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1. Introduction

The nonlinear problems with continuous variables and the convex integer (linear and
nonlinear) programming problems are NP-hard [2, 3].  The exact algorithms to solve these
problems have exponential computational complexity.  The integer problems are further
characterized by the fact that, at times, finding a feasible solution is as difficult as finding
an optimal solution.

When developing an interactive algorithm to solve multiple objective nonlinear and
integer (linear and nonlinear) programming problems, it is imperative to take into
consideration the time required to solve the scalarizing problems.  If it takes too long to
solve these problems, the dialogue with the DM, even if very convenient, may not take place.
This may happen if the DM is unwilling to wait a long time for the solution to the
scalarizing problem.

An approach to overcome some of the difficulties due to the computational
complexities associated with solving the multiple objective linear integer programming
problems has been proposed [5, 7].  It is among one of the most innovative among the
interactive algorithms designed to solve multiple objective linear integer programming
problems [5, 7,  8, 9].  The main feature of this approach is that the solutions to the single
objective linear problems with continuous variables are presented to the DM for
evaluation.  These problems are easy to solve.  They are used under the assumption that
the objective function values for the scalarizing problem with continuous variables differ
comparatively little from the solutions with integer variables.  It is further supposed that
the DM prefers to deal in the objective function rather than the variable space.  The
advantage of these interactive algorithms is that the computational time expended to obtain
a new solution for evaluation by the DM is improved without deteriorating the quality of
the dialogue with the DM.

Unfortunately this approach loses some of its advantages when multiple objective
convex nonlinear integer problems must be solved.  The scalarizing convex nonlinear
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integer problems are difficult to solve.  The corresponding single objective convex
nonlinear problems with continuous variables are also difficult to solve [10].  Therefore it
is unattractive to use such problems during initial phase of the procedure.

In this paper, our objective is to propose an interactive algorithm that overcomes
some of the computational complexities associated with solving multiple objective convex
nonlinear integer problems.  It belongs to the class of reference direction algorithms.  The
DM sets his preferences as aspiration levels of the objective functions.  The modified
aspiration point in the objective functions space and the solution found at the previous
iteration define the reference direction.  The modified aspiration point is obtained from the
aspiration point set by the DM by replacing the aspiration levels of the objective functions,
which the DM agrees to worsen, by their values in the solution found at the previous
iteration.  Based on the reference direction, a scalarizing problem is formulated.

2. The problem statement

The proposed algorithm is designed to solve the following multiple objective convex
nonlinear integer programming problems:

(1)                       max { fk(x)  k  K}

subject to:

(2)   gi(x) 0,   i  M ,

(3) 0 xj   dj ,   j  J ,

(4)          xj integer,      j  J ,

where  fk(x), k  K = {1, 2, ..., p} , are concave functions;  gi(x), i  M = {1, 2, ..., m} are
convex functions; and  J = {1, 2, ..., n}.  Without any loss of generality, the symbol “max”
implies that each objective function has to be maximized.  The constraints (2)(4) define
the feasible set X.

We give a few definitions primarily to improve the clarity of the text:
Definition 1. The solution x is called efficient if there does not exist another solution

x , such that the inequalities

 fk( x
 )   fk(x) for each  k  K

and
       fk( x

 )   fk(x) for at least one  k  K
hold.

Definition 2. The solution x is called weak efficient if there does not exist another
solution   x , such that

          fk( x
 )   fk(x) for each  k  K .

Definition 3. The p-dimensional vector f(x) with components fk(x),  k  K,  is called
(weak) nondominated, if  x  is  an (weak) efficient solution.

Definition 4. The near (weak) nondominated solution is a feasible solution in the
objective functions space, located near the (weak) nondominated solutions.

Definition 5. An aspiration point in the objective functions space is a point whose
components values  are defined  by  the aspiration  levels of  the objective functions
set by the DM.
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Definition 6. A modified aspiration point is obtained from an aspiration point, set by
the DM, by replacing the aspiration levels of the objective functions, which the DM agrees
to worsen, by their values in the last solution found.

Definition 7. The reference direction is defined by the difference between the modified
aspiration point and the solution found at the previous iteration.

