \quad j \leq A_{i} .
$$

Let us write the row $2 * A_{1}, 2^{\star} A_{2}, \ldots, 2^{\star} A_{w-1}, 2 \star A_{w}, \ldots, 2 \star A_{n}$.
Consequence 2. The necessary and sufficient condition to find the position p_{i} from $D_{p r}$ in the w-thLBF is to satisfy the condition:

$$
i>2 * A_{w-1} \text { AND } i \leq 2 * A_{w} \text {. }
$$

With the help of these two consequences the presence of constraint 2 is checked. The check of constraint 3 consists of finding anelement in $D_{\text {new }}$, which has avalue different from +1 , 0 or -1 .

Fig. 4

Fig. 5

Theblock-diagram of the synthesis algorithm is shown inFig. 4.
Modification of this algorithm is necessary in order to use the weigthmat rix as well. The last one will beentered in the input data as D_{w}. After that each permitted operation $C_{o p}(q, s)$ will beexecuted on the elements of $D_{p r}$ as well as on the elements of $D_{w^{\prime}}$ i.e. no changes are necessary in the algorithm, just an addition, as shown inFig. 5. At last there follows summing of D_{w} and $D_{\text {new }}$, multiplying of the new matrix by TT coefficients and removing of the coinciding rows or columns.

As a result the incidence matrix of the new PN is obtained, which will not be a BPN, but a generalized PN (with multiarcs), which has been the purpose of weights matrix introducing.

5. An example of weighting matrix application

The approach discussed concerning a weighting matrix use enables the extending of the modeling capacities of the tensormethods applied in Petri nets. After the synthesis a new model is obtained that formally covers the possibilities fromthe class of ordinary to the class of generalized PN wi thout примки. It is appropriate to apply it when the interactions beingmodeled are adequately representedby multi-arcs.

The possibilities of weighting matrix application are shown modeling by PN telecormunication interferences-the phase of connectionestablishing. Accordingto OSI philosophy, the model for data exchange which is recommended, is by connection establishing. InRecormendation X. 120 [9] the interactionbetween two protocol objects of N -layer is describedwith the help of four primitives- request (Req), indication (Ind), response (Res), confirm (Con) that are exchanged by the $\mathrm{N}-1$ layer service.

The graphical PNmodel of connectionestablishing between two protocol objects is shown in Fig. 6. This is asymmetrical interaction since the first object wants connection, while the second one responds. Table 1 gives an interpretation of the positions and transitions fromPNinFig. 6, where SDU is a service data unit, andPDU- a protocol data unit.

Fig. 6. PN model of asymetric connection

Fig. 7. Second PN model of asymetric connection
In Recormendation X. 210 [10] it is noted for the primitive confirm that it is not in direct relationwith the rest. That is why it is detached ina separateIBF, aswell ast1 (which does not reflect aprimitive).

In case, when a balance scheme (symmetrical procedure) is searched for to establish connectionbetween two equivalent protocol dbjects, i.e. any of them can request connection establishing, therewill be a secondPN respectively (shown inFig. 7) . The secondPN has positionsp9-p16 and transitionst8-t14 (p9beingequivalent top1, t8-tot1 andso on).

Table 1. Correspondence of the conditions and events in the output PN

p1	procedure start	t1	transmission of a request for connection
p2	request for connection	t2	transmission of the primitive Req
p3	transformation SDU \rightarrow PDU	t3	transmission of the protocol block PDU
p4	transformation PDU \rightarrow SDU	t4	transmission of the primitive Ind
p5	resource separation	t5	transmission of the primitive Res
p7	transformation PDU \rightarrow SDU	t6	transmission of the primitive block PDU
p8	answer received	t7	transmission of the primitive Con

If the nets fromthe two figures are regarded as one common interaction, i.e., PS is a sum of LBF of the two PN and thematrix of PS will have dimension [14 columns, 28 rows] . The respective operations of union are executed on the incidence matrix of PS. The incidencematrix of PS obtained, ismultipliedbythe coefficientsof thetransfomingtensor andafter the equivalent elements are cancelled the final variant of the newPN is obtained, i.e. thematrix of incidence $M_{\text {new }}$ has the form:

| tNEW | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PNEW | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | -1 | 1 | 0 |
| 4 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 5 | 0 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
| 6 | 0 | 0 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 7 | 0 | 0 | 0 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 8 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 0 | 0 | -1 | 0 | 0 |
| 9 | 0 | 1 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
| 10 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
| 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 0 | 0 | 0 |
| 13 | 0 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | -1 | 0 | 0 | 1 |
| 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 0 |
| 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | -1 |
| 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

Its analysis can show that thenet obtained is active and safe.
This is a newstructure of interactions. The weights matrixenables themodeling of messages duplication in the communication channel.

