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1. Introduction

Recently, aclass of nonparametric mathematical prograiming (MP)-based techniques
has attracted considerable research attention— linear programming (LP) and mixed-
integer programing (MIP) approaches tothe discriminant problems (Stam, 1997) . The
wel 1 known MP formulations are based on the geometrical point of viewwith respect to
thediscrimination. More precisely they construct hyperplane (1 inear functionof the
attributes) by minimizationof somecriterion, based on thevalues proportional to the
Euclideandistances (perpendicular franeveryocbsenvationto thishyperplane) or/and their
signs. Suchanapproach ispartof thedistance-baseddiscrimination. A lotof studieshave
beendevoted to the comparison of themostwel 1 knomnMP-hased (different variantsof the
LPand MIP) formulations between them andwith the most frequently used statistical
methods (LDF— linear discriminant function, QDF — quadratic discriminarnt function,
LR- logisticregression)— intermsof their classificationperformance, usingeither real
or simulateddata (Abad andBanks|[1],Asparoukhov andDan -
chev][3],Asparoukhov andStam [4],Bajgier andHil1[5],Duarte
Silvaand Stam[6],Joachimsthaler and Stam[7, 8],Koehler
and Erengucl[9, Lam, Choo andWedl ey [10],
Nath,JacksonandJones[12],Rubin[13, 14],Stamand Joachim-
sthaler[l16, 17], Stam andJones[18]) - Theconclusions of these studiesare not
uniformlly supportive of the MP-based methods but therre is afaiir anount of support for the
statement that the MIPmethods have classified surprisinglyvell if thedataarehighly
skewed or outlier-contaminated. Very often these methods clear ly outperformthe above
mentionedstatistical discriminantmethods. That iswhywewill directourattentiontothe
MIP-based classification procedures.

Letusconsider aclassical sanple-based two-group classificationproblem: g and g,
are twodistinctgroups; there is availableatraining sample of n (n, frong, andn,
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frong,) observationswhose cbjects are descr ibed by am-component vector of attributes
X=(X, - --,X)- Tneaimoftheclassificationanalysis isacecisionfunction (Classifier) f(w,X)
tobe found, suchthat xeg, I f(w, x) iw, , otherwise xeg, ; wisavector of thedecision
function’spararetersandw, isacutoffvalue. Themost frequently useddecisionfunction
is linear—f(w, X) =wx— this isahyperplane inthem-dimensional attribute space.
Theconventianal MIP-formulationof the linear classifier construction isasfolloas:

n
minimize z=y,
i=1
Sbjectto:
Xw+My, 10, ieg;
Xw-My; <0, ieg,;i=n

wherew (k=0, 1, - .., M areunrestricted (they correspondto thecoefficientsof thedecision
hyperplane); the(/1 integer variabley; =1 ifthe i-thooservation ismisclassified, ad
yj=Ootherwise (correctclassification), i=1, ..., n;Misasufficiently largepositive real
number . Coviously the dbjective function z isequal tothe nurber of misclassifications.

MIPmocelsdirectly attackthe dojectiveofminimizing thenunberofmisclassifications
athighcarputational cost, wheress L Pmodels attack that objective indirectly at loner cost
Bajgierand Hi 11, [5])- Thereareseveral studies devoted toMIP classification
algorithms (e.g-Warmack andGonzalez[20],Soltysikand Yarn-
old[15],Duarte Silvaand Stam[6],Rubin[13],Koehler andEren-
guc[9]) - nfortunatelyal | knomnMIP-based classification formulationsareNP-hard (A
maldi and Kann, [Z]) and there isnohope to obtain fast (polynanial time) algorithms
for theirsolvingunlessP=NP. Almostal I authors use the “branch and bound”” techniques.
These techniquesarewel I studied inthe gereral case (for solvingarbitraryMIP probllem)
but theyarenotefficient, sincethey haveexponential computational corplexity anddonot
‘take intoacoount the specificityof the classification prablem. That iswhy there is reason
to consider the use of heuristic procedures that give corpetitive accuracy with the MIP
modelshutare substantial ly faster . Suchheuristiics canbe usedalso toprovideagood initial
Teasible solutiontoabranch-and-boundmixed-integer classificationmodels.

