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1. Introduction

Biomedical signals usual ly result fransuperimposingof several parallel sources. Mostly,
the recordingconditionsare unfavourable, and interferences of different natureare added
—franthemains, differentkindsofacousticnoise (ventilators, speech, nusic, droughts,
speakingdoors, etc.) . Oneof themain tasksof signal processing isto separate the signal
caning franthe processstudied, fromthe restof thesignals, consideredas interferences.
Conventional frequency domainseparationmethodsare inmost cases ineffective because
of spectral overlgpingbetneenthe signal of interest and the inferences.

Recentlysignal processingwasenrichedby the techique of time-frequency distribu-
tions, transferred fromthe quantun-mechanics. Theirmain ideswas the representationof
anarbitrarysignal asasuperposition ofbasicsignals—*atoms”, located intimeand
Trequency . These atoms may be derived by means of aspecial operationonasingle parent
atom. Parent atoms and der ivation operationare usual ly chosen such as toenable the
constructionofan orthonormal system. Also, special mathematical propertiesmay be
designed al loving the detectionof non-regularities that oftencarry themost inportant
informationabout the under lying process.

The logicsignal isanascil lating functionofa limitedeffectiveduration. Thisalloas
localizing the different elements of the signal intime, while retaining the frequency
analyzingproperty, asameasureof repetitiveness.

Asaresultofthe transformation, the ane-dimensional signal is representedasatwo-
dimensional ore inatiled time-fregquency plain. Increasing thedimensional ity doesnotadd
new informatiion. It justchanges the structure, meking the representationmore carprehen-
sive. Anewtype of observationand interpretation is nowvpossible, alongwith time-
Trequency filteringand synthesis (inverse transform) .-

The present investigationappl ies the Short Time Fourier Transform, theWaveletad
theWavelet—Padket Transform. All of thesemethods prove to beuseful inbiomedical signal
processing.
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2. Time-frequency Representations

2.1. Short-time Fourier transform

The contiinuous Time Fourier Analysis (CTFT) deconposes the signal over abasisof sines
andcosines functions of infinitive time cortinuance and different freguencies. Todotain
adequate map inasingle frequency one needsall the time information. On the other hand
sharpdiscontinuitiesare representedby a lot ofbesis functionsand are spread aut over the

wholefrequency axis.
An improvement of the CTFT is the short-time Fourier Transform (STFT). It

windoas thebasicfunctions before thedecompositions, thus introducingatime dependence
and forminga time-frequency representationof thesignal . Theexpression is

()] F(s,w)= _L f(O) h(t-s)eitdt.
To guarantee the inverse transformthe windowh(t) must have unique norm:

@ | inwyae=1.

Though shifting the window h(t) over the time axis and changing the frequencyw,
tiling the time-frequency plare isachieved. The time resollution isequal tothe effective
length of the window. One cannot narrow it because of widening of frequency windows.
Bothare linkedwith uncertainty principle ofHeisenberg (Papoul is[6]).-

(&) ASAW < 2m.

Trewindowh(t) distorts the transformation resultand leeds to thesocal led“‘spectral
leaks” (Duvant [3])- The proper choice of the window type reduces this drawback
(Daubechies[2])- There isabig redundancy in the two-dimensional representation
(D - Thisallonsacarbined time and frequency discretisation:

()] s, ={iAs, 1 €Z}, w _={kAw, keZ}.

For good time-frequency resolutionthe limitationfor sandwmust bestrict inequal ity
(Papoulis|[6])

(©) ASAW < 2m.

Same practical improvement of frequency resolutionwithout changing the time
window can be obotained by over lapping the successive windows.
2.1.1_Wavelet transform

Thewavelet transform (WT) isasignal decomposition over afamily of real orthogonal
functions (beses) v, | (X) dotained throughtranslationand di lationofafunction y(xX) cal led
motherwaveletor prototypevavelet.

1
(©) Vo (X)=—@w @m"t-n).

The coefficiernts of the wavel et decomposition can be obtained through orthogonal
projectionof thesignal ontoawavelet space, using:

O Con™ L f®Oy, , (Odt.

Having these coefficients one can restore the functiion £(X) using the synthesizing
formula
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@ f(t) = Z:cm,n \Vm,n (t)'

Asubstantial role inthevavelet theoryplays the socal led scal ing function @ (X) that
mustsatisfy theequation (Daubechies[2])

o O =22 g 2 t-k).
k
Thisfunction is related to the analyzingwavelet through the fol loving equation:
@) v () =V2XgR® Q2 t-K).-
k
where
a g =CED"h@A-n).

