
2 9

Multimedia Data Management  Characteristics
and Requirements*

Danail Dochev, Irena Koprinska, Radoslav Pavlov

Institute of Information Technologies, 1113 Sofia

1. Introduction

Data management lies at the heart of a multimedia information system. The spatial,
temporal, storage, retrieval, integration and presentation requirements of multimedia
data differ significantly from those for the traditional data. Hence, the goal of the
multimedia data management system is to allow efficient storage, manipulation using
of multimedia data in all its varied forms.

2. Multimedia Data Types

2.1. Text

Text is the basic element of most multimedia titles. Text is of concern to the developer
from two main standpoints. The first is the way in which text is presented to the user:
It should be easy to read and well designed. This involves the consideration font,
colour, and text size. Unless the application includes a great deal of reference material
(such as electronic encyclopaedia or book adaptation), text should be kept to a mini-
mum  the user will not read long displays of text. The text intended to instruct the
user how to use the program should be brief.

The second main concern of the developers is what lies behind the text; that is,
the interactive “links” that the user does not see but can activate to get to additional
information. Hypertext is an important aspect in reference titles. Such words may be
set off from other text so it is obvious to the reader that additional information is
associated with those words. This requires marking those words. Some software supports
“auto” hypertext, in which the user may click on any word in the display, and any
associated information is automatically displayed.

* This investigation was funded by INCO-COPRNICUS project PL961060 ARCHIMED “Advanced Multi-
media-Systems Architectures and Applications for Educational Telematics”.

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ . BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 49
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 49

София . 2000 . Sofia

3 0

2.2. Still images

Perhaps the most important components of multimedia applications are still images.
Visual representations are generally much more effective at conveying information
than text. Still images are generated by the computer in two ways: bitmaps (or painting
graphics), and as vector-drawn graphics. Bitmaps are used for photo-realistic images.
Bitmapped graphics are commonly used in multimedia titles and provide exceptional
detail, and the software for creating them is readily available to most users. Windows
has a built-in program (called Paintbrush), though there are many more versatile
packages for creating or modifying bitmapped graphics. Software such as Adobe
PhotoShop and PhotoFinish provide very sophisticated tools for to create and edit
bitmapped graphics. Using such software, one is able to add special effects, use various
filtering techniques, modify hue and saturation, and convert images to many different
formats. Most also provide scanning capabilities, the usual way in which photographs
and other graphics are captured for the computer. Another way to create graphics is to
capture and digitise images from videos using special video capture equipment.

Vector graphic store images as a set of instructions for re-creating the image as
an object consisting of geometric elements such as lines, circles, arcs, and angles.
These instructions require relatively little storage and result in smaller graphic file
sizes. However, complex images may take a long time to display (and require a faster
processor) because the image is actually reconstructed as it is being displayed, based
on the instruction set. The real advantage with vector graphics, however, is that the
same image may be resized, moved, or rotated while maintaining its original quality
and proportions. This is particularly important for three-dimensional (3-D) graphics
and is commonly used for maps (which may be readily enlarged to view more detail)
and for CAD/CAM and design work, in which an object or structure can be rotated to
display different views.

2.3. Video

The two main types of video used in multimedia are analogue and digital. Analogue
video is recorded and stored on videocassettes and laser disks. Of all the multimedia
elements, video places the highest performance demands on the computer and its
memory. Standards and formats for digital text, imagery, and sound are well established
and familiar. But video is the most recent addition to the elements of multimedia.
Three broadcast and video standards and recording formats are in use around the
world: NTSC, PAL, and SECAM. These standards and formats are not easily
interchangeable. Multi-format VCRs can play back all three standards, but typically
cannot dub from one standard to another. Dubbing between standards requires
specialised equipment.

Video overlay boards can capture or digitise video frames, as well as play them
back from analogue video sources. Many video boards also incorporate audio input
and sound management. Digitised video playback is step toward fully integrating motion
video and digital computer graphics. This playback is accomplished using special
software to convert the video source material from its common analogue form to a
digital form manageable by the end user’s computer system.

Digital video is by far the most commonly used. However it requires various data
compression and decompression techniques accomplished using either software or
hardware. Software codes include Intel’s Indeo, IBM’s PhotoMotion, Cinepak, Quick
Time and Video for Windows, and they result in different file formats. The major
advantage of software-based video: it requires no special boards to play video. A
disadvantage is that it does not provide the same quality as television or VCR video.

