ПРОБЛЕМИ
PROBLEMS OF TЕХНИЧЕСКАТА
OF ENGINEERING
София . 2000 . SOfia

Suboptimal Solution of theProblem for Non-Conflict Scheduling in Radio Networks*

Kiril Kolchakov

Institute of Information Technologies, 1113Sofia

Introduction

The problem of non-conflict scheduling in radio networks has alwaysbeen actual, since it determines the quality of themessages and the cycle of the radio network. The smaller time slots define a smaller cycleof the radio networks, which influencespositively thetime f\#л messages delivery.

A suboptimal solution of the problem for non-conflict scheduling is suggested in the paper. The solution is suboptimal, because some repetitions are obtained as a result of it, i.e., some of the nodes are represented inmore than one time slot, which is a solution of the problemwith redundancy. It is important to note that in order to have a non-conflict scheduling, neighbouring nodes shouldnot be present in one and the same time slot.

Fig. 1 shows thematrix of connections for a n-nodes radio network. Xi $j=1$ if there is a connectionbetween the nodes $V i$ and $V j$ and it is 0 respectively for connection absence. The matrix is quadratic and symmetric with respect to themain diagonal.

V1	X11	X12	X13	X14	X1i	$X 1 n$
V2	X21	X22	X23	X24	X2i	$X 2 n$
V3	X31	X32	X33	X34	X3i	X3n
V4	X41	X42	X43	X44	X4i	$X 4 n$
Vi	Xi1	Xi2	Xi3	Xi4	Xii	Xin
.						
\ldots						
\cdots						
\cdots	Xn1	Xn2	Xn3	Xn4	Xni	Xnn

Fig. 1
We form the sums Zi for $i=1, \ldots$, naccording to the following formula:

[^0]$$
Z i=\sum X i j \text { for } j=1 \text { upto } n(1)
$$

Zimax is determined which corresponds to node Vi with the maximum number of neighbouring nodes. We define also the next in extent sum $Z k$, corresponding to the next in neighbouring nodes number node $V k$. The third sum is denoted by Zm .

Si denotes the vector Xil, Xi2,Xii.....Xin and Ni - the vector

The set of neighbouring nodes of $V i-(M s i)$ is definedby a rank conjunction of the vector V1 V2.........Vi...............VnwithvectorSiandbyarank conjunctionofthe set ofnonneighbouring nodes of Vi- (Mni) withvector Ni . We proceed in the same way with the next in neighbouring nodes number $V k$, obtaining the sets $M s k$ and $M n k$ respectively.

Formation of a suboptimal non-conflict scheduling

When forming a suboptimal scheduling, the following is done:

1. Node Vi is that, for which $Z i=m a x$, then the neighbours of Vi are represented in the slot P1, Vi being absent at that. The cancelling procedure of the neighbouring nodes inP1 is important. A strategy is chosen to cancel the nodes with the smaller numbers.

Xii is replaced by zero in the vector corresponding to node $V i$, because $V i$ is not includedinP1. The so calledvector of the neighbours of V1, candidates for representation inP1-Xi1^V1, Xi2^V2, Xi3^V3 . . Xin^Vn, is obtained by a rank conjunction between the vector thus obtainedand V1 V2....Vi.....Vn. The cancelling of the neighbouring nodes, candidates for P1 is executed with this vector in the following way:

The vector of the node with the smallest number among the neighbouring to Vi nodes is taken from the matrix of connections, for example Vqand it is subjected to rank conjunction with the vector of neighbours $V i$, candidates for Pl and in case the result vector contains Vqonly, it obviously remains in the slot, but if it contains two ormore nodes, Vq is cancelledinP1, writingnull at its place inthe vector of neighbours of Vi. The same is done with the next in number node among the neighbours of Vi and thus all the candidates for Pl are depleted. As a result of the cancelling of the nodes with smaller numbers in the set of neighbours of Vi , only those remain in the candidates vector at last, that are represented inP1 as Vi and the cancelled fromP1 go to the field obligatory absent of P1.
2. $V i$ is represented in P2, and the cancelled fromP1 nodes -in P3.
3. In the slot P4 the neighbours of the second in neighbours number node $V k$ are represented, tkbeing absent in it. The procedure of cancelling the neighbouring nodes inP4 is the same as inp. 1, i.e, the ones with the smaller number are cancelled.
4. $V k$ is represented in P5, the cancelled from P4 nodes-inP6.
5. In the slot P7 the neighbours of the third in neighbours number node Vm is represented, Vmbeing absent in it. The procedure of cancelling the neighbouringnodes in P7 is the same as inp. 1, i.e, the ones with the smaller number are cancelled.
6. Vmis represented in P8, and the cancelled fromP7 nodes - in P9.
7. Fromthe set of the nodes not distributed in thetimeslots, thenode with the largest number is selectedand it is checked in whichtime slots it canbe representedstarting from P1. The fact should be noted that the addition of a new node to a given time slot causes a change in the fieldobligatory absent inthis slot. This iterationcontinues until the last one, i.e., the node with the smallest number. It is possible some nodes to remain undistributedinthe slotsthus defined.
8. If undistributednodes are available, newtimeslots are added until the depletion of all the nodes in the networkwork. It is evident, that theprocess is always convergent.

It is important to note that the fields obligatory absent nodes for agiven slot from the so called suboptimal solution of the scheduling are formed from the sets Msi for each one of the represented nodes in the slot at a given stage of the sheduling formation. This
circumstance is particularly important in the distribution of the undistributednodes, describedinp. 7.

The suboptimal solution of theproblemwithnon-conflict sheduling in radionetworks is illustratedby an example for a 22 -nodes radio networkwork.

Fig. 2 shows such a 22 -nodes radio network.

Fig. 2
The connectionmatrix is given inFig. 3.
110000000000000010000000 1100000000000000001000000 0011011000000000000000000000 0001110000000000000000000
00111110000000000000001110000

00000011100000000000000
0000000011100001100000000000
00000000111000000000000

000000011000111000000000

0000000000000111100110001
00000000000000011111110011110

011001100000000001111110000

0000000000000010001000
0000000000000000001100000100

0000000000000100010001
$Z 1=3, Z 2=3, Z 3=2, Z 4=2, Z 5=5, Z 6=2, Z 7=2, Z 8=3, Z 9=2, Z 10=4, Z 11=2$, $Z 12=3, Z 13=5, Z 14=5, Z 15=8, Z 16=4, Z 17=6, Z 18=6, z 19=2, \quad Z 20=2, z 21=2, z 22=3$. Hence $Z i=Z 15=8, Z k=Z 17=6$ and $Z m=Z 18=6$.
The primary form of the time table is given in Table 1.
Table 1

Slot	Nodes represented	Obligatory absent
P1	V14,V17, V19, V20, V21	V15,V13, V16
P2	V15	V13,V14,V16,V17,V19,V20V21
P3	V13, V16	V14, V17, V15
P4	V2,V16, V18	V17, V5, V15
P5	V17	V2,V5,V15, V16, V18
P6	V5, V15 V3, V4, V17, V18, V13, V14,V16, V17, V19, V20, V21	
P7	V6,V17, V22	V18, V5, V14
P8	V18	V5,V6, V14,V17, V22
P9	V5, V14	V3, V4, V17, V18, V13, V15, V18, V22

V1, V3, V4, V7, V8, V9, V10, V11, V12 have remained undistributed. The distributionstarts framV12 andP1. It canberepresented inthis slot, for it is absent in the field "obligatory absent". We do the same with the rest of the undistributednodes.

