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1. Introduction

Biomedical signals usually result from superimposing of several parallel sources. Mostly,
the recording conditions are unfavourable, and interferences of different nature are added
from the mains, different kinds of acoustic noise (ventilators, speech, music, droughts,
speaking doors, etc.). One of the main tasks of signal processing is to separate the signal
coming from the process studied, from the rest of the signals, considered as interferences.
Conventional frequency domain separation methods are in most cases ineffective because
of spectral overlapping between the signal of interest and the inferences.

Recently signal processing was enriched by the technique of time-frequency distribu-
tions, transferred from the quantum-mechanics. Their main ides was the representation of
an arbitrary signal as a superposition of basic signals “atoms”, located in time and
frequency. These atoms may be derived by means of a special operation on a single parent
atom. Parent atoms and derivation operation are usually chosen such as to enable the
construction of an orthonormal system. Also, special mathematical properties may be
designed allowing the detection of non-regularities that often carry the most important
information about the underlying process.

The logic signal is an oscillating function of a limited effective duration. This allows
localizing the different elements of the signal in time, while retaining the frequency
analyzing property, as a measure of repetitiveness.

As a result of the transformation, the one-dimensional signal is represented as a two-
dimensional one in a tiled time-frequency plain. Increasing the dimensionality does not add
new information. It just changes the structure, making the representation more comprehen-
sive. A new type of observation and interpretation is now possible, along with time-
frequency filtering and synthesis (inverse transform).

The present investigation applies the Short Time Fourier Transform, the Wavelet and
the Wavelet-Packet Transform. All of these methods prove to be useful in biomedical signal
processing.
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2. Time-frequency Representations

2.1. Short-time  Fourier  transform

The continuous Time Fourier Analysis (CTFT) decomposes the signal over a basis of sines
and cosines functions of infinitive time continuance and different frequencies. To obtain
adequate map in a single frequency one needs all the time information. On the other hand
sharp discontinuities are represented by a lot of basis functions and are spread out over the
whole frequency axis.

An improvement of the CTFT is the short-time Fourier Transform (STFT). It
windows the basic functions before the decompositions, thus introducing a time dependence
and forming a time-frequency representation of the signal. The expression is

      


(1) F(s, w) = 

 f(t) h(t s)ejwt dt.

To guarantee the inverse transform the window h(t) must have unique norm:


(2)     

 h(t)


 2 dt = 1.

Though shifting the window h(t) over the time axis and changing the frequency w,
tiling the time-frequency plane is achieved. The time resolution is equal to the effective
length of the window. One cannot narrow it because of widening of frequency windows.
Both are linked with uncertainty principle of Heisenberg (P a p o u l i s [6]).

(3) sw  2

The window h(t) distorts the transformation result and leads to the so called “spectral
leaks” (D u v a n t [3]). The proper choice of the window type reduces this drawback
(D a u b e c h i e s [2]). There is a big redundancy in the two-dimensional representation
(1). This allows a combined time and frequency discretisation:

(4)       si = {is, i Z},       wk = {kw, kZ}.

For good time-frequency resolution the limitation for s and w must be strict inequality
(P a p o u l i s [6])

(5) sw  2

Some practical improvement of frequency resolution without changing the time
window can be obtained by overlapping the successive windows.

2.1.1. Wavelet  transform
The wavelet transform (WT) is a signal decomposition over a family of real orthogonal
functions (bases)  ym,n (x)  obtained through translation and dilation of a function  y(x) called
mother wavelet or prototype wavelet.

     1
(6) m,n (x) =  (2

m t n).
    2m

The coefficients of the wavelet decomposition can be obtained through orthogonal
projection of the signal onto a wavelet space, using:



(7)    cm,n =   f(t)m,n (t)dt.
Having these coefficients one can restore the function  f(x) using the synthesizing

formula
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(8) f(t) = cm,n m,n (t).

