On One Approach in Justapositions Application in Nondeductive Inference*

VladimirS. Jotsov, Vassil S. Sgurev

Institute of Information Technologies, 1113Sofia

1. Introduction

When several selectednotions-investigationdbjects arediscussed, theuseof justapositions is characterizedby its simplicity. Denote $A_{1}, A_{2}, \ldots, A_{n} \in\{A\}$ as features (orproperties), characterizing the set of all the objects justaposed $C_{1}, C_{2}, \ldots, C_{k}$. As a result of the justapositions amatrix Z is formedwith dimensions $k \times n$, such that each of its elements $z_{i j} \in Z$ is assigned the value l in case the feature A_{i} belongs to the object C_{j} or 0 (in case it dbes not belong). It isalsonot difficult to introduce avalue for $z_{i j}$: ("yes" or "no": indefinite truthvalue), leadingto the application of ternary logic in justapositions formalization. Truth values of the type "neither yes, nor no" with elements of four-valued or reduced to it logic are beyond the investigationarea. Regardless of the simplicity inthe description andoperationwith justapositions, theiruseindifferent inferencetypescanbequiteefficient. Let the notion nondeductive inferencebeused, that unites the notions inferenceby analogy and inductive inference. Examples of the interactionbetween these two types of inference are found in research papers on inductive andprobabilistic logic and on analogy also [1-7]. For exampleD.M.Keynes [8] has shown that Mill's (Eliminating) induction can be representedas recomputing induction plus analogy. When the schemes of nondeductive inferencemethods are compared, some repeating elements that play an important role in every one of them can be mentioned.

The justapositiontools enter all these schemes and this is one of the reasons for their study. There are twomore purposes for the investigation:
I. The development and analysis of justapositions helps finding the connection between different nondeductive approaches.
II. Since the justapositions are the most simple units in any nondeduct ive approach, the study of the constraints implied on the approach as a whole can start with them. But the complexity of the inference in the transition from justapositions towards the approach

[^0]as a whole can increase considerably and in some cases the specifics of a part of the approach cannot be transferredto the approach as a whole.

Thepaper discusses the justapositionstools referringtoelementsof sets, realizedin inferenceby analogy and in induct ive inference also. Though this apparatus has been used inthe firstattemptstousenondeductiveinferenceinartificial intelligence (AI) [9], it still remains inthese applications. The justapositions are weakly representedeven inencyclopedia literature about AI [10, 11] or in decisionmaking systems [12]. Anyway, the omission of justapositions (andcounter positions) leads to incorrect transformation of knowledge and inference. The next three chapters represent three types of inference and the use of justapositions inthem.

2. Justapositions in analogy by features

The analogy by features (which is also called Epicurean analogy [5]) is easy for formalizationandcombines all the characteristic features of the inferenceby analogy with its simple description. In order to simplify the inference diagram represented, it is conditionallydividedintotwo variants.
a. Let the object Bhas features from the set $\left\{A_{i} \mid i \in D_{0}\right\}$ where D_{0} is the set of indices of patterns describing B, for example $D_{0}=\{2,5,11,12\}$. Let also the object C_{i} be characterizedby a part of these patterns $\left\{A_{i} \mid i \in D_{1}\right\}$, at that $D_{0} \subset D_{1}$ and in this way the sets of features of n similar objects are given $\left\{C_{k} \mid k=1,2, \ldots, n ; D_{k} \subset D_{0}\right\}$, that are comparedto B. Then the rule for analogyby features [13] canbe interpreted in the following way: "If the object Bhas features $\left\{A_{i} \mid i \in D_{k}\right\}$ (coinciding features), it is possible that it possesses sufficient patterns $\left\{A_{i} \mid i \in D_{0} \backslash D_{k}\right\}$ as well, which is formalizedas:
(1)
where \cap denotes conjunctionbetween the logical objects, ψ_{k}-partial similarity between them, which is straight proportional to the proximity between the objects B and C_{k}, estimated in the hierarchical network of objects, based on the use of relations of "predecessor-ancestor" type.
b. Let the objects $B_{1}, B_{2}, \ldots, B_{m}$, have pattems fromthe respectivesets $D_{01}, D_{02}, \ldots, D_{0 m}$ and $D_{0} \subset D_{01}, D_{0} \subset D_{02}, \ldots, D_{0} \subset D_{0 m}$. Let also the object compared- C_{k}, possesses such patterns $\left\{A_{i} \mid i \in D_{k}\right\}$ that $D_{k} \subset D_{0}$. Then in the comparisons between $B_{0 j}, j=1,2, \ldots, m$, and C_{k}, the inference diagram accepts the form:
(2)

