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1. Introduction

The network Flow theory has passed through different stages of development since its
cregtion in the S0ies. This has lead to new classes of floas, that differ mainly in the way
of defining the capacity of the network arcs. The main results in the already classical
network floas are comnected wirth the names of Ford and Fulkerson [1, 2, 3]. The capecity
in these flons is defined separately for each network arc.

Sare types, inwhich additional linear inegualities of the flov on subsets of arcs are
used together with the arc capecities, have been considered in [4, 5].

A more general approach is suggested In [6, 7], where the arc capacities are re-
plaocsd by linear constraints of the flow on separate subsets of arcs. This flov is called a
lirear flow.

The present paper disousses a class of network flass, inwhich all the arc capecities
are replaced by ore linear equal ity with a nonHnegative right sice. In this case the arc flow
functions are not limited by the cgpecities, but they can aliter wirthin certain limitswith
respect to a comon linear equality. Further on this flovwill be called a network flow
wirth one linear equality (OLE) or OLE-flow in brief.

2. Definition of a network flov with one linear equality

Let a graph GQ\,U) be given wirth a set of nodes N and a set of arcs U. The set M contains
the indices of alll sinplle oriented paths [1, Z] fran the source s tonards the sink t, sudh,
that there are no knots in them and every arc is included onlly once in each path. Since
sinple orieted paths will be only used further on, they willl be called just paths.

The set of all the arcs with an index e Mwill be denoted as U(w) - We will assure
that G(\,U) has no orierted cyclles and for it
()] U=uu@).-

peM

* The present paper is written in conformance with contract No¥-605/96 with the National Fund for
Scientific Investigations at the BulgarianMinistry of Education and Technologies.
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Let a network flow be given on the graph G(N,X) with the help of the followving
costraints: foreach x e N

(v if x=s
(1) fox, )—F(N, )= {0 ifxzs,t
l-vif x=t,
(€)) 2 b(x, y) (X, y)=C,
x,y)eU
&) X, ¥)20; (X, Y)eU,

where Cis a rational non-negative nunber; s and t —a source and a sink of the network
flow; v and - a flov and an arc flow function.

© T, =2 (X, y); TN, =21, X ;
yel'd yel' (9
© bk, Y)eR';

R* —a set of rational nonegative nurbers;

) and I'*(x) —an image and an inverse image of X into N.

It is assuned that for the graph GQN,U)

O N, ) =(t, N) =A,
where A Is an empty set.

The network flow defiined with the help of relations (D)-(3) will be called a flow
with one linear equal ity or OLE-flow.

Let () denotes this part of the flow v, corresponding to the path - Having inmind
condition (7) and Theorem 2.2 from chapter 2 in [1], the following transition frona
network flow v in the type of arcs-nodes tonards a flow v(h) in arcsaths type can be
dore,

((3) v = X v() =v.
peM

The denotation v only willl be used further on.

The sum of all the coefficients {b(x,y)}, corresponding to the path neMwill be
daotedasB(), 1€,

(S) B = 2 b(x,y)-
(€B) SV M)
The coefficients {aﬂ} are determined as folloas: for each peM
Jv(p)/v if\v>0
) a, =
L0if v=0.
It folloas fram the nonegativeness of the flons ad relations (8) ad (10), that:
(1 iF v>0
(kY Ya, = 1
peM LOif v=0,
@ O<q, <1 for all peM

Let the paths nurber inMbe equal tom, i. e., M =m. Incase the indices of the
paths are ordered inﬁereﬁpectivemay,ﬁemll&{aﬂ}canbewsideredasompmems
of the follloving vector :
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a=(0y, 0y ---5 Q)

Definrtion 1. The vallue

@) B,= X a, B(W
peM

will be called an a-fector .

The value B() depends on the coefficients {b(X, y) /(X, y)<U(@)} onlly acoording to
(9 ad is an gpriori known value. According to (10) and (11) the a-factor depends on
the conponents {aﬂ} only, i1.e. onthe correspording Fllow realization.

Definition 2. Each value of the vector « , satisfying conditions (8) ad (10) willl be
called an o - realization.

It folloxs from the relations in (8) ad (10) that iIf the equalities (3) are not ac-
ocounted, each a-realization can be assigned sare sets of flow values.

The folloving two statamertts fol lov directly fram relations (8)-(13).

Statenent 1. Only one a-factor corresponds to any o-realization.

Statement 2. There exists a biunigue correspondence between each o—realization and
the respective Alaw reallization {v()/ueMy for a given value of v.