A substantial role in the wavelet theory plays the so called scaling function (x) that
must satisfy the equation (D a u b e c h i e s [2])

(9)  = 2 g(k)(2 t k).
 k

This function is related to the analyzing wavelet through the following equation:

(10)  (t) = 2 g(k)(2 tk).
      k

where
(11) g(n) = (1)1n h(1 n).

The coefficients h(k) must meet several additional conditions assuring the orthogo-
nality and certain regularity of the base functions (6)  (D a u b e c h i e s [2]). To determine
the wavelet coefficients it is not necessary to use the analytical expressions for (x) and
(x). Both discrete sequences  h(k) and g(k) allow the creation of fast algorithms,
especially for discrete signals. In the signal processing literature they are called “quadra-
ture-mirror filters” (QMF) since they have mirror frequency response and cover low half-
pass and high half-pass of the signal spectrum.

Let’s assume that the discrete signal  x(k)= c0,k represents a continuous function  f(t)
over the basis of shifted versions of the scaling function (t). For signal decomposition
in  J scales, we can write:

             J
(12)        f (t) = cj+1, k j+1, k (t) + dj+1, k j+1, k (t)).

      k               j=0

The  coefficients cj+1, n and dj+1, n  for the scale j+1 are linked with previous scale
coefficients through:

   cj+1, n  = cj+1, k h(k 2n),
(13)     k

   dj+1, n  = dj+1, k g(k 2n).
    k

The equations (13) allow recursive wavelet decomposition algorithm having h(k)
and g(k) only. The wavelet coefficients dj, n give account of each scale into the detail
structure while cj, n the coarse. The inverse transform assures perfect reconstruction:

(14)    cj, k  =  h(k 2n) + dj+1, n g(k 2n).
            j+1,n                n

Expressions (13) can be considered as passing the signal  cj, n through QMF pair
followed by output signal decimation. We receive half the number of coefficients for each
next scale (so-called “pyramid” algorithm). The signal reconstruction is accomplished
through interpolation: inserting a zero between every two coefficients and passing through
filters having inverse impulse responses compared to h(n) and g(n).

While in STFT time and frequency resolutions are constant, in WT the tiles are of
different size but of constant area (uncertainty principle) and one can trade time resolution
for frequency resolution and vice versa. The wavelet transform is suitable for signals
consisting primarily of low frequencies and short time (high frequency) transitions. This
is due to the fact that it allows good time resolution for high-frequency components and
good frequency resolution for low-frequency components. However, this transform may not
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be suitable for signals, whose characteristic frequencies are located in the middle or high
frequency regions.

The concept of wavelet bases has been generalized to include so called wavelet packet
(WP) dictionaries and wavelet packet libraries of bases. The aim is to tile the time-
frequency plane in arbitrary frequency manner. A WP dictionary can be determined by a
function w0 as follows:
(15)     w2n = 2 h(k)wn (2 tk),

                   k

   w2n+1 = 2 g(k)wn (2 tk).
        k

The following can be considered as analogous: w0(t) and (t)  as well w1(t) and
(t). Each basic function is determined by a triplet of parameters l, k, n: a scaling parameter
l, a frequency parameter k and time parameter t.

A fast algorithm for WPT can be considered, applying equations (13) not only on
coarse coefficients but on detail coefficients too. In this case one an obtain a set of
coefficients placed in the binary tree nodes, characterized by a coefficient  indices triplet
l, k, n. The difference between WT and WPT is that the latter leads to decomposition with
redundancy and one can bring show that for signal with N samples, (N-dimensional vector)
full decomposition contains more than 2N orthogonal bases. This redundancy ensures good
possibilities for result interpretation: one can search for a most efficient signal represen-
tation minimizing a measure of information; one can search for signal features making
reconstruction based on a part of the basic coefficients only (orthogonal projection onto
a less dimensional vector space) or one can search for the best level (best frequency
resolution) (C o i f m a n  et al. [1]).