Animations and digital video are sequences of bitmapped graphic scenes (frames),
rapidly played back. The most commonly used animation technique is to create a

3 1

series of images that are displayed in rapid succession. Such “frame-based” animation
involves a different image, or frame, for each view and works like a filmstrip. Photo-
graphs that are displayed this way can give the appearance of movies, although full-
motion video is of higher quality and is becoming increasingly common in multimedia
applications. Another common type of animation is “cast-based” animation in which
the background image remains the same, but individual objects appearing on that
background are given “instructions” to move across the background. Both techniques
are also called 2-D animation, because they involve the appearance of flat images
moving on the screen. Software such as Animation Works Interactive and Autodesk
Animator provide the developer with sophisticated tools to create impressive anima-
tions. Another type of animation frequently used for virtual realty is 3-D animation in
which three-dimensional objects are created using a mathematical model. Thus, each
object may be shown in various views, giving the user a realistic sense of a third
dimension. In creating 3-D animation, first must to be created a “model”. This in-
volved drawing the object in several views according to specified coordinates along x,
y, and z-axes. The model is then made to look more realistic by adding shading and
“rendering” the image, which involves blending the background, model, light sources,
and textures to make cohesive frame transitions.

Like 2-D cast-based animation, objects are given paths of movement, but 3-D
animation differs greatly because objects may turn and tilt, retaining a three-dimen-
sional look. In addition, each frame in between a major change in orientation does not
need to be drawn. This difference is due to the mathematical model, which interpo-
lates how the object should appear in various positions and orientations. The com-
plexity of 3-D animation requires computers with fast CPU speed, especially for full-
screen animation. Special software (such as Autodesk 3-D Studio) is required to cre-
ate 3-D animation that provides modelling and rendering capabilities.

Digitising and storing a 10-second clip of full-motion video requires transfer of
an enormous amount of data in a very short amount of time. Reproducing just one
frame of digital component video at 24 bits requires almost 1 MB of computer data;
10 seconds of video fills 300 MB hard disk. A typical hard disk drives transfer data at
only about 1 MB per second. This overwhelming technological bottleneck is currently
being overcome by digital image compression techniques. Real-time video compres-
sion algorithms such as JPEG, MPEG, P*64, DVI, and C-Cube are now available to
compress digital video information. Most hardware-based video compression is cur-
rently based on two industry standards, JPEG and MPEG. One of the main differ-
ences between the two standards is that JPEG compresses every frame in the video,
whereas MPEG compresses only the changes that occur between those frames. MPEG
provides much higher compression ratio (up to 200:1 versus 100:1 for JPEG), and the
quality of video is far superior to that resulting from JPEG compression.

2.4. Audio

One of the most important components of multimedia is sound, whether it is in form
of music, narration to accompany text or to explain content, or special sound effects to
enhance the action being displayed on the screen. The most common type of sound
files incorporated into a multimedia application is “digital audio”, which is created by
converting analogue sound (sound from microphone, a synthesiser, existing tape re-
cordings, live radio and television broadcasts, popular CDs, etc.) using an analogue-
to-digital converter (ADC). To play back this signal the computer’s sound card trans-
lates the digital information back into analogue sound using a digital-to-analogue con-
verter (DAC).

Digitised sound is sampled sound. Every nth fraction of a second, a sample of
sound is taken and stored as digital information. How often the samples are taken is

3 2

the sampling rate, and the amount of information stored about each sample is the
sample size. The three sampling frequencies most often used in multimedia are CD-
Audio quality 44.1kHz, 22.05kHz, and 11.025kHz. Sample sizes are either 8 bits or 16
bits. The quality of the digital sound is related to the number of channels recorded,
sampling size and sampling rate. The digital data represents the instantaneous ampli-
tude of a sound at discrete slices of time. Because it is not device-dependent, digital
audio sounds the same every time it is played.

As with graphics and animation, it is possible to purchase CD-ROMs with sound
libraries containing music and special effects, or the user can record his own sound
using a microphone, sound board, and special sound software such as Wave for Win-
dows and SoundTrack. This software allows the user to record sound using different
sampling size and rates, add special effects such as echo and fade, and mix multiple
sound files such as voice and music. Most Macintosh sound-editing software will save
files in .SND and .AIF formats, and most authoring systems will read these formats.
In Windows, most editing software writes .WAV files. The Convert and WaveEdit
utilities in Windows allow the user to read the Macintosh .AIF format.

