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1. Introduction

The nonlinear problems with continuous variables and the convex integer (linear and
nonlinear) programing problemsareNP-hard [ 2, 3] - Theexactalgoritimstosolve these
problems have exponential computational complexity. The integer problemsare further
daracterizedbythe factthat, at tines, findirgafessiblesolution isasdifficultasfinding
anoptimal solution.

Whendeveloping an interactivealgorittmto solvenultiple dbjectivenonl inear and
integer (1inear and nonlinear) programing problems, 1t is inperative totake into
oconsideration thetime required tosolve the scalarizingproblens. I ittakestoo longto
solve theseprablens, thedialoguewiththe DV, even ifvery conveniient, may not take place.
This may happen if the DM is unwi I ling towaita long time for the solution to the
scalarizingproblem.

An approach to overcome some of the difficulties due to the computational
camplexities associatedwith solving thenultipledbjective linear irteger programing
problems has beenproposed [5, 7] - It isamong one of themost innovative among the
interactive algoritimsdesigned to solvenultipledbjective linear integer programing
prablens |5, 7, 8, 9]. Themain featureofthisapproach isthat thesolutions tothesingle
objective linear problems with continuous variables are presented to the DM for
evaluation. These problemsare easytosolve. Theyare used under the assunption that
the dbjective functionvalues for thescalarizing prablemwithcontinuousvariablesdiffer
comparatively littlefranthesolutionswith integer varisbles. Itisfurthersugposed thatt
the DMprefers todeal inthe objective function rather than thevariable space. The
advartage of these interactivealgor ithns is thatt the corputatiional timeexpended todotain
anewsolutionfor evaluation by the DM is improved without deteriorating thequal ity of
the dialogue with the DM.

Urfortunately this approach loses sare of its advantages whennul tiple cbjective
convex nonll inear integer problemsmust be solved. The scalarizing convex nonlinear
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integer problemsare difficultto solve. The corresponding single objective convex
nonlinear problemswithcontinuousvariablesarealsodifficulttosolve [10] .. Therefore it
isunattractive to use such problemsduring initial phase of the procedure.

Inthis paper, our objective is topropose an interactive algorithmthat overcones
sareof the computational carplexitiesassociatedwithsolvingmultipleocbjective convex
nonlinear integer problems. Ithbelongs totheclassof referencedirectionalgorittms. The
DMsetshis preferencesas aspiration levels of the objective functions. Themodified
aspiration point inthe dojective functions space and the solution found at the previous
iterationdefinethe referencedirection. Thremodifiedaspirationpointisdotained fronthe
aspirationpoint setby theDMby replacing theaspiration levelsof thedojective functions,
which the DV agrees toworsen, by their values in the solution found at the previous
iteration. Based onthe referencedirection, ascalarizingproblem is formullated.

2. The problem statement

The proposed algorithm isdesigned to solve the fol lowing multiple objective convex
nonlinear irnteger programming problems:

()] max { f (x) |k € K}
sugjectto:

) g,()<0, ieM,
(&) O<x; <d;, jeJ,
()] X,—integer, JjeJ,

where £ (), keK={1,2, ..., p}, areconcave functions; g,(X), 1 eM={1, 2, ..., m}are
convexfunctions; and J={1, 2, ..., n}. Withoutany lossof gererality, thesyrbol “max”
implies that each dbjective functionhasto bemaximized. Theconstraints (2)-(4) define
thefeasiblesatX.

Wegiveafewdefinitionsprimari lyto improve theclarity of the text:

Definitionl. Thesolutionx iscal ledefficient iftheredoesnotexistanother solution
X, suchthat the irequal ities

i} T (X)) > T (X) foreach keK
an
f.(x) > £ (X) forat leastone ke K
hold.
Definition2. Thesolutionx iscalledweak efficient iftheredoes notexist another
solution X, suchthat

T (x)> £, () foreach keK.

Definition3. The p-dimensional vector F() withcorporents £, (X), keK, iscalled
(weak) nondominated, if x is an (weak) efficient solution.

Definition4. The near (weak) nondominated solution isafeasible solution inthe
objective functions space, located near the (Weak) nondomiinaited solutions.

Definition5. Anaspirationpoint inthe dbjective functions space isapointwhose
componentsvalues are defined by theaspiration levelsof theobjective functions
set by the DM.
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Definition 6. Amodifiedaspirationpoint isdotained frananaspiration point, sethy
theDV, by replacing theaspiration levelsof the objective functions, which theDMagrees
toworsen, by theirvalues inthe last solutionfound.

Definition7. Thereferencedirection isdefined by thedifference betweenthemodified
aspirationpointand the solution foundat theprevious Iteration.