$$
\frac{B_{0 j} \underset{i \in D_{0 j}}{\leftarrow} A_{i}, C_{k} \underset{i \in D_{k}}{\leftarrow} A_{i}}{C_{k} \underset{i \in D_{0 j} D_{k}}{\leftarrow} A_{i}}
$$

Inpairwise comparisonsbetween objects, diagrams (1) and (2) coincide. ψ_{k} has an important role in the diagramsince on the basis of this estimatemany of the objects are eliminatedas beingnot close enough to knowledge transformation (in the case considered -features) byanalogy. There is apossibility to control theprocess of hypotheses generation defining theminimal threshold value for a set of coinciding features - card $\left(D_{x}\right)$, where $D_{x} \equiv D_{0}$ or $D_{1} \equiv D_{x^{\prime}}$ card is usually the power of a set and in this case it is reduced to the
counting of elements D_{x}. The alterations ψ_{k} do not hamper the formation of incorrect hypotheses and incorrect knowledge, that is why all the hypotheses are passed through two "filters", wheremany of themare screenedas invalid. First the noninconsistency of the hypotheses formed is checkedwith the help of their justaposition with all the knowledge available forthe object, to which the hypothesisgiven is referredto (this object is called goal of the transformationby analogy). The consistent hypotheses are compared with knowledge from the goal of transformation. The whole complex system of hypotheses check and rejection and of the object s compared does not guaranteeeven sat isfactoryvalidity of the hypotheses obtainedby analogy (this refers not only to the analogy by features) .

Let $z_{i p} \in Z$ for the patterns justaposed $A_{1}, A_{2}, \ldots, A_{n} \in\{A\}$ and the objects $B_{0 j}, C_{k}$ form a matrix of dimension $(k+j) \times n$, and each element from $z_{i p}$ be assigned the value 0 or 1 . Therealizationof justapositionsenables the separationof $\{A\}$ intothreenonintersecting subsets: $\left\{A^{(0)}\right\}$, $\left\{A^{(1)}\right\}$ and $\left\{A^{(2)}\right\}$, where $\left\{A^{(0)}\right\}$ includes all the features, possessedbyall the objects justaposed, $\left\{A^{(1)}\right\}$-patterns A_{i}, forwhichthereexists at least one object p, forwhich $z_{i p}=0$. By definition, $\left\{A^{(0)}\right\}$ and $\left\{A^{(1)}\right\}$ can be empty sets, but if they are simultaneously empty, this indicates shortcomings in subject areamodelling, i.e. theobjects arenot well enough described. In a contrast to them, $\left\{A^{(2)}\right\}$ is a set of distinguishing features for the object-it cannot contain less than $k+j$ elements (not less than one per each column); otherwise the model of the object area is not sufficiently complete. When increasing the number of the objects justaposed $(k=2,3,4, \ldots, x),\left\{A^{(0)}\right\}$ is decreased on the account of the increase of $\left\{A^{(2)}\right\}$ and $\left\{A^{(1)}\right\}$. In further investigations suchminimal quantity of the terms $\left\{A^{(0)}\right\}$ is searchedfor, whichassures the obtaining of nondeductive inference and al so the dependence of this number on k and on the type of the object area. The transformation of knowledge by analogy is more suitably done by pairwise comparison of the objects, i.e. thebasis for justaposition (card ($\left\{A^{(0)}\right\}$)) being the largest at that. With the increase of k, the justapositionprovidesmore favourable conditions for operation with an expert in the process of knowledge acquisition. For example, if only two objects are considered, then $\left\{A^{(2)}\right\}$ has tobe apriori given, but if the dbject s exceed five and in a row i just one $z_{i p}$ accepts the valuel, then a hypothesis $A_{i} \in\left\{A^{(2)}\right\}$ maybe suggested. The simple justapositions enable the formation of questions of "HOW" and "WHY" type, put to the expert or (when some "experience" is available) for automatic operation. For example, why in the row lalmost all $z_{i j}=0$ with the exception of one $z_{i p}=1$? In this way the attention is concentrated on the study of the object pexplaningthe reason for $z_{i p} \neq 0$. It is not excluded that $z_{i p}=0$ (incorrect knowledge) or that interconnectionwith another pattern or another reason is found, and finally an object area with newknowledge is generated. If cases are considered where $z_{i j}$ can accept the value ?, newpossibilities appear for operation with the expert. For example, if one of the rows (i) from Z contains elements withvalues "?" or " 1 " only, then a hypothesis can be formed: $A_{i} \in\left\{A^{(0)}\right\}$ and so on. Let the following inconsistency coefficients be introduced: $0 \leq k_{0} \leq 1,0<k_{1} \leq 1,0<k_{2} \leq 1$, and "attached" to $\left\{A^{(0)}\right\},\left\{A^{(1)}\right\}$ and $\left\{A^{(2)}\right\}$ where $k_{0}<k_{1}<k_{2}$. Any analogies with the coefficients $0 \leq \alpha \leq 1$ introduced in heuristic or probabilisticway andattached to each pattern of every object wouldbe incorrect due to the deep difference in the semantics of the operations accomplished on the object area model.