MIDI (Musical Instrument Digital Interface) is a communications standard for
electronic musical instruments and computers. It allows music and sound synthesisers
from different manufacturers to communicate with each other by sending messages
along cables connected to the devices. MIDI provides a protocol for passing detailed
descriptions of a musical score, such as the notes, sequences of notes, and what instru-
ment will play these notes. But MIDI data is not digitised sound  it is a shorthand
representation of music stored in numeric form. A MIDI file is a list of time-stamped
commands that are recordings of musical actions that, when sent to a MIDI playback
device, results in sound. MIDI files use a different format (.MID) than wave (.WAV)
files and require special editing software such as Studio 3.1.

MIDI has several advantages over digital audio:
 MIDI files are much more compact than digital audio files, and the size of a

MIDI file is completely independent of playback quality. In general, MIDI files will
be 200 to 1000 times smaller than CD-quality digital audio files. Because MIDI files
are small, they don’t take up as much RAM, disk space, and CPU resources. For
example, 1 minute of high-quality music requires about 10MB of storage when saved
in .WAV format and only about 15 KB when saved as a MIDI file.

 In some cases, MIDI files may sound better than digital audio files if the MIDI
sound source is of the high quality.

 The length of a MIDI file can be changed (by varying its tempo) without changing
the pitch of the music or degrading the audio quality. MIDI data is completely editable
- right down to the level of an individual note. The smallest detail of a MIDI compo-
sition can be manipulated in ways that are impossible with digital audio.

MIDI has several disadvantages:
 Because MIDI data isn’t sound, its playback will be accurate only if the MIDI

playback devise is identical to the devise used for production.
 MIDI cannot easily be used to play spoken dialog, although expensive and

technically tricky digital samples are available.
 The preparation and programming required for creating digital audio do not

demand knowledge of music theory; working with MIDI data usually does require a
modicum of familiarity with musical scores as well as audio production.

2.5. Composite Objects

Composite multimedia data are created by combining basic multimedia data types
and other composite multimedia data. Types can be physically mixed together to form
a new type or logically mixed. A physical mix defines in a new storage format, where

3 3

data such as audio and video intermix i.e. compound objects. A logical mix defines a
new data type while retaining individual data types and storage formats i.e. complex
objects. However, when played the executing methods would have to deliver the data
in a synchronised fashion, making it appear as though the data is a composition. Com-
posite data may also contain additional control information describing how the infor-
mation should be rendered at the client.

The software used to tie together all multimedia components includes presenta-
tion and authoring/production software. Although each provides an environment best
suited for certain types of multimedia development, the boundaries separating them
are becoming increasingly vague as software packages become more comprehensive
and powerful.

Presentation software (such as Compel and Astound) is useful in building slide
shows for presentations, allowing being incorporated effective animation or video and
sound. Many presentation packages allow to access data from a database or spread-
sheet to produce effective charts and other diagrams used in the slide show and may
provide the user with some amount of interactivity (such as going to an adjacent screen
or accessing additional information). Software used to produce presentations is easy
to learn and does not require the developer to program “code”. However, it does not
provide as much power and flexibility as authoring software and therefore is not as
well suited to create a more complex multimedia data.

Authoring software is best suited for developing titles that allow the user to intri-
cately control the navigation and information that is presented at any given time. This
is much more complicated than a sequential slide show used in presentations. Most
authoring software provides an easy-to-use screen design interface that allows the
user to create objects such as buttons and graphics using a set of tools.

3. Characteristics of Multimedia Data

3.1. Temporality

Some multimedia data types such as video, audio, and animation sequences also have
temporal requirements, which have implications on their storage, manipulation, and
presentation. The problems become more acute when various data types from possi-
bly disparate sources must be presented within or at a given time. Temporal structures
dictate the temporal layout, orchestrating the data’s presentation. Basic temporal struc-
tures produce serial and parallel (hierarchical model) presentations of data. The user
can also define presentations by associating a presentation time and duration (timeline
model) with each multimedia object, eliminating the requirement for temporal struc-
tures. However, the model is severely limited, since it can only define static presenta-
tions. Other approaches for temporal specification include scripting languages, speci-
fication languages, and extended programming languages.

