
5 3

* This paper is partially supported byNational Science Foundation, grant No 611/ 96.

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ . BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 48
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 48

София . 1999 . Sofia

Application of Recurrent Neural Networks for Systems
Identification and Control*

Ieroham Baruch, Alexander Mitev, Bojka Nenkova

Institute of Information Technologies, 1113, Sofia

1. Introduction

The Neural Network (NN) modelling starts with the pioneering work of M c C u l l o c h and
P i t t s , cited in [1]. The main difference between NN and the computer consists of the massive
parallelism and the automatic context information processing [1]. Different authors postulate
different applications of the artificial NN, generalized as [1, 2, 3, 4]:

 Approximation of functions;
Association used by the associative (context-addressable) memory, accessed by the

context;
 Pattern recognition (classification, clustering and categorization). Well-known

applications of pattern classification include character recognition, speech recognition, EEG
waveform classification, blood cell classification and printed circuit board inspection. Well-
known clustering applications include data base, data compression and data analysis;

 Process (time series) prediction;
 Identification and control, [1]. More advanced forms of neurocontrol are discussed in

[1].
The diversity of these tasks prove the universality of NNs as an information-processing

system. All these tasks are problems of learning and mapping from possibly noisy examples.
Without the imposition of prior knowledge, each of the tasks is ill-posed in the sense of
nonuniqueness of possible solution mappings. In practice NNs need to be integrated into a
consistent system engineering approach. Specifically, a complex problem of interest would be
decomposed into a number of relatively simple tasks that NNs are assigned to perform.

There are sources which show the relations between the architecture of the NNs and other
features like training paradigms, learning rules, learning algorithms and the performed tasks, [2].
The NN architecture can be examined from different points of view, the most important of them
being as it follows:

 Type of the input: binary or continuous,[3];
 Feedback presence or absence, [1, 2]. According to it NNs can be divided into

5 4

feedforward and recurrent (feedback) RNNs;
 Types of the connectionist network [1]. According to it the NNs can be: feedforward

networks with a single layer and feedforward multilayer networks with partial or total connectivity
between the neurones. The neurones that do not communicate with the environment are known
as hidden neurones.; NNs with delay units and with or without hidden neurones; lattices. A
lattice network is a feedforward network with the output neurones arranged in rows and columns
of different dimensions.

Other important characteristics of NNs are topology and learning. Classification of the
NNs according to this characteristics, is given in Appendix 1, [2].

The aim of this paper is to familiarize the readers with some of the works done in the
department of Parallel Information Systems (PIS) from the Institute of Information Technologies
(IIT), Bulgarian Academy of Sciences (BAS), in the field of NN theory and applications.

1. RNN for systems identification and process prediction

A new two-layered RNN architecture, named Recurrent Trainable NN (RTNN), appropriate for
nonlinear dynamic systems identification, was developed , [5, 6]. A state space representation
of both continuous and discrete time mathematical models of RTNN is given in two layer Jordan
Canonical Architecture (JCA), and a new improved BP type learning method, is proposed. Some
topology improvements aimed to preserve RTNN stability and to enhance RTNN architecture
using the saturation instead of a sigmoid function, are suggested. The proposed RTNN model
is linear in small and nonlinear in large, which permits to apply all well known state- and output
linear systems design methods like pole assignment and quadratic cost optimal control.
Simulation results of nonlinear systems identification by RTNN and an improved BP learning,
are given.

The main problem of the NN systems identification and the neural control systems design
is the lack of universality, because different authors used different types of NN according to
its application. The duality of the problem of systems identification and one step process
prediction, on one side and the optimal quadratic cost control - on the other side, shows that
both problems could be solved using the RTNN approach, defined by Baruch et all. [5, 6]. Thus,
the design of RTNN, as an universal tool for systems identification and control, is a new trend
in the adaptive control systems design.

1.1. Description of the RTNN-JCA

B a r u c h et al. [5, 6], for the first time describe RNN in an universal way, using the state-space
approach. They defined a global linearized RNN model (the RTNN) model and studied its
stability by means of the first stability law of Liapunov. The first improvement is dedicated to
preserve RNN model stability during learning. The improved RTNN model is aimed to identify
nonlinear dynamic processes. Two types of processes are suggested: processes, nonlinear on
their output and processes, nonlinear on their state (bilinear). The RTNN architecture easily
solves also the problem of the one-step ahead process prediction.