The suboptimal form of the non-conflict scheduling is given in Table 2 .
Table 2

Slot	Nodes represented	Obligatory absent
P1	$\mathrm{V} 14, \mathrm{~V} 17, \mathrm{~V} 19, \mathrm{~V} 20, \mathrm{~V} 21, \mathrm{~V} 12$,	$\mathrm{V} 15, \mathrm{~V} 13, \mathrm{~V} 16, \mathrm{~V} 8, \mathrm{~V} 13, \mathrm{~V} 10, \mathrm{~V} 10$,
	$\mathrm{V} 11, \mathrm{~V} 9, \mathrm{~V} 7, \mathrm{~V} 4, \mathrm{~V} 3, \mathrm{~V} 1$	$\mathrm{~V} 5, \mathrm{~V} 5, \mathrm{~V} 2$
P2	$\mathrm{V} 15, \mathrm{~V} 10, \mathrm{~V} 8$	$\mathrm{~V} 13, \mathrm{~V} 14, \mathrm{~V} 17, \mathrm{~V} 19, \mathrm{~V} 20, \mathrm{~V} 21, \mathrm{~V} 9, \mathrm{~V} 11$,
		$\mathrm{V} 13, \mathrm{~V}, \mathrm{~V} 12$
P3	$\mathrm{V} 13, \mathrm{~V} 16$	$\mathrm{~V} 14, \mathrm{~V} 17, \mathrm{~V} 15$
P4	$\mathrm{V} 2, \mathrm{~V} 5, \mathrm{~V} 15, \mathrm{~V} 16, \mathrm{~V} 18$	V 17
P5	V 17	$\mathrm{~V}, \mathrm{~V} 5, \mathrm{~V} 15, \mathrm{~V} 16, \mathrm{~V} 18$
P6	$\mathrm{V} 5, \mathrm{~V} 15$	$\mathrm{~V}, \mathrm{~V} 4, \mathrm{~V} 17, \mathrm{~V} 18, \mathrm{~V} 13, \mathrm{~V} 14, \mathrm{~V} 16$,
		$\mathrm{V} 17, \mathrm{~V} 19, \mathrm{~V} 20, \mathrm{~V} 21$
P7	$\mathrm{V} 5, \mathrm{~V} 6, \mathrm{~V} 14, \mathrm{~V} 17, \mathrm{~V} 22$	V 18
P8	V 18	$\mathrm{~V}, \mathrm{~V} 6, \mathrm{~V} 14, \mathrm{~V} 17, \mathrm{~V} 22$
P9	$\mathrm{V} 5, \mathrm{~V} 14$	$\mathrm{~V}, \mathrm{~V} 4, \mathrm{~V} 17, \mathrm{~V} 18, \mathrm{~V} 13, \mathrm{~V} 15, \mathrm{~V} 18, \mathrm{~V} 22$

It canbeeasily seen that the non-conflict scheduling thus obtained is suboptimalone and the same node is represented into several slots (for exampleV15 is represented in three time slots-P2, P4 andP6) .

After the application of anoptimizing strategy of the type one-foldrepresentation of every node, the non-conflict schedulinggets the formin Table 3.

Table 3

Slat	Nodes represented	Obligatory absent
P1	$\mathrm{V} 19, \mathrm{~V} 20, \mathrm{~V} 21, \mathrm{~V} 12, \mathrm{V11,V9}$,	$\mathrm{~V} 15, \mathrm{~V} 13, \mathrm{~V} 16, \mathrm{~V}, \mathrm{~V} 13, \mathrm{~V} 10, \mathrm{~V} 10, \mathrm{~V} 8$,
	$\mathrm{V} 7, \mathrm{~V} 4, \mathrm{~V} 3, \mathrm{~V} 1$	$\mathrm{~V} 5, \mathrm{~V} 5, \mathrm{~V} 2$
P2	$\mathrm{V} 10, \mathrm{~V} 8$	$\mathrm{V9,V11,V13,V7,V12}$
P3	$\mathrm{V} 13, \mathrm{~V} 16$	$\mathrm{~V} 14, \mathrm{~V} 17, \mathrm{~V} 15$
P4	V 2	V 17

Table 3 (continued)