While specification languages may be mapped to temporal relationships within a
multimedia DBMS, it is not so easy to do the same with scripts and programs. Scripts
and programs control the presentation of multimedia data, but without a represent-
able temporal structure they cannot easily be queried, reused, or supported by the
underlying components of the multimedia DBMS (such as the storage manager).

3.2. Spatiality

Similarly, images, graphics, and video data have spatial constraints in terms of their
content. Usually, individual objects in an image or a video frame have some spatial
relationships between them (on the left of, on the right of, next to etc.). Such relation-
ships usually produce some constraints when searching for objects in a database. These

3 4

relationships organise the data’s visual layout on a virtual page or medium. The virtual
medium may exist across multiple machines. Within a spatial presentation, users can
move around inside the boundaries defined by the virtual medium and move and
restructure the data.

Spatial structures may include 3D or virtual environments. Spatial constraints
control 3D-object movement and inter object spatial relationships. Special tools can
define spatial relationships using graphical user interfaces. Instead of providing se-
mantically rich spatial relationships, some systems support spatial grammars, which
are closer to scripting languages. However, since these spatial relationships are not
directly represented within database (but only within a script), they cannot be really
queried.

3.3. Need for Storage Space and Fast Transmission

Huge volumes of data also characterise multimedia information. For instance, to store
an uncompressed image of 1024:728 pixels at 24 bits per pixel requires a storage
capacity of about 2 Mbytes. With a 20:1 compression ratio, the storage requirement
could be reduced to about 0.1 Mbytes. A 10-minute sequence of the same image at 30
frames per second requires about 38 000 Mbytes of storage, reducible to about 380
Mbytes with a compression ratio of 100:1. The potential for huge volumes of data
involved in multimedia information systems become apparent when you consider that
a movie could run as long as two hours and a typical video repository would house
thousands of movies.

3.4. Need for Content-Based Access

The representing multimedia information as pictures or image sequences poses some
problems for information retrieval due to the limitations of textual descriptions of a
multimedia experience and the massive information available from it. The potential
information overload means that users may find it difficult to make precise requests
during information retrieval. The limitations of textual descriptions also imply the
need for content-based access to multimedia information. Users need multiple cues
(such as shape, colour, and texture) that are relevant to the multimedia content.

3.5. Collaborative Support Environment

Another characteristic of multimedia information is that interaction involves long-
duration operations (such as with video data), and sometimes, with more than a single
user (as is typical in collaborative support environments). However, in collaborative
environments, it is expected that most multimedia data are likely to be accessed in a
read-only mode. This assumption can be used to facilitate the provision of concurrency
control algorithms.

4. Requirements for Multimedia Data Management

The goal of a multimedia database management system (MMDBMS) is to provide a
suitable environment for using and managing multimedia database information. Hence,
it must include the traditional DBMS functions (e.g., database definition and cre-
ation, data retrieval, data access and organization, data independence, privacy, inte-
gration, integrity control, version control and concurrency support but applied to vari-
ous multimedia data types.

The functional requirements imposed on a MMDBMS can be grouped into two
categories [DATAPRO]: data representation requirements and data manipulation re-
quirements.

3 5

4.1. Data Representation Requirements

 Support for Generalization/Specialization Hierarchy
A major requirement that is imposed on multimedia applications is the support

for generalization/specialization hierarchy. This hierarchy is used to define the type,
subtype, and instance relationships between the various entities. For example, all the
documents could be grouped into a type called “document type”. If a new document
is created, then it is made an instance of this type. Certain documents could have
some special properties. For example, a book document could have properties, which
are different from a newspaper document. Therefore, the collection of books could be
grouped into a type called “book document type”. Since a book is also a document,
the type “book document type” is made a subtype of the type “document type”. Sup-
port for generalization/specification hierarchy also facilitates schema evolution. For
example, one could create a new version of document schema where the text always
precedes the illustrations in the body. Any document which is constructed according
to the new schema is also an instance of the old schema.

 Attribute Specification
Support for specifying the properties of a document (such as its title, author, font

size, etc.) should be provided. These properties are also called the attributes of a
document.

 Specifications of Operations
Another requirement is the ability to specify the operations that can be per-

formed on a multimedia document. For example, it should be possible to change the
font size of the document, change the contents of a document, retrieve the contents of
the document, etc.

