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1. Introduction

The estimation of the performance of manipulators is important to manipulators ap-
plication and design. Dexterity, manipulability, accuracy and some others determine
the performance characteristics of robot manipulators. One of the performance
characteristics is so called service angle, a concept first introduced by V i n o g r a-
d  o v  et al [7]. The service angle is defined as the total range of the approach angle of
a manipulator around a point of the workspace. A similar approach was used by
Y a n  g  and L a i [8]. They studied the service angle to a given point and introduced
service sphere and free service regions. K u m a r  and W a l d r o n [4] introduced the
concept of dextrous workspace, defined as a volume within which every point can be
reached by the manipulator end-effector with any desired orientation. As another
measure for manipulator performance can be used the evaluation of the determinant
of the Jacobian. On this base Y o s h i k a w a [9] introduced the term manipulability,
which involves the Jacobian and its transpose. P a u l  and  S t e v e n s o n  [5]
estimated the kinematic performance of a spherical wrist by using the absolute value
of the determinant of the Jacobian. Another performance index was proposed by S a-
l i s b u r y and  C r a i g [6], i.e., the condition number of the Jacobian. A n g e l e s [1]
discussed manipulability and conditioning number and on this base considered the
isotropy in machines. K l e i n and B l a h o [3] consider four measures for dexterity:
determinant, condition number, minimum singular value and joint range availability.

In the present paper, the dexterity index, manipulability, condition number and
minimum singular value are considered. The indexes are applied to a SCARA type
robot (Fig.1) and the results are graphically presented.
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       Fig.1. SCARA type robot

2. Dexterity index

Dexterity index is a measure of a manipulator to achieve different orientations for
each point within the workspace. The orientation of the end-effector of a manipulator
can be described by the equivalent rotation matrix R rpy() using roll, pitch and
yaw angles, i.e.,

(1) Rrpy()= ROT(Z
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The angles  and  can vary within the range of (02). We introduce X, Y and
Z dexterity indexes, which can be written as follows:
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where ,  and   are the possible range of variation of the roll, pitch and yaw
angles for each point of the workspace. Thus the dexterity index can be defined as:

         1
(5) D = — (dx + dy + dz).         3

The dexterity index (D) can vary within the range of (01).  If the dexterity index
is equal to unity we will say that the manipulator has full dexterity at a particular point
or an area. A full X-, Y- or Z- dexterity can exist as well, i.e., if dx =1 we can call it full
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X-dexterity. For example X- and Y- dexterity are zero (dx=0, dy=0) in case of SCARA
type robot.

The following algorithm for determination of the dexterity index is proposed:
 for a point of the workspace of the manipulator vary the roll, pitch and yaw

angles ();
 solve the inverse position problem;
 check whether the obtained joint coordinates are within the range of variation;
 determine the possible range of variation for the three angles  and ;
 compute the dexterity index for this point.

This algorithm can be applied for every point of the workspace. Using the above-
mentioned algorithm several graphs for the dexterity of the considered SCARA type
robot have been obtained. In this case we mean Z-dexterity index. In Fig.2 is shown a
3-D map of the dexterity over the workspace of the robot. Fig.3 shows several areas
with different dexterity index. The area with dexterity index 1 corresponds to the
dextrous workspace. In Fig. 4 is shown a 3-D graph of dexterity index over the workspace
of the robot. The design parameters of the robot are as follows: L0=500 mm, L1=400
mm, L2=250 mm, L4=150 mm. The ranges of variation of the joint coordinates are:
1=-110 deg90 deg, 2=0 155 deg, 3=0  360 deg, L3=0150 mm.

Fig. 2. Dexterity index over the workspace

Fig. 3. Areas with different dexterity index
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Fig. 4. 3-D graph of areas with different dexterity index

In fact, Figures 2, 3 and 4 give a clear idea of the dextrous and reachable
workspaces of the manipulator.

A mean dexterity index can be introduced and can be defined as:
n
D
1

(6) Dm = ———,
n

where n is the number of the points for which the dexterity index is computed. The
obtained mean dexterity index for the considered manipulator using 682 points is
Dm = 0.6590.

3. Manipulability

The concept of manipulability of a manipulator was introduced by Yoshikawa [9].
The manipulability is defined as the square root of the determinant of the product of
the manipulator Jacobian by its transpose, i.e.,

(7)  = 
–
d
–
e
–
t
–
(J
––
J
–T–).