An example is given below that provides an idea about the advantages of the approach. Without justapositions, the analogy by features (1) or (2) may lead to the formation of a hypothesis that an object from the goal of transformation possesses a distinguishing feature of another object (fromthe transformationbasis), whichis incorrect in the general case. These results cannot be avoided by the complex introduction and alteration of the weight coefficients α, of the significance factor or similarestimates of subjective character and the inconsistent hypotheses of this typemaypass throughall the stages of screening. Further on investigation of more complex diagrams of justapositions will be assumed, in which the interconnectionbetween the separate patterns or groups of
features is traced, and $\left\{A^{(1)}\right\}$ is separatedinto nonintersecting subsets and constraints on thepatternstransfer are implied.

3. Other analogies

Inmore elaborate types of inference, there aremoreadvantages found in justapositions realization than in operation with analogy by features. In every one of the early investigations on inferenceby analogy in formal systems [14], each of the objects is assigned itsmodel, consisting of facts ("pattern Abelongs to object $B^{\prime \prime}$-partial case of the fact) and rules of the type $G \leftarrow \bigcap_{i \in D_{0}} H_{i}$, where \bigcap_{i} is a reason (rule body) and G - consequence (head of the rule, consisting of one statement only inHorn's rules), D_{0} - final set of the conjuncts in the rulebody. As a result of the operation of the inference formal mechanism, from the model M_{1}, connected with the base of transformation, a rule of the type $G \leftarrow \bigcap_{i \in D_{0}} H_{i}$, is added inmodel M_{2} connected with the goal of transformation as a fact, i.e. newknowledge is added toM under the condition satisfying the partial coincidence ψ between the objects (EPIC rule from [14]). The apparatus of inference by analogy in Haragushi is more complex than the analogy by features. But the comments above given about the impossibility of the distinguishing features transfer remain in power (in a modified form) : if Gis false outside M_{1}, then its transfer to M_{2} may lead to incorrect knowledge.

In the diagram represented some shortcomings are added to the ones expressed in chapter 2 , that can be avoided only by a justaposition between the objects models. For example, let theobject area considered, is ornithology and the object fromthe transformation base is flamingo. Independently on the selection of the object from the goal of transformation (for exampleneighbouring class, goose), the following example of incorrect knowledge transformation is represented. It is known that the pink colour of flamingo feathers may become quitepale andunder some circumstances even disappear during their long stay in zoos. The reason for that is the absence of small crabs in the food. If this interconnection of reason-sequence character (crabs food-pink colour) is appliedto another object, includingbirds livingunder natural conditions (salty lakes or seabays, warm climate, pink colour of the feathers), then the transfer of this reason-sequence connectionwouldbe incorrect. This connection is characteristic (it is defining) for the flamingo, whichis easily demonstratedwiththe helpof justapositions.