 Support for Composite Objects
A major requirement for modeling multimedia applications is the support for

composite objects. For example, a document may be composed of front matter, body,
and back matter. The front matter may be in turn composed of cover page, abstract,
preface, acknowledgments, and table of contents. The cover page may consist of title,
authors, organization, date of publications, and sponsors, etc.

 Object Sharing
Object sharing is the capability for different documents to share parts of their

contents. Such a capability is especially necessary for multimedia documents as the
amounts of storage space required to store a document might be quite large. It should
be possible to represent the fact that different documents share portions of their con-
tents.

 Ordering of Documents
The presentation of the paragraphs, images, and drawings of a multimedia docu-

ment could depend on the users accessing the document. Usually constraints are im-
posed on the presentation of the document.

 Support for Multimedia Data
This major requirement includes extensibility, where new multimedia devices as

well as new functions on multimedia information can be incorporated with ease.
 Data Independence
Database and the management functions must be separated from the application

programs.

4.2. Data Manipulation Requirements

 Integration and Integrity Control
Integration means ensuring that data items need not be duplicated during differ-

ent program invocations requiring the data. Unlike in traditional DBMS, data dupli-

3 6

cation is not encouraged, especially in distributed MMDBMS, due to the huge data
volumes. The client-server computing model, in which a server application services
multiple client applications (with the clients and server residing in possibly different
machines), has proven suitable. By the integrity control consistency of the data state
from one transaction to another through constraints imposed on transactions are en-
sured.

 Concurrency Control
This requirement ensures multimedia database consistency through rules, which

impose some form of execution order on concurrent transactions. In concurrency con-
trol, a transaction is defined as a sequence of instructions executed either completely
or not at all. In the latter case, the database is restored to its previous state. Defining
the appropriate granularity for concurrency is a problem in multimedia databases.
While traditional databases use a single record (table) as the unit of concurrency,
multimedia databases typically use a single object (or composite object) as the logical
unit of access. Thus, the single multimedia object could form the unit of concurrency.

 Persistence
The requirement for persistence denotes the ability of data objects to survive

through different transactions and program invocations. In order to achieve persis-
tence, the simplest method is to store the multimedia files in some operating system
files. However, the huge data volumes make this approach costly to implement. More-
over, the system also needs to store the multimedia meta-data and possibly composite
multimedia objects. Thus, most MMDBMSs classify the data as either persistent or
transient and store only persistent data after transaction update. Transient data are
used only during program or transaction execution and are removed afterwards.

 Recovery
MMDBMS must provide facility for transactions to recover from failures. Meth-

ods ensuring that results of failed transactions do not affect the persistent data storage
are necessary.

 Privacy
Unauthorized access and modifications of stored data should be restricted.
 Query Support
An important requirement is that the query mechanism is suited for multimedia

data. A query selects a subset of the data objects based on the user’s description using
some form of query language of what data to access. A query usually involves various
attributes, possibly keyword-based or content-oriented, and is usually interactive. Thus,
functions for relevance feedback and query formulation, similarity (rather than exact)
matches, and mechanisms for displaying ranked results are important in a MMDBMS.

 Version Control
Organization and management of different versions of persistent objects are re-

quired. Version control becomes important when a persistent multimedia object is
updated or modified, as some applications might need to access previous sates of the
object. A DBMS provides such access through versions of the persistent objects. For
a MMDBMS the huge volumes of data reinforces the importance of efficiently orga-
nizing such versions. Moreover, the available storage might limit the provision of
versions. In addition, version management may involve not only versions of single
objects, but also versions of the complex objects that make up the multimedia data-
base.

 Efficient Capture, Access and Presentation of Multimedia Data
Support for the allocation and de-allocation of pages on disk, movement of pages

to and from disk, and management of indexes should be provided. Also, support for
the capture and presentation of various types of multimedia data is essential.