Let us consider the mathematical state-space description of both the Jordan continuous
and discrete-time two-layer RTNN models, given in [5] in the form:

(1.1) v = Jv + Bu, w = S(v), y = Cw, z = S(y)
V(k+1) = JV(k)+BU(k), W(k)=S[V(k)],

(1.2) Y(k) = CW(k), Z(k)=S[Y(k)]

where: w, z, u, (W, Z, U) are respectively n-, l-, m - vectors, considered as RTNN continuous and
discrete-time models state, output and input; y, v, (Y, V) are l-, m - vectors, respectively; J = block-

5 5

diag (Ji), B, C are constant matrices with compatible dimensions, considered as the weight
matrices of the RTNN continuous and discrete-time models; k is a discrete - time integer variable;
S (x) is a vector valued sigmoid function, i.e.:

(1.3) S'(x) = [s(x1), s(x2), ..., s(xj)],

(1.4) s(inp) = 1/[1+exp(inp)], inp=S(dixi+dio)

where: inp is the input of the sigmoid function; di, dio are trainable constant weights of the RTNN;
S'(x) significates a vector transpose of S(x).

The continuous and discrete-time version of the RTNN mathematical model is sufficient
from dynamical point of view, because if the linearized model is stable as the function s(xi), given
by (1.4), is a single decreasing and bounded then the nonlinear models (1.1) and (1.2) will also
be stable according to the first stability law of Liapunov.

The main advantages of the proposed two layer RTNN-JCA, defined by (1.1), (1.2) are:
a) It is described in state-space form (SISO or MIMO) and could serve as an one-step

ahead state predictor/estimator.
b) The RTNN model is nonlinear in large and linear in small, so the matrices J, B, C obtained

as a result of learning could be used for analytical design of linear state/output control laws. By
means of a similar transformation the JCF could be transformed into Luenberger’s Canonical
Form which is easy to use for pole assignment design of control systems. The matrices J, B could
be used for an optimal control systems design with quadratic performance index. The matrices
J, B, C also could be used for an optimal P, PI, PID control systems design. Finally, the matrices
J, B, C could be used in an adaptive iterative square-root algorithm for optimal control with
quadratic cost criterion.

c) The RTNN could solve the optimal control problem itself by means of NN mapping.
The RTNN two-layer architecture contains hidden and output layers. The output layer

is a BPNN and the hidden layer is a recurrent JCA NN. It was assumed that each Jordan block
of it has only (1x1) or (2x2) dimension. The continuous RTNN model will be stable iff the system
eigenvalues have negative real parts. The discrete-time NN model will be stable iff system
eigenvalues are inside the unit circle. Then the analysis of the RTNN model controllability,
observability and identifiability becomes easy. The last concept, taken from systems theory,
gives us the possibility to check if the obtained global RNN model could be learned or not, [5].
From the block structure of B and C', corresponding to the block structure of J, it is possible
to conclude that iff the input matrix B has zero blocks the RTNN model is uncontrollable and
iff the transpose of the output matrix C has zero blocks then the RTNN model is unobservable.
If one of both occurs the RTNN model is unidentifiable, which means that the RTNN model is
untrainable. To preserve the RTNN stability during the training, it is necessary to impose some
restrictions on the model feedback, introducing a sigmoid vector function in it, which changes
the eqns. (1.1) and (1.2) in the forms:

(1.5) v = q + Bu, q= S(Jv), w = S(v), y = Cw, z = S(y),

 V(k+1) = Q(k)+BU(k), Q(k) = S[JV(k)], W(k)=S[V(k)],

(1.6) Y(k) = CW(k), Z(k)=S[Y(k)].

Another improvement of the RTNN architecture is to facilitate its realisation, approximating
the sigmoid function s(inp) with a saturation:

 +1, inp+1
(1.7) sat(inp) = inp, 0inp<+1

 0, inp< 0.

5 6

Both improvements of the RTNN architecture are tested by simulation examples during
the learning.