The coefficientsh(K) nustmeet several additional conditionsassuring theorthogo-
nalityand certainregularityofthe basefunctions (6) (Daubechies[Z])- Todetermine
thevaveletcoefficiants it isnotnecessary touse thearalytical expressionsfor y ) ad
O (X) - Bothdiscrete sequences h(k) and g(K) al low the creation of fast algorithms,
especiallyfordiscretesigals. Inthesignal processing literature treyarecal led“‘guedra-
twre-mirror filters” (QWF) since they have mirror freguency responseand cover lovhalf-
pass and high half-pass of the signal spectrum.

Let’sassurethat the discretesignal X(K)=¢, , representsacontinuous function ()
over thebasis of shifted versions of the scal ing functiion @ () - For signal decomposition
in Jscales, wecanwrite:

(]2) f (t) = Z:cj+1 k 7 j+l,k (t) zd +1 Kk Wj+1 k (t))

The coefficientsc,, andd,, forihescaleﬁlare linkedwithprevious scale
cefficiettsthraugh:

h(k -2n),

J+tl,n j+1 Kk

C. =>cC
() K

J+1l,n

d,.,., =2d;,, 9(k-2n).
K

The equations (13) al lov recursive wavelet decomposition algorithmhaving h(k)
andg(K) only. Thewavelet coefficients d give accountof eachscale into the detail
structurevhilec; —thecoarse. ﬂ”Elmersetra"sfomaSSJresperfectrew’stctlm
(€2)) =>h(k-2n) + Zd g(k-2n).

j+i,n

+1n

Bxpressions (13) can be considered as passing the signal C , through QWF pair
follored by output signal decimattion. e receive halfthe nunber of coefficients for each
next scale (so-called “pyramid”’algoritim) . The signal reconstruction isaccorplished
through interpolation: insertingazerobetweenevery twocoefficientsandpassing through
Tilters having inverse impullse responses compared to h(n) andg(n) -

While in STFT time and frequency resolutions are constant, inWT the tilesare of
different sizebut of constantarea (Uncertainty principle) andone cantrade time resollution
for frequency resolutionandvice versa. Thewavelet transformis suitable for signals
oconsistingprimarilyof lovfrequencies andshort time (high frequency) transitions. This
isdue tothe fact that ital lows good time resolution for high-frequency components and
goad freguency resolutionfor lov-frequency components. Honever, this transformmay not
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be surtablefor signals, whose characteristic frequenciesare located inthemiddleorhigh
frequency regions.

The conceptofwavelet bases hasbeen general ized to include socal ledvavelet packet
(WP) dictionaries andwavelet packet libraries of bases. Theaim isto tile the time-
Trequency plane inarbitrary frequency manner . AWP dictionary canbe determinedby a
functionw, asfolloas:
@) w, =V2Zh(Kw, (2t-K),

k

w, . =V22g(w, (2 t-k).
k

The following can be consiidered as analogous: w () and ® (1) aswellw, () and
v () . Eachbeasicfunction isdetermined bya tripletofparareters|i, k, nz ascalingparareter
1, afrequency parameter k and time parameter t.

Afastalgorithm for WPT can be considered, applying equations (13) notonly on
coarse coefficientsbutondetail coefficientstoo. Inthiscaseone anobtainasetof
ocoefficientsplacad inthebinary treenodes, dharacterizedbyacoefficient indicestriplet
1, k, n. Thedifference between W andWPT is that the latter leads todecompositionwith
redundancy andone canbring show that for signal with Nsarplles, (N-dimensional vector)
Tull decorposition contains more than 2Northogonal bases. Thiis redundancy ensures good
possibilitiesfor resultinterpretation: onecansearchforanostefficientsignal represen-
tationminimizing ameasure of irnformation; onecan searchfor signal featuresmaking
reconstructionbased onapartof thebasic coefficientsonly (orthogonal projectiononto
alessdimensional vector space) or one can search for the best level (best frequency
resolution) (Coifman etal. [1])-

2.2_Practical algorithms

WT and WPT have been accompl ished for a library of basic functions, containing cubic
splinewavelets (Battle-Lemarie (BL) wavelets) (Mal 1 at [4]), Daubeshieswavelets
(Paubeshies[2]) andC12coiffet (Meyer[5])-

BLwaveletsaresymetric. Theyhaven”tcompact support, but decay exponentionally
andtheir representative coefficients may be truncated for large indices. Wehaveexplored
16-tap sequence.. Daubeshieswavelets and C12 coiffet are compactly supported.

e have obtained WP decompasition for sixsuccessive scalesonsignal vectors 8192
samples log.