 Data Availability

3 7

Data availability refers to the fact that a data object can be retrieved from alter-
native storage devices as well as from different portions of the same device. This
technique is also called data replication and has received major focus by researchers
and developers. Replicated data can ensure that the user will be able to retrieve the
requested object despite of some storage medium failure since the same object can be
found also from another repository (i.e., disk, tape, etc). So, the more the replicas of
an object the less the probability of not being able to deliver the object to the user.
However, there are two drawbacks:

First, replication in a high degree exhausts the storage capacity. Provided that
the multimedia objects are, in general, large ones, it is concluded that a database
designer has a trade-off on the number of the replicas vs. the storage space willing to
waste in replicas. In addition, the designer must also decide where he is going to put
the replicas i.e., in which tapes, disks, etc.

Second, there is the need to keep the replicas consistent. This means that any
update of the object has to be mirrored on each of the replicas. This requires tracing
of each the replicas and, in case of an update, the system should traverse all the media
(i.e., tapes, and disks) in order to replace the old version of the object. Notice, that in
the case in which some of the replicas reside in tapes, the task of updating is very time
consuming due to the very high access times in the tertiary memory (as opposed to the
secondary memory, i.e., magnetic disks, RAIDs, etc).

5. Data Models for Satisfying the Data Representation Requirements

5.1. Overview

Two basic types of data models were developed: traditional models (Date [6]) and
semantic models (H u l l and K i n g [7]). The former includes the network, the
hierarchical, and the relational models. The entity-relationship (ER), the functional,
and the object oriented (OO) data models are included in the latter data model.
While traditional data models have primarily been used to represent the database,
semantic data models have been used to model operational and semantic data.

Recently a third type, called hyper-semantic, has been included in the classifica-
tion of data models. These models not only include the constructs provided by seman-
tic data models (e.g. inheritance, generalization, aggregation and composition) but
also provide inference capabilities which are necessary to model knowledge-based
applications (P o t t e r a n d T r u e b l o o d [8]).

5.2. Two Basic Data Models

5.2.1. Relational Data Model

Relational data model was proposed originally by Godd (G o d d [4]). At present, it
is the most popular data model mainly due to its simple representation and well-
defined theory. Such a model views the world as a set of relations. For example,
Fig.1 shows information about employees and departments represented by two rela-
tions, EMP and DEPT. EMP has attributes SS#, NAME, SAL, and D# (for the social
security numbers, names, salaries, and department numbers of employees) and DEPT
has attributes D#, DNAME, and MGR (for the department numbers, department
names, and managers of the departments). Each relation has a primary key which is
used to uniquely identify the rows of the tables, e.g. SS# for EMP and D# for DEPT.
Several relation operators have been defined for manipulating the relations, e.g. the
operator SELECT selects tuples from a relation which satisfy a certain condition,

3 8

PROJECT projects a relation onto some of its attributes, JOIN joins two relations on
some common attribute (i.e. EMP and DEPT can be joined on D# in order to get
association between an employee name and his/her department name.

 Relation EMP Relation DEPT
SS #NAME SAL D# D# DNAME MGR
1 John 20 000 10 10 Personnel Jane
2 Mary 30 000 20 20 Security David
3 James 40 000 30 30 Finance Tom

Fig. 1. Relational Representation

A lot of work has been done on developing a theory that guides the design of
relational databases (M a i e r [7]). For example, various dependencies between the
data attributes, such as functional and multi-valued dependencies have been defined.
They are taken into consideration when the schema of a relational database is gener-
ated.

5.2.2. Object-Oriented Data Model

Semantic data models have been developed in order to overcome the major drawback
of the relational models, namely their lack of support for complex objects. One such
semantic data model that is gaining increasingly popularity is the OO data model.
Unlike the relational data model, there is no standard OO data model and numerous
such models have been proposed. In an OO data model, the world is viewed as a set
of objects that communicate with each other by exchanging messages. Objects with
similar properties are grouped together into class. Such objects are called instances of
the class and the properties are called instance variables. Classes have methods asso-
ciated with them. Methods are procedures that are executed when they are invoked.
Methods are invoked when appropriate messages are received. An instance variable
could be either a non-composite or composite instance variable. The former is further
divided into Fig. 2.

1 2

3

SS#

NAME
SAL

D#

EMP Class

10 20

30

D#
DNAME

MGR

DEPT Class

UPDATE_SALARY (OLD, Amount);
SAL’ = SAL + Amount
Write(OLD, SAL)
Return Status
Read(OLD, SAL)
E N D
Fig. 2. Object-Oriented Representation

simple and complex. Simple instance variables take individual objects as their values.
An individual object could be a basic object such as an integer, a string, or a Boolean,
or it could be an object described by a tuple value such as an employee, a department,
or an automobile. For example, the simple instance variables of a book class include
the “author” and the “Title”, complex ones take a set or a list of individual objects as
their names (e.g. set of names, set of employees). Composite instance variables de-
scribe the components of the instances, e.g. a document could be composed of a
cover, table of contents, set of sections, and references.