2.2. Practical algorithms

WT and WPT have been accomplished for a library of basic functions, containing cubic
spline wavelets (Battle-Lemarie (BL) wavelets) (M a l l a t [4]), Daubeshies wavelets
(D a u b e s h i e s [2]) and C12 coiffet (M e y e r [5]).

BL wavelets are symmetric. They haven’t compact support, but decay exponentionally
and their representative coefficients may be truncated for large indices. We have explored
16-tap sequence. Daubeshies wavelets and C12 coiffet are compactly supported.

We have obtained WP decomposition for six successive scales on signal vectors 8192
samples long.

We have implemented STFT on the same signal vectors for data segments 128
samples long, windowed by Henning window and successfully overlapping 64 samples.

3. Application

Time-frequency decompositions have been orientated on respiration sounds analysis in
asthmatic patients.

3.1. Method

Respiration sounds were recorded using an electrodynamic microphone housed in a flat
plastic holder of a 30 mm outer diameter. The inner opening containing the microphone
is of 12 mm, thus forming an air chamber with the entire transducer assembly applied to
the patient skin surface. A small hole of 1 mm diameter connects the chamber to the outer
atmosphere.
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This transducer was applied over the trachea by a smooth elastic band or held by the
operator like a stethoscope membrane. The output signal amplitude depends on the
breathing intensity, i.e., on the air flow through the trachea, and was usually about 100 mV
to 500 mV. An amplifier was used with a frequency band of 100 to 3000 Hz (3 dB) to feed
the 16-bit AD converter connected to an IBM compatible PC. The amplitude resolution
thus obtained was of 0.02 mV per bit with a sampling rate of 5.5 kHz.

The transducer frequency response could not be properly measured, especially having
in view the air chamber and the skin contact interface. The microphone free air response
is within 3 dB limits in the frequency range considered. However, it will be seen from the
results that the differentiation between healthy individuals and asthmatic patients practi-
cally does not depend on eventual frequency characteristic deviations of the transducer.

Tracheal sounds were obtained from 10 patients and 5 healthy volunteers, inspiration
and expiration phases were marked by visual observation.

3.2. Results

The time-frequency plots revealed that in healthy subjects in both respiration phases the
signal frequency band was limited to about 800 Hz. In patients practically the same time
of basic signal components were obtained, but in addition wheezing sounds were detected
in the 10002000 Hz band and whistling sounds in the upper frequencies in the range 2000
2750 Hz. Figs. 1 and 2 show time-frequency distribution obtained by STFT for healthy and
asthmatic subjects respectively.

The results received through STFT permit to delineate three frequency bands: low
frequency (LF)  100 to 800 Hz; middle frequency (MF) 1000 to 2000 Hz; high frequency
2000 to 2750 Hz. Quantitative parameters can be introduced for the entire inspiration
or expiration phases, e.g., the signal power within the above defined bands in mV.Hz. These
parameters can be used to form ratios, such as MF/LF. HF/LF, MF/total HF/total. Further,
time parameters measures can be added in ms and thus obtaining “volume” parameter
measure (e.g. MF in mV.Hz.ms) and their ratios, or computing the time intervals where
MF or HF components have been detected in percentage to the entire inspiration or
expiration duration. Further studies will involve forced expiration sounds analysis, as well
as coughing sounds and possibly phonation of vowels.

As far as WP representations are concerned they give good possibilities for alternative
interpretation. One can search for best decomposition level thus obtaining the satisfactory
frequency resolution for asthma detection. The implementation of inverse transform for
some coefficients may bring to quantitative results for the individual contribution of the
important frequency bands.
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(Р е з ю м е)

Предложен времевой-частотный подход предварительной обработки биомедицин-
ских сигналов. Он включает коротко-времевое Фурье- представление, волновая
трансформация и пакетная волновая трансформация для декомпозиции
анализируемого сигнала при наличии шума. Представлены возможности техники
декомпозиции при исследовании респираторных сигналов пациентов с
астматическим синдромом.