Let £ and T, _denote thevalue of the k-th, k eK, dbjective function foundat the
last iterationand its desiredvalue (aspiration level) defined by the DVat the current
iteration, regectively. Furtter, let

Kl={keK| f > f},K2={keK| f < £},
K3={keK| f,= f}, K=KLUK2UK3.

The set K1 contains indices of thase objective functionswhose values the DMwishes to
improve and the set K2 contains the indices of those objective functions forwhich the DV
agreestobeworse. ThesetK3containsthe indicesof thedbjective functionswhosevalues
theDMisuwillingtodeteriorate.

Treaspiration leelsT, , keK, ofthedbjectivefunctions, setby theDV, definethe
aspiration point (reference point) .Letus determine the camporents T, ke K, ofamodified
aspirationpoint (rodified reference point) as folloas:

_ [f,, keKLUK3
f =
[f, keK.

Themodifiedaspiration pointdiffers fromthe DMaspiration point inthis, that the
aspiration leels T, keK, , arereplaced by thevaluesof thedbjective functions inthe
lastsolutionfoud.

On the basis of the modified aspiration points and the last solution found the
follovingsingle dbjective prablem ispropased inorder toobtaina (weak) nondaminatted

soluaan:
Minimize
(&) SQQ =max [max (f, — £,/ (F, - £), mex (F, - F,COV/(F- £)1]
keK1l keK2
sbject to
(6) fOO> T ,kek2uUK3,
() X € X.

It shouldbe noted that problem (6)-(7) has afeasible solution if the feasible set X
iIsnon-enpty, adhasangotimal solution ifthedojective fuctions 1, (X), ke K, arefinite
overX.

The basic feature of the scalarizing problem (6)-(7) istheminimizationof the
meximal standardized deviationof the solutiontobe found, (), keK, andthemodified
aspirationpointf, , keK, inthedojective functionsspace satisfyingconstraints (6)-(7) -

Theorem. The gptimal solutionfor prablem (5)—(7) isaweak efficientsolutionfor
problen(L)-(@).
Proof. LetKl=J and let x* be the gptimal solutionofproblem (5)—-(7) - Thenthe

folloving inequal ity holds:
® S(x*) < S(X) foreachx e Xand F.(*)> ., ke K2UK3.
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Letusassume that x* is notawesk efficient solutionforproblem(1)-(4) . There
existsapoint X" € X, suchthat

) 0 < £(x7) for keKand £ > . , ke K2UK3.

After transforming the abjective function S of prablen (5)-(7) , using inequal ity
©), trefollovingrelation:

(V) SE<)=mex[ex(f, — V(- ), mex (- £/ (F - £)]
keK1 keK2

=max [mex (f, — £,0)) + (£, - F. M) /(F, - I,
keK1

mex (( f,— £,OD) + (F.e)- £ /(F, - £)]
kekK2
<max[max(f, - £.OON/(F, - ), max (F, - M)/ (F ~ T )J=SC)
keK1l kek2
isdotained. _
Itfolloss fran(10), that SX™) <SG and £ ()= T, ke K2UK3, whichcontradicts
1 (8)- Henocex* isaweak efficientsolutionforproblem (1)-(4).
Problem (6)-(7) canbe stated as the fol lowing equivalent mixed integer convex
nonlinear programming problem:

(@)) mino

%) (f, - T/ (f, - F)<a, keKl,
(%)) (f - £/ (f - T <o, kek2,
@ 00> T i, keK2UKS,
((15)) X eX,

@®) o—arbitrary.

When problem (6)—(7) has nosolution, thenproblem (11)-(16) alsohasnosolution.
Thi's is because both problems have the same original constraints. Whenproblem (6)-(7)
hasasolution, then (11)—(16) has a solutionand the optimal values of their objective
functionsareequal . The laststatement isderived fronthe fol loving lema:

Lemma: The optimal values of the objective functions of problems (6)-(7) and
(AD-(5 areeqal.

Thesingle-adbjectiveprablen (11)-(16) hasthree desirable carputational properties.
Thefirstisthatthesolutionabtained intheprevious iteration isafessiblesolutionfor the
sirgle-dgjectiveproblemof thecurrent iteration. Thisfecilitatesalgoritins forsolvingthe
single-dbjective irnteger programming problems because nov there isastarting feasible
solution. This isespecial ly important for the gpproximate “ “tabu seardy typealgoritims.