1.2. RTNN learning

Simultaneously with the RNN topology improvements, some advanced researches have been
done on the methods of RNN learning, which naturally depends on the RNN topology. Baruch
et all. [5] in their previous works, defined a new Jordan RTNN architecture with both exponential
and oscillatory dynamics, which feedback weights are trainable. Some work has been done to
improve this learning algorithm introducing modern refinement techniques like momentum rule,
weight fixing and pruning. The most common used BP updating rule, applied for the two layer
RTNN -JCA, [5] , is the following:

(1.8) Dij(k+1)=Dij(k) +Dij(k),

where: Dij is the ij-th weight element of each weight matrix in the RTNN model to be updated;
Dij is the weight correction of Dij; is the learning rate parameter. The RTNN model weight
matrices here are denoted by D for the sake of generality. The weight corrections of the updated
matrices in the discrete-time RTNN model, described by eqn. (1.6), are given as follows:

 For the output layer:

(1.9) Cij(k) = [Tj(k) Zj(k)] Zj(k) [1 Zj(k)] Wi(k)

where:Cij is the weight correction of the ij-th elements of the (ln) learned matrix C; Tj is a
j-th element of the target vector; Zj is a j-th element of the output vector; Wi is an i-th element
of the input vector of the output layer, i.e. the hidden layer output.

 For the hidden layer:
(1.10) Bij(k) = R Ui(k),
(1.11) Jij(k) = R Vi(k 1),
(1.12) R = Ci(k) [T(k) Z(k)] Wj(k) [1Wj(k)],

where: Bij is the weight correction of the ij-th elements of the (mn) learned matrix B; Ci is a
row vector of dimension (1l), taken from the transposed matrix C'; [TZ] is a (l1) output error
vector, through which the error is backpropagated to the hidden layer; Ui is an i-th element of
the input vector U; Vi is an i-th element of the vector V; Jij is the weight correction of the
 ij-th elements of the l (nn) block-diagonal matrix J under learning; R is an auxiliar matrix with
compatible dimensions. The matrix elements of 0 and 1 values will not be updated. The same
equation for RTNN learning may be applied for the continuous-time case, eqn. (1.5).

An improvement of the BP updating algorithm (1.8) is to introduce a momentum term,
proportional to the past (k1)-th weight correction, as it is:

(1.13) Dij(k+1) = Dij(k) +Dij(k) +Dij(k1),

where: is a momentum learning rate parameter.
This correction is appropriate to perform in the case when significant error-function

oscillations occur. A lot of experiments of learning with different rates of learning h and a has
been done. The experiments show that the optimal combination of these learning parameters is
obtained when the following inequality condition yields:

(1.14) rmax< sqrt (2+2) < 1; rmax = max | i |
where i is the maximum eigenvalue of the object.

Another improvement of the RTNN learning algorithm, successfully applied for the BP
learning of discrete-time RTNNs consider unimportant units pruning and non-useful connections
removing [8]. Both methods remove the units or the weights, whose outputs or values tend to

5 7

be zero. Simultaneously with the nodes pruning, a weight fixing could be applied. During the
intensive experiments done, it was observed that some of the hidden neurones change their
weights rather slow with respect to the others, i.e. their weights tend to reach constant values.
If the corresponding weight correction tends to zero during one epoch of learning, the learning
algorithm fixes the corresponding weight or node and interrupts the process of learning. This
operation reduces the total learning time almost twice. Both learning algorithms, performing
weights pruning and fixing lead to exclusion of weights or nodes from the process of learning.
There are two possibilities: to fix some weights or to fix the whole node. The first is more efficient
then the second because in this case we do not need to compute the node error.

1.3. Simulation experiments

 The improved learning algorithm for RTNN was tested with several linear and nonlinear dynamic
objects. The topology improvements are also carefully studied. The chosen epoch size is of 1000
cycles. The learning process is finished when both the error of learning and the error of testing
are reduced to an error threshold of about 1.5%. The number of epochs to reach this prescribed
error is called time of learning. The input learning signal of the object and the RTNN consists
of mixed random series of sinusoidal and rectangular patterns with a random frequency and a
random amplitude, which ensures that the RTNN will be learnt by a wide-band variable-spectrum
input signal. The quality of the RTNN is verified also by a test signal of an one-epoch length,
given in the form:
(1.15) u(k) = sin(k/25), 0 < k < 251,

 1.0, 250 < k < 501,
 1.0 500 < k < 751,
0.3 sin(k/25) + 0.1 sin(k/32),
 + 0.6 sin(k/10), k < 1001.

The state-space equations of both examples are given below:
(1.16) h(k)=0.3u (k)[1 + x1(k) x2

2 (k)],
x1(k+1) = x2(k),

x2(k+1) =0.15 x1(k) + 0.8x2(k) + h(k),
 y(k+1) = x1(k+1) 0.2x1

 2(k+1) + 0.1x1
3 (k+1)+0.5.