The purpose of this paper is to introduce suchaheuristicthat isbased on the fast
aarbinatorial searchtaking intoaccount thespecificity of the classificationproblem. The
paperalso preserts prel iminary test results for the proposed heuristic, the two knomn
heuristics Rubin[13]), theMIP-based classificationalgoritmQuarte Si lvaad
Stam[6]) and the linear discriminantanalysis (LDF) , using randomly generated data
withnultivariatenomal distribution.

2. Heuristic procedure based onafast combinatorial search

The proposed heuristic isbasedonamathematical statementandaheuristic assunption.

The first isconsidered anddiscussed inWarmack and Gonzalez[20]. We
willexplainbriefly this idea. Letusconsider thedescribed inthe above sectionclassical
sample-based two-groupdiscriminant problem: thogroups (g, , 9,) , atrainingset fromn
(n, frong,, n, framg, ) doservations describedby mattributesx, , ..., X -Theaimis
the linear classifier (decision hyperplare) wirtth theminimumnumber of misclassifications
1o be constructed so that ifwix>w, thenassiign xto g, ; otherwise-assignxtog,, where
wh= W, W, ,..., W , W) isaweightvectorandw isacutoffvalue. Thereforewe have
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asystemofn linear inequal ities (one pereachdoservation) andare looking foraminimal
systamofr inequal ities (misclassificatios) withoutwhich theothern—r linear inequal ities
(correct classifications) forma consistent system. This isaproblenmofadiscrete
gptimizationand ingereral case there isnotauniquesolution. Ifwe replacethe inegualities
withequal i'ties then each dbservation forms a hyperplane inthe (mt1)-dimensional
attributespace. Warmack andGonza l e z [20] use the termedge for the intersection
of these madbservationhyperplanes. Eachedge isdescribed by a systemofmhomogeneous
equations (observations) withmt+1 variables (that means each edge isdescribed by the
hyperplane containing these mobservations) . Their algorithmproceedsby iteration
through sequenceof edgesand exploitsactively the fol loving assurption (Haar condition):
everymx (1) matr ix formed by the intersectionof m abservationhyperplanes cotains
at least one mx msubmatrixwhich isnonsingular. Inotherwords the Haar condition
means that is nom+1 points (training observations) that lie inahyperplane in them-
dimensional attribute space andalso there isnompoints that e ina (m-2)-dimensional
plane. Itmay be accepted that the Warmack - Gonzalez algoritihmcontains ingenerally
twostes:

—Firststep: Constructionof ahyperplane francarbinations of mobservationsand
finding itsmisclassifications (violated inequal ities) acogpting that themadosernvations of
thehyperplanearecorrectly classified. Warmack andGonzal es [20], proved (this
is themathematical statementwe used) that the end of this step Isanoptimal hyperplane
(with theminimumnurber of misclassifications).-

— Secondstep: A linear transformationof the gptimal hyperplane, sothat thempoints
(dbservations) of it go into the subspace corresponding to thegroup ofeach of them, whille
the other n—mpoints keep the subspace defined by the first step Warmack and
Gonzalez[20], AppendixA).

We wi 1 base our heuristic procedure on the above discussedmathematical statement
andwi Il searchfor ““‘promising” (fromclassification pointofview) combinationsofm
trainingdbsenations.

Theheuristicassunption is that some classifiershardly depend frontheclosest (in
Euclidean sense) points (trainingobservations) - This intuitive assumption isabasis for
most nonparametricstatistical discriminant procedures askermel andnearest neighbour
estimators, neural networksete. Goviously the insignificanttranslationand/or rotationof
givenhyperplane could change the subspace (inrespect to it) mainly of theclosest points.
Therefore it seems that the closest points are themost “pramising”” that shoulld be taken
into acoourttwhenwewould like to improve the classiTicationaccuracy of one decision
hyperplane. Orwith otherwords ifwe use mtraining observations (the Haar condition
holds) to construct the decisionhyperplane inthem-dimensional attribute space, thenwe
should replace some of these mabservations (poirnts) with the closest (to the hyperplane)
points andshould investigate the accuracy of thenewhyperplanes.