The second property is that the feasible solutions of prablem (11)-(16) dotained by
using approximate algorithms for solving the single-objective problems lienear the
nondominated frontier of the multiobjective problem (1)-(4) . Inmany cases, the
applicationofapproximate integer algorithms (of tabusearch type, forexanple) tosolve
of problem (11)-(16) will lead to near (weak) nondominated solutions quickly, thus
reducing thevarting timefor thedialoguewiththe DV This isespecial ly importantduring
the initial iterations, whenthe DMis leamingabout the problemand the process. During
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the learning period, it is possible to interrupt the approximate
single-objective algorithm and use the approximate solution
obtained so far.

Thethirdproperty iscomectedwirththe searchstrategy “‘greatbenefit - little loss™.
The solutions dotained along the referencedirection, definedby themodifiedaspiration
pointandthe last solutionfound, are conparatively close, whichenables the decrease of
DV*stension intheestimationand choice of a local prefered solution. Inotherwords, the
influence of the socallled““limitted carparabi ity is reduced.

3. The proposed algorithm

The proposed algor ithm is based onthe reference direction approach that isdesigned to
helpaDMto find the most preferred solution comparatively quickly . This isachieved by
reducing the number of iterationsand the single cbjective problens that need tobe solved
tofindthemost preferred solution. Further, the useof anapproximate procedure tosolve
the singledbjective integer prablems speedsup tsperformance further. Ateach iteration
theDVMgivesaspiration levelsof thedbjective functions. Theoriginal multiobjective
problem is reduced to a series of single objective convex integer problems. The DM
evaluates the solutions andhe/she decideswhether to change the reference directionor to

1T the DMbelieves that the current nondominated solution is far fromthe most
preferred solution, anapproximate polynomial algorittmmay be used tosolveanewsingle
objective convexnonlinear integer problem. This results innear (weak) nondominated
solutions. Thequal ity of the solutions depends on the algorittmused to solve the single
objectiveprablems. Whenthe DVfeels that current (weak) nondominatted solutionisclose
tothemost preferred solution, he/she may use an exact algorittmto dotain the optimal
solutionofthe current single dbjective prablem. The current (weak) nondominatted solutiion
isusedasastartingpoint intheexact algoritim. The searchprocedure continuesuntil the
most preferred solution isfound. Tosolvea““large” multiple objective problem, the DM
may use only an approximate algorithmto solve the single objective convex integer
problems.

The steps of the proposed algorithmmay be stated as fol loas:

Stepll. Ifaninitial integerfessiblesolution isavai lsblefor theprablem (1)-(4), o
toStep 2; otherwise, set T, =0, and f =1, keK. Solve problem (11)-)16) usingan
gppraximatealgorithmtoobtainafessible initial solution. IfthreDMissatisfiedwiththis
olutdan, stop.

Step 2. Ask the DMto provide the newaspiration levels.

Step 3. Ask the DV to choose the type of the algorithm— exactor approximate. If
theDMselects theexactalgoritim, gotoStep 5.

Step4. Askthe DM to specify t— themaximal nurber of near (weak) nondominated
solutions the DMwarts to seealong the reference directionat the current iteration. Go
toStEp6.

Step 5. Solve problem (11-16) . Show the (weak) nondominated or near (weak)
nondominatted solutionabtained (ifthe computingprocess is interrupted) tothe DV IF
he/she gpproves thissolution, stop; otherwise, Qo toStep2.

Step 6. Solveprablem (11-16) . Present the t (ifmore than tsolutionsare obtained)
near (weak) nondominated solutions totheDM. 1T the DM is satisfiedwithoneof them,
stop; otherwise, gotoStep2.

Remark 1. When the DM sets the aspiration levels inStep 2, it is important to
partitiontheobjective functions inthree groups, dependingonhis/her choiceofwhich
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objective functions to improve, which to worsen, and which cannot
be weakened.

Remark 2. In Step 3, it is important that the DM knows that
the choice of an exact algorithm leads to a nondominated integer
solution but it takes longer time to obtain it. If an approximate
algorithm is chosen, the time to solve the scalarizing problem
is less but it may possibly deteriorate the quality of the
solution.

Remark 3. IT the DM chooses an approximate algorithm in Step
4, the DM may specify t — the number of near (weak) nondominated
solutions he/she wants to evaluate at this iteration. This is
possible because we compute only approximate solutions. Further,
in the learning phase, it is useful for the DM to evaluate several
solutions.

Remark 4. When using an exact algorithm in Step 5, problem
(11)-(16) is solved in order to obtain a (weak) nondominated
solution. IT the DM decides that the solution time is too long,
he may interrupt the computing process and evaluate the latest
approximate solution.