Two SISO nonlinear discrete-time simulation examples are considered. The first one is a
bilinear object with a sigmoid. The second one is a nonlinear object with a saturation.

Object 1: SISO bilinear object (sigmoid):
The simulation results are shown in the figures. Each figure has the following common

items:
(a) Output of RTNN (dashed line) and Object (solid line) during training
(b) RTNN error of testing phase (dashed line) and training (solid line) at each epoch
(c) Output of RTNN (dashed line) and Object (solid line) during last testing phase
Two different cases of =0.7; =0 and =0.5; 0.5 are considered for each object. As it

can be seen from the results of Fig. 1, 2, 3, 4 the introduction of momentum term in the BP learning
algorithm smoothens the error (LER is the learning error and TER is the testing error).

The case of changing the sigmoid function with a saturation for both objects augments
the error of learning in the beginning but the error decreased to the same value in the final phase.
The oscillations of the error of learning also augmented. The weight fixing decreases the time
of learning with 30%. The learning time is 20 epochs.

Object 2: SISO bilinear object (saturation)
The time of learning is 10 epochs. The error of learning reached for both objects is below

1.5%.

5 8

Fig.1. h=0.7, =0.,sigm., Fig.2. h=0.5, =0.5, sigm.,
LER=1%,TER=1,5% LER=1.5%, TER=1%

Fig.3. h=0.7, =0, sat., Fig. 4. h=0.5, =0.5, sat.,
LER=1,5%, TER=1,5% LER=1.5%, TER=1.25%

0 200 400 600 800 1000
0.4

0.6

0.8

(a) Obj/NN

0 200 400 600 800 1000
0.4

0.6

0.8

(c) Obj/NN

0 2 4 6 8 10 12 14
0

0.1

(b) Err

0 200 400 600 800 1000
0.4

0.6

0.8

(a) Obj/NN

0 200 400 600 800 1000
0.4

0.6

0.8

(c) Obj/NN

0 2 4 6 8 10 12 14
0

0.1

(b) Err

0 200 400 600 800 1000
0.4

0.6

0.8

(a) Obj/NN

0 200 400 600 800 1000
0.4

0.6

0.8

(c) Obj/NN

0 2 4 6 8 10 12 14
0

0.1

(b) Err

0 200 400 600 800 1000
0.4

0.6

0.8

(a) Obj/NN

0 200 400 600 800 1000
0.4

0.6

0.8

(c) Obj/NN

0 2 4 6 8 10 12 14
0

0.1

(b) Err

5 9

2. NN for approximation of functions and kimematic robot control

A kinematic control system architecture for redundant robots-manipulators, avoiding obstavles,
based on context sensitive hierarchical NN approach, is proposed. The NN control system
structure contains two NN's. the first one is a Functional RNN, transforming the vector of the
variation of Cartesian position into the vector of variation of the joint position, by means of the
Jacobean pseudoinverse function (JPF). The second one is a Context three-layer BPNN, trained
to approximate the JPF by means of the BP learning. The BP learning is realised to optimise robot
path resolving two main problems: singular configurations and existence of multiple solutions.
Method efficiency and NN kinematic control possibilities are demonstrated by appropriate
example. This work is a collaborative work of the CINVESTAV, IPN, MEXICO, IIT, BAS, PIS
dept.[7].

2.1. Robot kinematics description

During the last decade many works were carried out on the solution of the Inverse Kinematic
Problem (IKP) for Robot Manipulators (RM), cited in [7]. The methods proposed for the general
case can be classified into two main groups: particular and general. These methods are based
on two models: geometric and kinematic , based on the equations:

(2.1) x = F(x), Geometric Model,

(2.2) x = J(q) q , Kinematic Model,

where x is a 6-dimensional vector of the Cartesian position; q is a n-dimensional join position
vector; F(x) is a nonlinear vector function; J(q) is a (n n) Jacobian matrix.

The particular method for kinematic control is based on the direct solution of the nonlinear
trigonometric vector equation (4.1). This method is applied for particular cases of robots-
manipulators and gives explicit analytical solution, which is its principle disadvantage. The
general methods for kinematic control based on the kinematic equation of motion (4.2) give
solution for every type of robot (redundant or not). These methods are independent of geometric
and kinematics structure of manipulators and perform a desired optimisation criterion with null
space solutions. The general approach has been used for obtaining q'.
(2.3) q = J+ x + (I J+J) y,
where J+ is the pseudoinverse matrix of the Jacobean J; y is an arbitrary nonzeroed
n-dimensional vector.