3 9

Document
 Instance

Property
Specific to
English
Documents

Property
Specific to
French
Documents

Title
Author

Section 2 Table of
Contents

Fig. 3. IS-PART-OF Hierarchy

Any class, which has a composite instance variable, is a composite class. The
instances belonging to such a class are composite objects. A composite object together
with its components forms the IS-PART-OF hierarchy (Fig. 2). The link from a com-
posite object to its component is called a composite link. A second basic hierarchy is
the IS-A hierarchy (Fig. 3), where subclasses are associated with a class. The sub-
classes inherit all the methods and instance variables of their superclass. A subclass
could also have additional instance variables and methods.

Document
 Cover Table of

Contents Section 1 Section 2 Set of
References

Paragraph Figure Paragraph

Document
 Instance

Fig. 4. IS-A Hierarchy

5.2.3. Comparison of the two models

The comparison between relational and OO data models is made with respect to both
the representation and manipulation of multimedia documents.

The view of the world as a set of relations in relational model has shown to be
useful for not only representation but also for manipulation. The theoretical founda-
tions of the relational data model enable various well-defined operations to be per-
formed on relations. As a result, the relational data model is ideal for many simple
business applications. On the other hand, multimedia applications deal with complex
structures. For example, the book cover, preface, introduction, various chapters, and
references form the components of a book and cannot be treated as simple attributes of
an entity. The book, consisting of these components, has to be collectively treated as a
composite entity. It is not possible to represent composite entities using a relational
model without placing a tremendous burden on the application program in order to
maintain the complex structures.

Another disadvantage of the relational data model is the difficulty in specifying
operations and constraints. For example, the operation of updating the contents of a
document has to be embedded into an application program. Also, constraints are usu-

4 0

ally represented as rules and are not represented as relations.
Finally, the support of capturing, storing, and manipulating multimedia data has

been found to be difficult using the relational data model. Multimedia data, such as
video and voice, consume a large storage space. Storing them as flat files makes it
difficult to efficiently access them. Also, the relational model cannot directly support
specialization/generalization requirements. This makes schema evolution as well as
incorporating a new device or a media difficult to support.

While the relational data model has obvious disadvantages for representing and
manipulating complex structures for multimedia applications, the OO data model has
constructs which support all of the requirements of multimedia applications. Such es-
sential constructs are discussed below and it is shown how the requirements of multi-
media applications can be supported.

- Class hierarchy/inheritance
The class hierarchy (or IS-A) provides the support for specialization/generaliza-

tion hierarchies. For example, a class DOCUMENT that has all documents as its in-
stances could be defined. A subclass of the DOCUMENT class could be the class
JOURNAL. All journals are instances of this subclass. Inheritance mechanism enables
a journal to inherit the properties of a document such as ID and Name.

- Instance variables
This feature allows specifying properties (or attributes). For example, a set of

instance variables is associated with each class. They specify the properties of the
instances of the class.

- Composite object hierarchy
The composite object hierarchy (also called Aggregate or IS-PART-OF hierar-

chy) enables composite objects to be represented.
- Methods
Methods are procedures and they are the only means of accessing objects. Execut-

ing appropriate methods can carry out operations on objects.
-Object sharing
Object sharing is supported by either the composite links or the instance variable

links of two different objects pointing to another object. For example, the objects which
represent documents 1 and 2 could have their instance variable links point to an object
which represents the author. This means the author of the two documents is the same.
However, as the two links point to the same object, the author’s name does not have to
be duplicated.

- Versioning
Version derivation hierarchy provides the support for representing versions and

specifying operations on versions.
- Ordering of documents
Constraints on the structure and ordering of documents can be specified in the

form of methods. Before a document is presented, appropriate methods are executed
in order to present it in the desired form.

- Multimedia data
The class hierarchy and methods allow new kinds of data to be incorporated into

4 1

the system with ease. Furthermore, new operations on the data can also be specified.
These features enable the efficient capture, storage, and presentation of multimedia
documents. In addition, with the OO approach, large objects to store the large multi-
media data could be created. Techniques are being developed for efficiently access-
ing these objects.