Inthe literatureon informationtechnologies it is acceptedtodiscuss themethooblogical role of the approaches considered. However the limits of justapositions application in logical inference are hardly overcome. This is so complex and sometimes even meaningless as the question: why is the inference by analogy necessary? In some well developed and already "classical" object areas, where the knowledge incompleteness is diminished to minimum, the role of analogy is reducedmainly to the description of notions or of the inferenceprocess and thepurpose of its application is the description compression only. On the other hand, in the "not developed" scope, when there is less knowledge about the object available, the analogy is oftenused, but it can leadtoinconsistent hypotheses. Ina similar way, the wide use of justapositions weakens the role of nondeductive technologies. Nevertheless we must not counterset the justapositions and nondeductive methods. A common feature of all thesemethods and approaches is the avoiding of the incompleteness in theobject areamodel, whichenables the connection of justapositions toolswith analogy andinduction.

4. Justapositions in inductive inference

Usually the basis of inductive reasoning contains information about some investigated terms in the class, confiming or making a probable conclusion, which refers to the whole class oronlytoapart of the terms investigated. Theproblematic character of the connection between the basis and inductive inference gives the opportunity to use methods of probability theory in the construction of induction logic andnondeductive methods as a whole. All the attempts toexplain logicprobability by a degree of faith, even reasonable (as Keynes [8] does this), do not achieve the purpose. The approach of the authors who base on the notion degree of confirming one statement by another in inductive logic is much more efficient. This approach itself is groundedonsemantic analysis of the statements. Let the degree of confimationbe denotedby τ. The essential declaration whichestablishes the probabilistic relationbetween statements, for examplebetween the hypothesis Hand its empirical evidences E, will be symbolically expressedas: $\tau(H / E)=p$, where pis any number within the segment $1 \geq p \geq 0$.

In suchan approach the subjectivity of the confirmationdegree $\tau(H / E)$ is theweakest place. In the situation shown the justapositions earlierdescribedhelp the formation of the confimation degree. Thus since in the second chapter some justapositions were given which can be expressed by frequency tools in probability theory and at the same time $\tau(H / E)$ isdonewiththehelpof logicprobabilistictools, it isassumedthat the justapositions in induction are a territory, where the supporters of the frequency, as well as of logic interpretation will find a cormon language.

Let the semantics of the sets $\{A\},\left\{A^{(0)}\right\},\left\{A^{(1)}\right\}$ and $\left\{A^{(2)}\right\}$ be altered in the following way: $\{E\}$ consists of all the evidences for the set of justaposed hypotheses $\left\{H^{\star}\right\}$ where $H \in\left\{H^{\star}\right\} ;\left\{E^{(0)}\right\}$ contains evidences coinciding for all $H \in\left\{H^{\star}\right\} ;\left\{E^{(2)}\right\}$-evidences confirming only one of the hypotheses $H \in\left\{H^{\star}\right\}$ and at the same time being defining for $H ;\left\{E^{(1)}\right\}$ - the rest of the evidences in $\{E\}$. One coefficient $k_{0}<k_{1}<k_{2}$ is entered for each of the sets. Their valuemay alter indefinite limits depending on the selection of the object area. In the ornithologic example above given the relation k_{2} / k_{1} and k_{1} / k_{0} is quite larger than inmedicine. However if a parallel ismadewith the inductive degree of confimation, then the difference between the formation of k_{j} and $\tau\left(H / E\right.$) becomes obvious: k_{j} allows oscillations in definitebounds, but it does not change when fixing the object area, and $\tau(H / E)$ acogptsvalues fromthewholeinterval [0,1]. The justapositioncoefficients are just three, and the degree of confirmation - continuum. In order to define the degree of confirmation in inductive inference, formula (3) is offered:

(3)

$$
\tau(H / E) \stackrel{p}{=} \sum_{i=1}^{p} \sum_{j=0}^{2} E_{j}^{H} k_{j}
$$

where $\left\{E_{j}^{H}\right\}$ are all the evidences known in connection with $H, k_{j} \in\left\{k_{0}, k_{1}, k_{2}\right\}$ and the value k_{j} are detemined depending on that, to which one of the sets $\left\{E^{(0)}\right\},\left\{E^{(1)}\right\}$ or $\left\{E^{(2)}\right\}$, E_{j}^{H} belongs.