3. Conditions for the existence of a network flow with one

linear eqality

The folloving relations have a significant influence on the OLE-flow.
Lemma 1. It can be written for the OLE-Flow, described by (2)-(4)

@ 2 bk, ) (X, y) = X v() B():;
(X, y)eU peM
P roof. Having in mind [1], the follaving coefficients are introduced: for each
peM
j 1 i, y)eU@w
) a, (X, Y)= ]

|Ootherwise.
When passing from a flow in the form of arcs—nodes tonards a flow in the form of
arcsaths it can bewritten, [1]: for each (X, y) €U

® L Y)=2 o, VV@)-

peM

Then on the besis of (8), (15) and (16) the left part of equality (14) can be written
as tre folloving dain of equal ities:

2 b(x, ) F(x, y) = 2 b(x, )X a (X, Y) v(u)=

a X, y)eU (X, y)eU peM
=2 v X a,x, b, y) = v X b, y)-
peM G, YU peM (X, Y)eU@

Fraom (9) and (17), (14) follows 5
Conseguence 2. There exists a relation

€3) 2 b(x, ) f(X, y) = VB,
, y)eU
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This result folloas directly fran relatios (8)-(14) s
The relatios belov given are comected wirth the condirtions of existence and behaviaur
of an OLE-flav 2)-(@), asvell aswith the cgpecities, limiting this flow.

Lemma 3. IT

@ C0and B()<O0 for all peM,

there does not exist any OLE-flow, satisfying coditions (2) uoto (4).
Proof. Let

@ B(Q)<0 for all peM.
Then for each Flow realization {v()/eM} 1t can be written

@ 2 v()B()<0.

peM

The conparison of relations (3), (14) ad (21) leads to the inequality C< 0, which
contradicts to the first one of inegual ities (19) and proves the inpossibility of an OLE-
Flow existence under corditions (19):

Levma 4. IF

@ C> 0,

the necessary and sufficient condition for the existence of a positive OLE-flow fram (2)
upto (@) is the presence of att least ore path p*eM, forwhich the folloving is true:

(€2)] B >0.

P roo f. Sufficiency. Let a path 1" eM exists, which satisfies (23). Thena flov
v(u")=Vcan ke st, such that,

C
@ ey ——;
B
9] v=Y v(@) v ).
peM

From (14) and from (22) uoto (5), it follows that all the constraints (2)-(4) are
fulfalled for this flov and hence It is an OLE-flow.

Necessity. Let a non-zero flow >0 exists. It folloas from assurption (22) and
relatias (3) ad (14) that

@ ¥ v() B@)=C>0.
peM
This means that there is at least ore path n* e M, fulfilling (3)
Levma 5. IF
@) C=0u BQw) =0 forall peM,

the necessary and sufficient condition for the existence of a non-zero OLE- flow is the
presence of at least two paths p*eMand p'*e M, for which

(€3) Bu® )>0and B(u" )<0;

P roof. Sufficiency. The existence of o paths p"eM and p*'e M, satisfying caodi-
tion (B), isassued.

An arbitrary positive nurber P eR" is chosen, which is assigned to the folloving
flovfuctas:
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@ Tx, y) =Pforall (x, Y)eUu")-
The arc flow function of the secord path p** is assiigned the fol loving values

B
(€9) &Y= Pforall (X, y)eUu™).
Bu")
It isdwvias thet
@ N P.
Bu")
For the rest of the arcs inU it is acogpted

(€2 T, Y) =0, 1 (X, ) INU@™ ) Uu™))-

The canparison of the previous four relations with coditions (2)-(4) shons that a
non-zero OLE-Flow has been constructed for which

B

@ V=V V@)= PA - );
B(:")

@D V@ BE ) WG )BG) =O.

Necessity: Let a non-zero OLE-flow be given. Then from condition (27) ad rela-
tios Q) ad (14) it follos:

(€9)) > v(uWB()=C=0.

peM

Incase It is assued that B(u)<O for all ueM, it is inpossible to satisfy codition
(D). Haee, there exists at least are path p™eM, for which (23) is fulfilled. But then in
order to satisfy (35), at least one path p''eM, is required, for which B(u') <0

Lemma 6. IT
(€9) C =0
ad if there is at least one path peM, forwhich
@) B(w=0,

then there exists an OLE-flow.
P r o o T. The network arcs are assigned the fol loving flov fuctions

<[v(p) >0if (X, y)eU(u)

lOintherestofthecases.

Fran (14) and from (36) upto (3B) it folloss that these functions satisfy all the
conditions (2)-(4), ad v can accept any non-negative value

(€3) &,y =

4._ Capacity of a network fllovwith one linear equality

The folloving denotations are introduced:

@) B'=minBQ), B =maxBQ);
peM peM

C/B'if B'>0
@ Ci=

+oo intherestofthecases;
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(c/B2ifC>0

@ c2= |
l0intherestofthecases.
Theorem 7. IT there exists an OLE-flow v, the Tolloming isvalid for it:
@ C<v <C.
Proofl. Itisassumd that
®» v >CL
11 Let
@ B>0.
Then 1t folloas from (39) that apath "M can be found for which
(G B(u" )= B'=minBQ) .
peM
It folloas from (3), (10) ad (14) that
® VX a, B@)=C.
peM

If v fran (46) is placed in the left side of (43), ad in the right side- thevalue C
fram (40), correspoding o the case (44) , the folloving inecual ity will be true:

C C
@« — > —,
Y o B(n) B!
peM
ie. trerelation
» 2 a,B(W)<BJJ,
peM

which contradicts to the definitions fran (10) upto (12) and (39) and verifies the impos-
sibillity of assurptions (43) ad (449).