For the purpose the transition $t 3$ and the primary interaction fromFig. 6 is assigned weight 1 of the initial arc. Thisweight isentered intheweightsmatrix. The sameoperations are accomplished on it as in the obtaining of Mnew and the matrix obtained is added to thelast.

The graphical type of PN, corresponding tomessages duplication, is shown in Fig. 7. ThisPNis also active but not safe, it is2-limitedwhich corresponds to the interaction entered (duplication-doubling). Unserviced request for connectionwill remainat position p4, but this is the doubledrequest, i.e., the interaction scheme obtainedreacts adequately to the action introduced. Themechanismof resources control has the task to remove it, but this is the subject of future investigations.

Fig. 7. Graphical representation of PN processing messages duplication

6. Conclusion

The application of tensor methodology in the analysis and synthesis of net models of the information interactions gives a general approach for the obtaining of nontrivial mechanisms in a formal way. The introduction of the matrix of arcs weights requires minimal supplements to the algorithm of synthesis andexpands themodelingpossibilities.

References

1. Peterson, J. L. -Petri nets, comp. Surv., 9, Spt., 1977, No 3, 225-252.
2. Desel, J., Wollgang, Reising. The Synthesis problem of PetriNets. -TUM-19231, SFB-Bericht No 342/20/29 A, Sept., 1992.
3. Petrov, A. E. Tensor Methodology in Systems Theory. M., Radio i Sviaz. 1985, p. 152 (in Russian) . 4. Kron, G. Tensor analysis of networks., J. Wiley \& Sons, N.Y., 1965, p. 720.
4. Vashkevich, N. P., V.P.Kulagin. Methods of automatic design of prallel computer structures. - In: INFO-89: Mejdunar, sviaz, Minsk, 1989, vol. 2. part 1.-Minsk, 1989, 153-157 (in Russian) .
5. Kulagin, V. P. Following tensor technology in design of concurrent computing system. - In: CAD-94: New Inform. Technologies for Science, Education, Medicine and Business. XXI School and Int. Conf. Yalta (Gurzuf), May 4-13, 1994, Moskow, 1994, 87-89.
6. Tashev, T. D., H. R. Hristov. Application of weight matrices in tensor transformations of Petri nets . -In: Proc. of Bulgarian-Russian Seminar "Method and Algorithms for Distributed Information Systems Design. Theory and Applications." Sept. 29-Oct. 4, 1997, Sofia, Bulgaria .Moscow, 1997, 121-132.
7. ISO IS 7498. Information Processing System-Open System Interconnections -Basic Reference Model, 1983.
8. Blue book. Open System Interconnection (OSI) . Layer Service Definition Convention. Vol.VIII. 5. Recommendation X.210. Geneva, 1988.

Один подход к модификации и расширению моделей информационных взаимодействий

Ташо Д. Ташев, Христо Р. Христов

Институт информационных технологий, 1113 София

(Резюме)

Рассматриваются вопросы моделирования информационных взаимодействий сетями Петри. Для получения новых структур взаимодействий используется тензорный подход. Дефинирована матрища весов дуг сети Петри в его контексте. Выведены условия еднозначного определения коефициентов трансформирующего тензора. Показано, что в алгоритме синтеза новых моделей нужно внести минимальные дополнения. Возможности модификации иллюстрованны на примере моделирования телекоммуникационной процедуры. Получена симметричная схема взаимодействия для канала с дублированием сообщений в одном направлении.

[^0]: *The investigations have been partally supportedby the National Fund "ScientificResearch", Contract No И 703/97.