Let   fk and   fk
-
 denote the value of the k-th,  k  K, objective function found at the

last iteration and its desired value (aspiration level) defined by the DM at the current
iteration, respectively.  Further, let

   K1 = {k  K   fk
-
   fk}, K2 = {k  K   fk

-
   fk},

    K3 = {k  K   fk
-
   fk},   K = K1  K2  K3.

The set K1 contains indices of those objective functions whose values the DM wishes to
improve and the set K2 contains the indices of those objective functions for which the DM
agrees to be worse.  The set K3 contains the indices of the objective functions whose values
the DM is unwilling to deteriorate.

The aspiration levels fk
-
 ,  k  K, of the objective functions, set by the DM, define the

aspiration point (reference point).Let us determine the components   fk

,  k  K, of a modified

aspiration point (modified reference point) as follows:
fk
-
 ,  k  K1  K3

 fk

= 
 fk,  k  K.

The modified aspiration point differs from the DM aspiration point in this, that the
aspiration levels   fk

-
 ,  k  K2 , are replaced  by the values of the objective functions in the

last solution found.
On the basis of the modified aspiration points and the last solution found the

following single objective problem is proposed in order to obtain a (weak) nondominated
solution:

Minimize

(5)   S(x) = max [max ( fk
-
    fk(x))/( fk

-
    fk), max (fk    fk(x))/(fk   fk

-
 ) ]

         kK1                   kK2

subject  to

(6)          fk(x)   fk
-
 , k  K2  K3 ,

(7)      x  X.

It should be noted that problem (5)(7) has a feasible solution if the feasible set X
is non-empty, and has an optimal solution if the objective functions   fk(x), k  K , are finite
over X.

The basic feature of the scalarizing problem (5)(7) is the minimization of the
maximal standardized deviation of the solution to be found,  fk(x), k  K, and the modified
aspiration point fk


,  k  K,  in the objective functions space satisfying constraints (6)(7).

Theorem. The optimal solution for problem (5)(7) is a weak efficient solution for
problem (1)(4).

P r o o f. Let K1 and let x* be the optimal solution of problem (5)(7).  Then the
following inequality holds:

(8) S(x*)   S(x)  for each x  X and   fk(x*)   fk
-
 , k  K2  K3 .
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Let us assume that x* is not a weak efficient solution for problem (1)(4).  There
exists a point  x'  X, such that

(9)  fk(x*)  fk(x') for  k  K and  fk(x*)   fk
-
 , k  K2  K3.

After transforming the objective function S(x) of problem (5)(7), using inequality
(9), the following relation:

(10)     S(x')= max[max( fk
-
    fk(x'))/( fk

-
    fk), max (fk    fk(x'))/(fk   fk

-
 ) ]

         kK1  kK2

          = max [max ( fk
-
    fk(x*)) + ( fk(x*)  fk(x'))) /( fk

-
    fk)],

         kK1

  max ((  fk   fk(x*)) + ( fk(x*)  fk(x'))) /( fk    fk
-
 )]

 kK2

   < max[max( fk
-
    fk(x*))/( fk

-
    fk), max (fk    fk(x*))/(fk   fk

-
 )]= S(x*)

 kK1          kK2

is obtained.
It follows from (10), that  S(x') < S(x*) and  fk(x*)  fk

-
 , k  K2  K3, which contradicts

to (8).  Hence x* is a weak efficient solution for problem (1)(4).
Problem (5)(7) can be stated as the following equivalent mixed integer convex

nonlinear programming problem:

(11)        min

(12)  ( fk
-
    fk(x))/( fk

-
    fk ) ,  kK1,

(13)    ( fk   fk(x))/(  fk   fk
- 
) ,  kK2,

(14)          fk(x)   fk
-
  і, k  K2  K3,

(15) x X ,

(16)        arbitrary.

When problem (5)(7) has no solution, then problem (11)(16) also has no solution.
This is because both problems have the same original constraints.  When problem (5)(7)
has a solution, then (11)(16) has a solution and the optimal values of their objective
functions are equal.  The last statement is derived from the following lemma:

Lemma: The optimal values of the objective functions of problems (5)(7) and
(11)(16) are equal.

The single-objective problem (11)(16) has three desirable computational properties.
The first is that the solution obtained in the previous iteration is a feasible solution for the
single-objective problem of the current iteration.  This facilitates algorithms for solving the
single-objective integer programming problems because now there is a starting feasible
solution.  This is especially important for the approximate “tabu search” type algorithms.