P5	V17	V2,V5,V15,V16,V18
P6	V15	V17,V13,V14, V16, V17, V19, V20, V21
P7	V6,V17, V22	V18
P8	V18	V5,V6,V14,V17, V22
P9	V5, V14	V3,V4,V17,V18,V13, V15,V18,V22

Suboptimal non-conflict scheduling in using a topologic decomposition
It is possible to do topologic decomposition of a given radio network with the purpose to achievemoreeasily a suboptimal non-conflict scheduling. Partial non-conflict scheduling is defined for each part in the decomposition, and the schedules thus obtainedare united in non-conflict scheduling of the networkwork, which is suboptimal. Thereexists direct proportional correlation between the number of the time slots and the number of the network parts obtained after the decomposition. In the decomposition some nodes are cancelled, which facilitates the obtainingof the suboptimal partial non-conflict schedules. It is important to note that the loss of nodes does not leadto conflicts, since thenodes from thebroken connectionsenter different time slots.

Fig. 4 shows an example decomposition of the 22-nodes network fromFig. 3, and Table 4 -the suboptimal non-conflict scheduling for it. The comparison between the schedules from Table 3 and Table 4 is profitable for the decomposition method.

Table 4

Slat	Nodes represented	Obligatoryabsent
P1	V3, V4, V18, V2	V5, V1, V17, V6
P2	V5, V6	V3, V4,V17, V18
P3	V14, V16, V19, V20, V21	V13, V15
P4	V15	V13, V14, V16, V19, V20, V21
P5	V13, V22	V14, V15, V14
P6	V8, V10	V7, V12, V9, V11
P7	V7, V12,V9, V11	V8, V10

Fig. 4

Conclusion

The comparison between the suboptimal schedules of one and the same 22-nodes networkwork shows that the use of topological decomposition of the network leads to nonconflict schedulingwith smaller number of the slots. The advantage of the suboptimal solution of the problem of non-conflict sheduling in radio networks is that it is always convergent, and the application of topological decomposition facilitates the obtaining of non-conflict sheduling for networks with a large number of nodes.

References

1. Kolchakov, K. An approach for non-conflict time scheduling in Packet radio networks with TDMA. Problems of Engineering Cybernetics and Robotics, 48, 1999.
2. Kolchakov, K., Hr. Daskalova. An algorithm for the obtaining of optimal non-conflict scheduling in TDMA packet radio networks. December, 1998. -IIT/WP-62B, IIT Working Papers (in Bulgarian).
3. Kolchakov, K., Hr. Daskalova, S.G.Trifonova, V.I.Janeva. Organization of a radio network from mobile objects. -In: Proceedings of Bulgarian-Russian Seminar "Methods and Algorithms for Distributed Information Systems Design. Theory and Applications", May 28-30, 1996 Sofia, Bulgaria, 75-82 (in Russian).
4. Funabiki, N., Y.Takefuj.Aparallel algorithm for broadcast scheduling problems in packet radio networkworks. - IEEE Transactions on communications, June 1993, No 6.
5. EphremIdes, A., T.V.Truong. Scheduling broadcasts inmultihop radio networkworks. -In: IEFE Trans. Commun., Apr. 1990 , No 38, 456-460.

Субоптимальное решение проблемма бесконфликтноГо расписания в РаДиОсетях

К. Колчаков

Институт информационных технологий, 1113 София

(P е зюм е)

Предлагается субоптимальное решение получения бесконфликтного расписания в радиосетях при помощи нахождения трех из узлов радиосети, Имеющих наибольшее число соседных узлов и их представления в отдельных моментах времени в расписании. Тополопическая декомпозиция применяется в раДиосетях с большим числом узлов и сложная матрица связей. Приводится пример с радиосети с двадцати двумя узлами. Сделано сравнение между бесконфликтными расписаниями, полученные с или без тополопической декомпозиции сети.

[^0]: * The investigation is sponsored by the Ministry of Science, contract No 5028

 50