This method of kinematic control has the following disadvantages: computationally
expensive; numerically unstable due to error accumulation; not free from arm singularities (the
inverse become discontinued). From this reason it is important to apply the NN architecture to
provide highly parallel computations to obtain the solution of (2.3). There exists a variety of
problems, concerning the NN (2.3) AF, as follows:

a) this function describes discontinuous - singular configuration; b) it gives an infinite
number of solutions, because of the robot redundancy. The approach [7] proposes a continuous
min error solution of the eqn. (2.3), overcoming the mentioned above problems. It is:

(2.4) x J(q)q2 + q2 = min.
 Then the joint velocity vector, obtained from the continuous solution of the IKP has the

form:
(2.5) q = J* x + (I J*J) y,
(2.6) J = VS*U',

6 0

(2.7) S' = diag (
1
2

1
+ 2),

2
2

2
+ 2), K,

r
2

r
+ 2), 0, K, 0),

where: J* is an IKR solution, obtained by means of the Singular Value Decomposition; V, U are
left and right eigenvector matrices; S is a singular value’s matrix; y is an arbitrary nonzero
n-dimensional vector. All matrices have compatible dimensions. The second term in the right-
hand side of equation. (2.5) is the projection of the arbitrary vector y onto the null space of J, since
it does not result in an end effector velocity. The discretization of (2.5) give us the following
sampled-data equation:

(2.8) qj+1 = J*(qi) (xi+1 xi) + [I J*(qi) J (qi)] y + qi .

The equation (2.8) is basic for the Kinematic Control Algorithm (KC). It represents the
relation between the one-step-predicted joint position vector, the variation of the desired
Cartesian position vector and the actual joint position vector. The proposed KC method does
not require the specification of Cartesian velocities, so it can be applied for predictive control of
redundant arm joint positions. This method provide solution with function continued for every
space of manipulation and performs given optimisation criteria with a null space solution. The
solution of the differential equation (2.5) contains two components: the first term is a particular
solution and the second term is a homogeneous solution. The term of the homogeneous solution
is frequently used to optimise some secondary criterion under the constraint of the specified end
effector velocity by choosing y to be gradient of some prescribed function H(q). The homogeneous
solution can also be used to optimise secondary criteria defined in Cartesian space to avoid
obstacles. Similar to the collision free path planning algorithm, based on a potential field H(q),
we can define a potential field over a task space, such that obstacles can be represented as high
potentials regions. Collision-free path planning of a redundant arm can be done by searching for
a path of minimal potentials under constraints of arm kinematics as well as in compromise with
other performance indices. We assume that an obstacle is a hipper-sphere of radius r with its
centre located at obstacle coordinates x. Then a potential field H(q), can be defined for collision-
free path planning of the end-effector under a single obstacle, as follows:

1
(2.9) Hobst(q) = –––––––– ,

 1 + eX/T

where T is a positive constant and X(q) is a quadratic function:

(2.10) X(q) = x(q) xobst
2
 r2.

In the case where many obstacles occur in the task space, and/or many arm-body-points
are subject to collision avoidance, Hobst should be formed as a sum of all the potential fields defined
for individual obstacles and/or for individual arm-bodypoints.

2.2. NN for kinematic control

The NN approximation of the nonlinear functions in the equation (2.8) requires the actual joint
position qi and the desired Cartesian position xi+1 as inputs to calculate the one step prediction
of the joint configuration. This mapping is highly nonlinear, since the transformation depends
on robot configuration and its kinematic structure.

The context-sensitive NN (Fig. 5), contains two NNs, named Context and Function. The
Context NN consists of nonlinear units and a BP learning process, whose outputs are used to
set up the weights of the Function NN. The first NN has many outputs as there are weights of
the second NN. Since the number of outputs could be very large, the Function NN ought to be
simple and recurrent.