We have implemented STFT on the same signal vectors for data segments 128
samples long, windowed by Henningwindow and successful ly over lapping 64 samples.

3. Application

Time-frequency decampositions have been orientated on respiration soundsanalysis in
asthmaticpatients.

3.1. Method

Respiration soundswere recorded using anelectrodynamic microphone housed ina flat
plastic holder of a30mouter diameter . The inner opening containing the microphone
isof 12 mm, thus forming anair charber with the entire transducer assembly applied to
thepatient skinsurface. Asmall hole of 1nmdiameter connects the charber to the outer

atmosphere.
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Fig. 1. Tune-frequency distribution by STEF'T for a healthy subject
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Fig. 2. Timne-frequency distribution by STFT for an asthrnatic subject
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This transducerwas applied over the trachea by a smooth elastic bandor held by the
operator like a stethoscope membrane. The output signal ampl itude depends on the
breathing intensity, i.e., ontheairflovthroughthe trachea, andwasusual ly about 100mv
1o 500mV. Anamplifierwas usedwitha frequency band of 100 to 3000Hz (-3dB) tofeed
the 16-bit AD converter connected toan IBV campatible PC. The amplitude resolution
thus obtainedwas of 002V per bitwithasampling rate of 5.5kHz.

Thetransducer frequency response coulld not be proper Iy measured, especially having
inviewtheair charber and the skin contact interface. Themicrophone freeair response
iswithin3dB limits in the frequency range considered. However, itwill be seenfronthe
resultsthat thedifferentiationbetweenheal thy individual sandastimaticpatientspracti-
cal lydoes not.depend on everttual frequency characteristicdeviations of the transducer .

Tradheal soundswere dotained from 10 patients and 5healthyvolunteers, inspiration
and expiration phaseswere marked by visual doservation.

3.2.Reaults

Thetime-frequency plots revealed that inhealthy subjects inboth respirationphasesthe
signal frequency bandwes limited toabout800Hz. Inpatientspractical ly thesare time
ofbasic signal corponentswereobtained, but inadditionwheezing soundsvere detected
inthe 1000-2000Hz band andwhistl ing sounds in the upper frequencies inthe range 2000~
27/50Hz .. Figs. 1 and2 shovtime-frequency distributionobtained by STFT for healthy and
asthmaticsubjectsregpectively.

The results received through STFT permirt to del ineaite three frequency bands: lov
Trequency (LF) — 100 to 800 Hz ; middle frequency (MF) 1000 to 2000Hz; high frequency
—200010 2750Hz . Quantitative parameters canbe introduced for the entire inspiration
orepirationphases, e.g- , thesignal porerwithintheabove definedbands innV_Hz. These
parameters canbe used to formratios, suchasM~/LF. H-/LF, M~/total H-/total . Further,
time parameters measures can be added inms and thus obtaining “volume” parameter
measure (e-g- MF inmV_Hz.ms) and their ratios, or computing the time intervalswhere
MF or HF components have been detected in percentage to the entire inspirationor
epirationduration. Further studieswill ilolve forcedexpirationsoundsanalysis, aswell
as coughing sounds and possibly phonationofvonels.

AsTaras\\P representatiosare concermed they givegoodpossibi lities foral termative
interpretation. Onecansearchfor bestdecamosition level thusdotaining the satisfactory
frequency resolution forastimadetection. The implementationof inverse transformfor
samecoefficientsmaybring toquantitative results for the individual contributionofthe
important frequency bands.
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(PeszomMme)

[IpeIyIoKeH BpeMeBOM—4UaCTOTHLD [IOOXO, MPedBapUTEIIbHOM 08paboTKY GMOMe IVLIMH -
CKMX CUTHAJIOB . OH BKJIO4aeT KOPOTKO—-BpeMeBoe dypbe— IPeNCTaBJIEH/e, BOJIHOBAaA
TpaHchopMalLMsa U IakeTHas BOJIHOBas TpaHchopMauusa OJid OeKOMIIO3ULIUM
AHAJM3MPYEMOT'O CUMI'HAJIA PV HAJIAW/M IyMa . [IpeNCcTaBIIeHEl BOSMOXHOCTY TEXHUKIM

OJEKOMIIO3MLIUNM [IPU MCCJIEOOBAHMNM PECIIMPATOPHBIX CUI'HAJIOB IMIallMEHTORB C
ACTMaTMYECKVM CYMHIOPOOMOM .
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