In connection with the investigations presented there remains the problem that in order to obtain a valid hypothesis it is not necessaryto satisfy equation $\tau(H / E)=1$.

Really, in order to confirm H, it isnecessary to confimall the definingevidences for Hfrom $\left\{E^{(2)}\right\}$ and only same of the evidences from $\left\{E^{(0)}\right\}$ and $\left\{E^{(1)}\right\}$. In otherwords, when forming $\tau(H / E$) using formula (3), and if $\tau(H / E)=1$, the hypothesis is overconfirmed which does not invoke supplemental difficulties.

5. Conclusion

Someproperties of nondeductive inference arepresented, that decrease the consistency of the hypotheses formed. One of the examples is when the knowledge transformation (or the connections between knowledge) from one object of research to another is forbidden since the knowledge is characteristic for one of the objects only.

An approach is suggested for the case discussed based on justapositions of the available facts. Twomodifications of its realization are considered-inferenceby analogy andinductive inference.

References

1. Cyburg, G. Probability and Inductive Logic (in Russian) . Moscow, Progress, 1978.
2. Carnap, R. Value and Necessity (in Russian). Moscow, Inostrannaya literatura, 1959.
3. Markov, Z. Inductive Methods for Machine Learning (in Bulgarian). TEMPUS JEN 1497, 1996.
4. Ruzavin, G. Semantical conception of inductive logic (in Russian). -In: A. Tavanetz (Ed.) Logical Semantics andModal Logic (in Russian) . Moscow, Nauka, 1967, 84-100.
5. Uemov, A. Analogy in Practice of Scientific Investigation (in Russian) . Moscow, Nauka, 1970.
6. Machine Learning. R. Michalski, J. Carbonell, T. Mitchell. (Eds.) . Vol. II. Los Altos, CA, Morgan Kaufmann, 1986.
7. Res cher, N. Induction. An Essay on the Justification of Inductive Reasoning. Oxford, Basil Blackwell, 1983.
8. Keynes, D. M. A Treatise on Probability. London, 1952.
9. Nilsson, N. Artificial Intelligence (inRussian). Moscow, Mir, 1985.
10. The Handbook of Artificial Intelligence. Eds. P. Cohen, E. Feigenbaum. Vol. I-III. LosAltos, CA, William Kaufmann, 1982.
11. Encyclopedia of Artificial Intell. Ed. E. Shapiro. Vol. I-II. New York, John Wiley and Sons, 1987.
12. Saaty, T., L. Vargas. DecisionMaking (with the AnalyticHierarchy Process) . Vol. VII. Pittsburg, RWS Publ., 1994.
13. P oly y, A. Mathematics andPlausible Reasoning (in Russian) . Moscow, Inostrannaya Literatura, 1964. 14. Haraguchi, M., S. Arikava. Reasoningby analogy as a partial identity between models/ Lecture Notes in Computer.

Об одном подходе к использованию сопоставлений при недедуктивном выводе

Владимир С. Йоцов, Васил С. Сгурев
Институт информационных технологий, 1113 София
(P е зю \boldsymbol{m} е)
Рассматривается роль сопоставлений при различных типах вывода по аналогии и индуктивного вывода. Предложены постановка и подход, приводящие к повышению достоверности выводимых гипотез и упрощению оперирования с формальным аппаратом в целом, и повьшения эффективности недедуктивного вывода.

[^0]: *The investigations have been realized with the help of the National Fund for scientific research, contract Nо И $605 / 96$.
 72