The proposedalgorittm for solvingmultiobjective corvexnonl inear integer problens
has someadvantages. The nurber of the single objective problems solved isequal to the
nurber of the aspiration points. TheDMneedstodefineonly theaspiration levelsofthe
objective functions. TheDMoperates inthe dbjective functions space because inmost
cases the objective functions have physical or econonicaspect. The applicationof
approximatealgorithms tosolve the single objective problems reduces the canputational
time, thusfacilitating thedialogue of the DM. Thismay predispose the DMpositively to
the processof solving thenultipledojective problems. Theevaluationofseveral, though
near (Weak) nondominated solutions along the referencedirection, ensblesthe DMto leam
Taster. The use of an approximate ““tabu search’ type algorithmworkswel I innarrow
Teasible regions (as for problem (11)-(16)) withknoan initial feasible solutionthat aids
infinding rather goodand inmany cases optimal solutions to the scalarizing prablens.

5. Hlustrativeexamle

For the sakeafclarityandeaseof understanding, we il lustrate the proposed algor ithmwirth
asimple exarplewhere the dbjective function space isalso thevariable space. Consider
thefolloving:
max{F, ) =x, F,0)=x}
Sbjectto:
g9, (x)=x7+x2-14x -14 x,+49<0,
g,(xX) =-x -x,+16<0,
X, >0~ integer,
X,>0~— integer .
Let Xdenotes the feasiblesetand (T, T,)=(13, 10)=(X, X)-
Suppose that the DMwould like to increase thevalue of ,and iswilling to lorer
thevalueof £, . That is,ﬁel]\/lprol/ideﬁ (T, T)=(3, 10)as theaspirationpoint. The
modifiedaspirationpointis (T, T,)=(13, 17). Thefollowing problem, corresponding to
A1)-(@16), issolved tofindanewsolution:
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min o

subjectto
(A3-x) /7<a,
(A3-x) /7 <a,
X, 26,
(X ,%X,)eX
The (weak) nondominated solutions are: (f, , f, ) = (11, 12)
= (x,, X,) and

a=5/7; (¥, f,)=(0, 13) = (X, , X,) and a=4/7. Suppose the
DM chooses solution
(f,, £,)=(0, 13) asapreferred one.

Suppose the DM nowwants to increase the value of T, reduce the valuesof f,and
provides (T, T,) =(14, 10) as theaspirationpoint. Themodifiedaspirationpointis
(f,, £)=(14,13).

Tofinda solution, we solve the fol loving problem corresponding to (11)-(16)

min o
subjectto
(A4-x) /4<a,
(A3-x,) /3<a,
x,>10,

(X, %) eX.

Suppose now the DMwartts to find anexact (weak) efficient solution. Usinganexact
algorithm, the (weak) nondominatedsolutionis (T, ,)=(12,11)=(x,x)and
o=2/3. ITthis solution is themost preferred for the DV, the computational process
tEminates.

5. Concluding remarks

We have proposed an interactive algorittmbased on the reference directionapproach to
solvenultipledbjective convexnonl inear integer programming problems.

The scalarizingproblem (11)-(16) provides the opportunity toovercane some of the
diffiaultiesassociatedwiththe corputational camplexities of solving theseprablemswith
insighificantdeteriorationofthequal ityof solutios. Furthemore, italloxstherealization
of “nogreatbenefit- little loss” strategywhenthe DMagrees to lose more, butwhichdoes
nothave tobe, 1fmorebalancedsolutionsexist.
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VHTEPaKTUBHEM aJITOPUTM OTIIPABHEIX HaIlPaBJIEHWI BBEITYKIIOTO
HEJNMHEVHOT'O MyJIb TUKPUTEPMATIEHOT'O NPOTPaMMMPOBaHM

Bacwi1 C. BacwieB

UHCTUTY T MHPOPMALIMOHHEIX TexHoJormit, 1113 Copus

(PeszomMme)

OBcyxnmaeTcsa MHTEPAKTUBHEL aJIlOPUTM, NPeIHa3HAUYEHHB IJiS PelleHUS
HEJIMHEMHEIX BBITYKJIEIX 3a0ad MyJIbTUKPUTEPUAIIEHOT'O IPOTPaMMMPOBaHMSa . B HEM
3aTPyIHEHUS, CBSABaHHEE C BEUMCIIUTEIIBEHONM CJIOKHOCTHIO0 9TUX 3a1ad, Npeono—
JleBalTCs Ha OCHOBE BKJIOUEHUS CKaJIAPM3MPYILEN 3aaul, CBI3aHHOM C PAIOM
ocobeHocTel. [onxXon 3HaUMTEJIbHO [IOMaTraeT Jinie, NPUHMMAKIEM PelleHV S U
InejlaeT MHTEPAKTUBHEI IMajior OoJjiee JIeTKuM. [IPeIJIOXEHHBI aJITOPUTM
MJUTOCTPOBAH [IPYMEPOM .
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