The proposed solution of the KC problem by means of neural networks uses a context-
sensitive NN with Cartesian feedback. That control scheme takes the advantage of the functional

6 1

decomposition of robot kinematics, as it reflected on the structure of the equation (2.8). The
functional part of the context-sensitive NN realises the product between the desired Cartesian
position and the JPF, which is robust of singularities. The Context NN is a three layered
feedforward NN with a BP learning. The hidden layer of this NN is based on Gaussian Activation
Function. The output layer adjusts the corresponding weights of the Functional RNN. The
structure of the KC system and some simulation results of six-link planar robot-manipulator
avoiding obstacle, are given in [7] and shown on Fig. 5.

Fig. 5. Simulation of obstacle avoidance

3. Conclusion

The paper describes the last achievements of the scientists from the PIS dept., IIT, BAS in the
field of NN theory and applications. All theoretical approaches are illustrated by experimental
results and appropriate examples.

1

1

6 2

APPENDIX [2]

Table. A1.1. NN architectures

 Feedforward Nns Feedback NNs (RNN)

 Single layer Multilayer Radial Basis Competitive Kohonen’s Hopfield ART
 perceptron peceptron Function net network SOM network models

Table A1.2. NN learning algorithms

 Paradigm Learning rule Architecture Learning algorithm Task

 Supervised Error-correction Single- or multilayer Perceptron LA PR, classification, AF,PP
perceptron B P I&C,(Adaline&Madaline)

Boltzmann Recurrent Boltzmann learning PR,classification
Hebbian Multilayer Linear discriminant Data analysis(DA)

feedforward (FF) analysis PR,classification
Competitive Competitive Learning vector Within-class categorization

(WCC)
Data compression (DC)

RT network ART map PR, classification , WCC
 Unsupervised Error-correction Multilayer FF Sammon’s projection D A

Hebbian Feedforward Principal component D A
or competitive analysis DC

Hopfield Associative memory Associative memory
Competitive Competitive Vector quantization Categorization, DC

Kohonen’s Kohonen’s SOM Categorization, DA
ART networks ART1, ART2, ART3 Categorization

 Hybrid Error-correction RBF network RBF learning PR, classification
& competitive algorithm AF, PP, I&C

Legend: AF Approximation of functions; PR Pattern recognition; PP Process (time series)
prediction; I&C Identification and control.

R e f e r e n c e s

1. S i m o n H. Neural Networks. Macmillan Publ. Company,1994.
2. .J a i n, A.K. Artificial neural networks: a tutorial, computer In: IEEE, March 1996, 31-44.
3. Z e i d e n b e r g, M. NNs Models in Artificial Intelligence. USA, Ellis Horwood, 1990.
4. L i p p m a n n, R. P. An Introduction to Computing with NN. In: IEEE ASSP Mag., April, 1987, 4-5.
5. B a r u c h, I, I. S t o j a n o v, E. G o r t c h e v a. Recurrent trainable neural networks: topology and learning.

 In: Proc. of the 5 Int. Symp. TAINN’96, 27-28 June 1996, Istanbul, Turkey, 40-49.
6. B a r u c h, I, I. S t o j a n o v, E. G o r t c h e v a. Neural Network Models of Dynamic Processes: Stability

and Learning. In: Proc. of the 3th Int. Symp. MMAR’96, Sept.10-13,1996, Miedzyzdroje, Poland,
vol.3, 1169-1174.

7. G o r t c h e v a, E., J. M. I b a r r a-Z a n n a t h a, I. Ba r u c h, I. S t o y a n o v. Kinematic neural control
of redundant robots, avoiding obstacles. In: Proc. of the UNESCO Int. Conf. ICRAM’95, 14-16
Aug. 1995, Istanbul, Turkey, vol. II, 906-910.

8. S t o j a n o v, I. An Improved Backpropagation NN Learning. In: Proc. of the 13th Intern. Conf. on
PR, TU, 25-29 Aug. 1995, Vienna, Austria. IEEE Computer Soc., vol.II, Track B, PR and SP,
 586-588.

6 3

Приложение рекуррентных нейронных сетей в системах
идентификации и управления

Йерохам Барух, Александр Митев, Бойка Ненкова

Институт информационных технологий, 1113 София

(Р е з ю м е)

Представлены непрерывные и дискретные математические модели рекуррентных
нейронных сетей. Описана их двухслойная архитектура и ее применение при
идентификации линейных и нелинейных динамических процессов.

Показаны результаты экспериментов при аппроксимации функций и при
кинетическом обучении роботов. В приложении представлена классификация
нейронных сетей по отношении топологии и подход обучения.