12 let
“®) B! JJ<0.

In this case, acocording to (40), the value C' converges tonards +oo, which makes
(43) inpossible.

This makes assumption (43) invalid in both the cases — (44) and (49).
2. It isassured that

@ v <C.

21 let
G C>0.

It folloss from (39) that a path " Mwill be found for which
(%) B(u") = B> =max B(L) -
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neM
In case v fran (46) is put in the left sice of (R0), ad in the right sice —the value C
fram (41, correspondiing to the case (B1), thiswill lead to the relation

C C
® @ <

The folloving inequal ity fol loas from that:

2 a,B(u)>B%,

peM
which contradicts to definitions (10)-(12) ad (39) ad erifies the inpossibility of (50)
incase BD).

22 let

D) C=0.
In this case, acoording to (41)

CG=0.
From the nonnegativeness of the flovv ad (85), the inpossiibi ity of inequality (50)
in case (59) follons.
Hence, the assumption (B0) is not true in both cases — (61) and (4).-
The invalidity of both inequal ities (43) and (50) proves (42):
The folloving six relations follow directly fram relations (39) uto (42) ad Lem-
mas 3 and 4.

Consequence 8. IT B'>0 and C>0, then O< C/B'< v<C/B?<+o0.

Consequence 9. IFf B'<0 and C=0, then 0<v< +ow.

Consequence 10. If B'>0 and C=0, thenC=w=C =0.

Consequence 11. ITf B'<0 and C>0, then 0< C/B?’< v< +oo,

Consequence 12. If B'=B and C>0, then O<C=v=C<+ow.

Consequence 13. If B'=B and C=0, then C=v=C=0

These results enable the introducing of OLE-Flow capacity denotation.

Definition 3. Thevalues Ct and C from (40) and (42) will be called ugper and loner
limit of the capecity of the ALE-flov (2)-(49) respectinely.

The folloning two statements follow directly from inequalities (42) of Theorem 7.

Staterent 3. The meximal OLE-Flovv__is equal to the upper limit C'of the capac-
iy

iy

Statement 4. The minimal OLE-flow v, is equal to the loner limit C of the capac-

In case the OLE-Flow (2)—(4) exists, 1ts maximal and minimal value can be deter-
mined In general with the help of the followving linear programing probllems respec-
twely:v_ ady, suject o constraints (2) yoto (4).-

min
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5. Results disoussion

There are sore inportant differences between the classical network flows and the OLE-
flovdisoussad.

While in the classical flows the capecity is defined as the exact upper and/or loner
limit of the flov function aneach arc, in O.Efow it is not fixed on each arc, buta linear
equality is setfor all the arcs with a given nonHegative righit sice. At that it is not gorior
knoawn what the values of the arc flow functions are at maximal and minimal values of
the network fllow.

There always exists at least one flow realization for the classical network flos,
oorresponding to the arc flow functions with non-zero values. As it folloas fran Lemma
3, for sore values of the coefficients {b(x,y)}, the OLE-flon may not exist.

Statements 3 and 4 for the OLE-Flow can be regarded as an analogue for this flow
of the famous theorem of L.R. Ford and D. R. Fulkerson about the maximal flow and
minimal cutting section [1, 2, 3], which hes an inportant role in classical network floss.

The results in the present paper have been dotained for an OLE-Flow in the form of
arcsaths without the use of autting sections. It would be useful to investigate an OLE-
Tlow in the arcs-nodes form applyiing the approach of a network sectiion. The develgoment
of specific efficient network algoritins is neoessary in order to find the meximal and
minimal OLE-Flow, aswell as an OLE-Flow of minimal estimate.
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CeTeBOl IIOTOK C JIMHEVHBM PAaBEHCTBOM

Bacwr C. CrypeB

WHCTUTYT MHPOPMALIMOHHEIX TexHogormy, 1113 Copusa

(PeswoMme)

PaccMmaTpuBaeTCs KJlacC MNOTOKOB B CeTSAX, B KOTOPOM HE 3aIaloTCs INPOITy CKHEIE
CIIOCOBHOCTM OTHEJIbHEIX OyT, a OyT'OBble NOTOKM OI'PaHUUMBAIOTCS OIOHVM OOHUIM
JIMHEMHEIM PaBEeHCTBOM C HeOTPpMLIATEeJILHOVM PaBOoM YacCThbio. JJaHE HEKOTOPHE
YCJIOBMSA CyLIECTBOBAHMA 3TOTO CETEBOT'O NOTOKAa C OOHMM JIMHEMHBEM PaBEeHCTBOM.
BBOZIATCS MNOHATMA HIWKHEN UM BEPXHEM T'PaHMLIaMM MPOITyCKHOM CIIOCOBDHOCTM 5TOTO
IIOTOKA U MPMBOLATCHA PEe3yJIbTATE, CBA33HHBE C MNOBEOEHMEM ITOTOKOBBIX QyHKLIDL.
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