The discussion above shows that the OO data model has obvious advantages
over the relational model for representing multimedia data.

5.3. Three Types of Multimedia DBMS Based on OO Style

5.3.1. Approach 1: RDBMS + OO Extensions (+ Multimedia Extensions)

This approach (Fig. 4a) uses a pre-existing relational DBMS (RDBMS) as basis and
extends in into an OODBMS, and then further extends it into a MMDBMS. The
advantage is that the core DBMS (which is relational) has been pre-developed and
the design efforts can be reduced. The disadvantage is due to the mismatch between
relational and OO styles. Clearly, the semantics of OODBMS is much more extensive
than that of a RDBMS. This makes supporting an OODBMS with a RDBMS difficult
and, from time to time, inefficient process. In other words, the system will have to live
with the constraints and limitations introduced by RDBMS.

5.3.2. Approach 2: OODBMS (+ Multimedia Extensions)

This approach (Figure 4b) recognizes the problem mentioned above and redesigns an
OODBMS from the beginning without relaying on pre-existing RDBMSs. However,
the DBMS is still not designed for supporting multimedia information, and a multime-
dia extension is further introduced. Again, this system will suffer from the mismatch
between multimedia data and conventional OODBMSs (which are mainly designed
for non-multimedia applications).

5.3.3. Approach 3: OO Multimedia DBMS

The disadvantages mentioned above are overcome in this approach by the de-
sign of the entire multimedia OODBMS (Fig. 5c). Such a system significantly inte-
grates the design of an OODBMS and the support of multimedia information in a
single step such that all mismatches that arise in the first two approaches are elimi-
nated. Most of the current approaches use either Approach 1 or Approach 2.

Multimedia
Interface

OO
Interface

RDBMS

Multimedia
Interface

OO
DBMS

Multimedia
OODBMS

A) Approach 1 b) Approach 2 c) Approach 3

Fig. 5. Design Approaches of Multimedia DBMS

4 2

R e f e r e n c e s

1. A n a n g e r, G., T. D. C. L i t t l e. A Survey of Technologies for Parsing and Indexing Digital Video. 
Journal of Visual Communication and Image Representation, 7, March, 1995, No 1, 28-43.

2. A n j e r o h, D. A., K. C. N w o s u. Multimedia database Management - Requiremets and Issues.  IEEE
Multimedia, July-September, 1997, 24-33.

3. A n g, Y- H., A. D. N a r a s i m h a l u, S. A l-H a w a m d e h. Image Information retrieval Systems.  In:
C. H. Chen, L. F. Pau and P. S. P. Wang (eds.). Handbook of Pattern Recognition and Computer
Vision. Singapore, World Scientific, 1993, 719-739.

4. G o d d, E. A Relational Model for Large Shared Data Banks.  Communications of ACM, 13, 1970,
No 6.

5. DATAPRO Information Services Group. Developing Multimedia Database Management Systems,
Workgroup Computing Series: Multimedia Solutions, 1031: Multimedia Concepts, November, 1992,
1-7.

6. D a t e, C. Introduction to Database Systems. Reading, MA, Addison Wesley, 1986.
7. M a i e r, D. The Theory of Relational Databases. Rockville, MD, Computer Science Press, 1983.
8. P o t t e r, W., R. T r u e b l o o d. Traditional, Semantic and Hyper-Semantic Approaches to data Modeling.

 IEEE Computer, 21, 1988, No 6.
9. R a n g a n, P.V. H. M. V i n. Efficient Storage Techniques for Digital Continuous Multimedia.  IEEE

Transactions on Knowledge and Data Engineering, 5, August 1993, No 4, 564-573.

Управление мультимедийных данных  характеристики
и требования

Данаил Дочев, Ирена Копринска, Радослав Павлов

Институт информационных технологий, 1113 София

(Р е з ю м е)

Анализируются мультимедийные данны разнообразного типа  текст, видео-,
аудио-, и их специфические характеристики. Поставлены требования к
системам их управления в двух основных направлений  к подходам их
представления и их манипуляции. Анализируются преимущества и недостатки
двух основных моделей  реляционного и объектно-ориентированного, а также
и подходы их интегрирования.