The manipulability  is equal to the absolute value of the determinant of the
Jacobian in case of square Jacobian. Using the singular value decomposition the
manipulability can be written as follows:

(8)  = 12…r ,

where i are singular values of the Jacobian (see next section).
The value of the determinant depends on the used units, i.e., the manululability

index will have different values for the different used units. Because of that, the deter-
minant cannot give a practical measure of the degree of ill-conditioning [2] of the
Jacobian. Therefore it is convenient to apply the normalised mobility index, which can
be written as follows:

12 . . .r(9) n = ———————,
         max{12 . . .r}

where max{12 . . .r} is the largest manipulability index within the workspace of the
manipulator which is obtained by using equation (8).
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Fig. 5. The normalised manipulability index

         X, mm
Fig. 6. Areas with different manipulability index

The normalised manipulability index is bounded between 0 and unity. In Fig.5,
Fig.6 and Fig.7 is shown the normalised manipulability index over the workspace with
constant orientation for the considered SCARA type robot. The manipulability graphs
for the other orientations are similar.

Fig. 7.  3-D graph of areas with different  normalised manipulability index

n

Y, mm X, mm

Y, mm

n

Y, mm            X, mm



6 9

4. Condition number

When the determinant of the Jacobian is equal to zero, it means that the manipulator
approaches singularities. However, the actual value of the determinant cannot be used
as a practical measure of the degree of ill-conditioning [2].  For this purpose it is
convenient to use the condition number of the Jacobian. It is well known from the
singular value decomposition theorem that an arbitrary matrix can be represented as
follows [2]:

(10) A = USVT,

where U is a mxm orthogonal matrix; V is a nxn orthogonal matrix; S is a mxn diagonal
matrix which has the following elements: ij=0 for ij and ii=i і 0.

The elements i are known as singular values of the matrix A. The condition
number is a measure for the linear independence of the columns of the matrix. The
condition number of a matrix A of  full rank can be defined as:

max(11) rcond
d
 = ———,

min

where max  and min are the largest and the smallest singular values of the matrix A,
respectively.

If the matrix A has not full rank then min=0 and the condition number cond(A)
is infinite.

Referring to the robots the condition number of a matrix can be used as a per-
formance index applied to the Jacobian of the manipulator. In this case, it is more
convenient to use the reciprocal condition number, rcond

d
(J), which is bounded be-

tween 0 and 1. Obviously the conditioning index depends on the joints coordinates of
the manipulator and therefore it is posture-dependant. The reciprocal conditioning
index for a manipulator can be defined as follows:

  1
(12) rcond = ———.

cond(J)

The variation of the reciprocal conditioning index over the workspace with con-
stant orientation of the considered manipulator is shown in Fig.8. The values of the
reciprocal conditioning index near to zero indicate singularities.

Fig. 8. The reciprocal condition number
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5. Minimum singular value.

As another measure can be used the minimum singular value. In most cases the use of
the minimum singular value is efficient for indication whether the determinant is near
to zero [2]. The minimum singular value changes more radically near singularities
than the other singular values. Fig. 9 shows the changes of the minimum singular
values (msv) of the Jacobian over the workspace with constant orientation. The orien-
tation is the same as for the obtained reciprocal condition numbers.

Fig. 9.  The changes of the minimum singular values (msv)

6. Conclusion

In this paper, performance indexes are discussed as measures of kinematic capabilities
of manipulators. Dexterity and manipulability of manipulators are considered. All
obtained results for the performance indexes are graphically visualised. The presented
graphs allow a comparison of the different performance indexes, i.e., what kind of
similarities exist.  Some of the known indexes are considered and some new indexes
are introduced. The presented graphical examples for the performance of a manipulator
can be easily interpreted and also they can help in application and design of
manipulators.
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Качественные индексы манипуляционных роботов
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(Р е з ю м е)

Рассматриваются некоторые коэффициенты, которые используются для
определения качественных характеристик манипуляционных систем
коэффициент ориентируемости, число обусловенности и минимальная
снигулярная стойность. Для этих коэффициентов показаны тримерные и
двумерные графики в оперативной области робота. Полученные результаты
предсталяют значительный интерес при применении роботов в разнообразных
технологических операциях.