The second property is that the feasible solutions of problem (11)(16) obtained by
using approximate algorithms for solving the single-objective problems lie near the
nondominated frontier of the multiobjective problem (1)(4).  In many cases, the
application of approximate integer algorithms (of tabu search type, for example) to solve
of problem (11)(16) will lead to near (weak) nondominated solutions quickly, thus
reducing the waiting time for the dialogue with the DM.  This is especially important during
the initial iterations, when the DM is learning about the problem and the process.  During
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the learning period, it is possible to interrupt the approximate
single-objective algorithm and use the approximate solution
obtained so far.

The third property is connected with the search strategy “great benefit - little loss”.
The solutions obtained along the reference direction, defined by the modified aspiration
point and the last solution found, are comparatively close, which enables the decrease of
DM's tension in the estimation and choice of a local prefered solution. In other words, the
influence of the so called “limitted comparability” is reduced.

3. The proposed algorithm

The proposed algorithm is based on the reference direction approach that is designed to
help a DM to find the most preferred solution comparatively quickly. This is achieved by
reducing the number of iterations and the single objective problems that need to be solved
to find the most preferred solution.  Further, the use of an approximate procedure to solve
the single objective integer problems speeds up its performance further.  At each iteration
the DM gives aspiration levels of the objective functions.  The original multiobjective
problem is reduced to a series of single objective convex integer problems.  The DM
evaluates the solutions and he/she decides whether to change the reference direction or to
stop.

If the DM believes that the current nondominated solution is far from the most
preferred solution, an approximate polynomial algorithm may be used to solve a new single
objective convex nonlinear integer problem. This results in near (weak) nondominated
solutions. The quality of the solutions depends on the algorithm used to solve the single
objective problems. When the DM feels that current (weak) nondominated solution is close
to the most preferred solution, he/she may use an exact algorithm to obtain the optimal
solution of the current single objective problem. The current (weak) nondominated solution
is used as a starting point in the exact algorithm. The search procedure continues until the
most preferred solution is found. To solve a “large” multiple objective problem, the DM
may use only an approximate algorithm to solve the single objective convex integer
problems.

The steps of the proposed algorithm may be stated as follows:
Step 1. If an initial integer feasible solution is available for the problem (1)(4), go

to Step 2; otherwise, set  fk = 0, and   fk
-
 = 1, k K .  Solve problem (11))16) using an

approximate algorithm to obtain a feasible initial solution.  If the DM is satisfied with this
solution, stop.

Step 2. Ask the DM to provide the new aspiration levels.
Step 3. Ask the DM to choose the type of the algorithm   exact or approximate.  If

the DM selects the exact algorithm, go to Step 5.
Step 4.  Ask the DM to specify t   the maximal number of near (weak) nondominated

solutions the DM wants to see along the reference direction at the current iteration.  Go
to Step 6.

Step 5. Solve problem (1116). Show the (weak) nondominated or near (weak)
nondominated solution obtained (if the computing process is interrupted) to the DM.  If
he/she approves this solution, stop; otherwise, go to Step 2.

Step 6. Solve problem (1116). Present the t (if more than t solutions are obtained)
near (weak) nondominated solutions to the DM.  If the DM is satisfied with one of them,
stop; otherwise, go to Step 2.

Remark 1. When the DM sets the aspiration levels in Step 2, it is important to
partition the objective functions in three groups, depending on his/her choice of which
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objective functions to improve, which to worsen, and which cannot
be weakened.

Remark 2. In Step 3, it is important that the DM knows that
the choice of an exact algorithm leads to a nondominated integer
solution but it takes longer time to obtain it.  If an approximate
algorithm is chosen, the time to solve the scalarizing problem
is less but it may possibly deteriorate the quality of the
solution.

Remark 3. If the DM chooses an approximate algorithm in Step
4, the DM may specify t  the number of near (weak) nondominated
solutions he/she wants to evaluate at this iteration.  This is
possible because we compute only approximate solutions.  Further,
in the learning phase, it is useful for the DM to evaluate several
solutions.

Remark 4. When using an exact algorithm in Step 5, problem
(11)(16) is solved in order to obtain a (weak) nondominated
solution.  If the DM decides that the solution time is too long,
he may interrupt the computing process and evaluate the latest
approximate solution.

The proposed algorithm for solving multiobjective convex nonlinear integer problems
has some advantages.  The number of the single objective problems solved is equal to the
number of the aspiration points.  The DM needs to define only the aspiration levels of the
objective functions.  The DM operates in the objective functions space because in most
cases the objective functions have physical or economic aspect. The application of
approximate algorithms to solve the single objective problems reduces the computational
time, thus facilitating the dialogue of the DM.  This may predispose the DM positively to
the process of solving the multiple objective problems.  The evaluation of several, though
near (weak) nondominated solutions along the reference direction, enables the DM to learn
faster.  The use of an approximate “tabu search” type algorithm works well in narrow
feasible regions (as for problem (11)(16)) with known initial feasible solution that aids
in finding rather good and in many cases optimal solutions to the scalarizing problems.

5. Illustrative example

For the sake of clarity and ease of understanding, we illustrate the proposed algorithm with
a simple example where the objective function space is also the variable space.  Consider
the following:

   max { f
1 
(x) = x

1
, f

2 
(x) = x

2
}

subject to:
          g

1 
(x) = x

1
2 + x

2
2 14 x

1
 14 x

2
 +49  0,

       g
2 
(x) =  x

1
  x

2
 +16  0,

 x
1
  0   integer,

 x
2
  0   integer.

Let X denotes the feasible set and  ( f
1 
,  f

2
 ) = (13, 10) = ( x

1 
, x

2
).

Suppose that the DM would like to increase the value of  f
2
 and is willing to lower

the value of  f
1
 .  That is, the DM provides  (  f

1


 
, f

2


 ) = (13, 10) as the aspiration point. The

modified aspiration point is ( f
1


 
,  f

2


 )=(13, 17). The following problem, corresponding to

(11)(16), is solved to find a new solution:
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     min 
subject to

           (13  x
1
) /7 

           (13  x
2
) /7 

                x
1
  6,

( x
1 
, x

2
 ) X.

The (weak) nondominated solutions are: (f
1 
, f

2
 ) = (11, 12)

= (x
1
, x

2
) and

=5/7;  ( f
1 
,  f

2
 ) = (10, 13) = ( x

1 
, x

2
) and =4/7.  Suppose the

DM chooses solution
( f

1 
,  f

2
 ) = (10, 13) as a preferred one.

Suppose the DM now wants to increase the value of f
1
, reduce the values of f

2 and
provides  ( f

1


 
, f

2


 ) = (14, 10) as the aspiration point.  The modified aspiration point is

( f
1


 
,  f

2


 )=(14, 13).

To find a solution, we solve the following problem corresponding to (11)(16)

      min 
subject to

(14  x
1
) /4 

           (13  x
2
) /3 

                  x
2
  10,

    (x
1 
, x

2
) X .

Suppose now the DM wants to find an exact (weak) efficient solution.  Using an exact
algorithm, the (weak) nondominated solution is   ( f

1 
,  f

2
 ) = (12, 11) = ( x

1 
, x

2
) and

= 2/3. If this solution is the most preferred for the DM, the computational process
terminates.

5. Concluding remarks

We have proposed an interactive algorithm based on the reference direction approach to
solve multiple objective convex nonlinear integer programming problems.

The scalarizing problem (11)(16) provides the opportunity to overcome some of the
difficulties associated with the computational complexities of solving these problems with
insignificant deterioration of the quality of solutions.  Furthermore, it allows the realization
of “no great benefit  little loss” strategy when the DM agrees to lose more, but which does
not have to be, if more balanced solutions exist.
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Интерактивный алгоритм отправных  направлений выпуклого
нелинейного мультикритериального программирования

Васил С. Василев

Институт информационных технологий, 1113 София

(Р е з ю м е)

Обсуждается интерактивный алгоритм, предназначенный для решения
нелинейных выпуклых задач мультикритериального программирования. В нем
затруднения, связанные с вычислительной сложностью этих задач, преодо-
леваются на основе включения скаляризирующей задачи, связанной с рядом
особеностей. Подход значительно помагает лице, принимающем решения и
делает интерактивный диалог более легким. Предложенный алгоритм
иллюстрован примером.