Based on the discussed above mathematical statementand heuristicassunptionthe
main ideaof our heuristicprocedure isatevery step to try to improve the cbtainedup to
now decision hyperplane by forming of new combination of mobservations taking:

m-1 observations from the setM (we cal l 1t the set of the “most promising”
deenatias);

andoredoservation franthesetP (wecall it thesetof the“promising”’ doservations) -

3. Fast carbinatorial search (FCS) heuristicalgoritim
Wewi 11 use the fol lowing notation during the description of the FCS algoritim:

X=0%;, 5 - - - » X )" — I-thtrainingobsenvationwiththevalues of itsattributes;
best - the best (minimum) number of misclassifications;
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M(1) —the setof the “most promising” doservationsof step i

P(1)—thesetof the “promising’”’ observationsof step i -

Step0. Inrtial solution

Compute the mean vectors O, (group g,) and O, (group g,) - Construct the
hyperplane H, that is orthogonal to the line 0,0,. The mcoefficients of H are:
w=0,-0, . The cutoffvalue of thishyperplanew,=0. This initial decision hyperplane
isequivalent tothe lineardiscriminant function inthe presence of Independentatttributes.

best=min(n,n);

1=1.Letg, e H, . Wewi 1l denote thishyperplaneby H, (x;)-odbviously its cutoffvalue
Isw,=—x,W' . Compute error(x; ) =nurber of misclassifications for thishyperplare.
ITest>error(x; ) then:
best=error (X;);
M(0) ={themclosest observationstoH (X, ), includingx; };
P(0)={trerextk (after the firstm) closestobservationstoH (x;)};
i=i+1.Dowhilei<n.

Step 1. Investigationof the corbinations between the elements of M(0) and P(0) -
Construct ahyperplane containing the mobservations (points) of M(0) - Constructa
hyperplane for every conbination (of m points) that consists of m-1 observations from
M(0) and one observation fromP(0) — the number of these combinations ismxk. Save
the 20 bestsolutions (hyperplanes) - For everyone of these 20hyperplanes create itsM(L)
and P(D) , whereM(D) contains the mtraining doservations that formthis hyperplaneand
P comtainstrevclosestmisclassificationobsenvations (inrespect tothishyperplare) -
Update the value of best. Obviously ingeneral more than one hyperplanewi 11 have best
number of misclassifications and some of these 20 hyperplaneswill have number of
misclassificationsmore thanbest. Letusdenote the next (by itsgoodness) error between
the20hyperplaneswith bestrext.

Step 2. Investigationof the conbinations between the elements of M(1) and P(L) for
every hyperplanewith error=bestor error=bestnext. Every timeupdate the best 20
solutions iftheaurrenterror is lessorequal tobest . Forthe last dotained solutionwitherror
=bestcreateM(2) adP(2) pereveryattribute. Letus take the J-thattributex; ad letdenote
by0 (0, ---,0,-..,0) themiddle point of thesegment 0,0,. . Takethe 2nclosest
doservations tothe consideredbest hyperplane (solution) - Assigneveryoneof theseclosest
doservationstothesetof:

—"ostpromising”’ cdbsenationsM(2, j) ifits j-thattribute is lessorequal too, ;
—"pramising”coservationsP(2, j) ifits j-thattribute isgreater then o, .

Step 3. Investigation of the conbinations between the elements ofM(2, j) and
PC.3),J-1,...,m

Letusacceptthatcard (M2, J)) icard (P2, J)) and let treelementsofM(2, J) are
a(D, -..,a(s)adtreelenetsof P2, J)areb(D), ---,b(s), s +s,=2m, s, is,. Investigate
thefol loving carbinations:

a@), - -- ,a,b:; - .- ;a), -..,am,bs);

a2, ---,aD,b®; --.;a2), ---,amD),bs);

(gD, ..., a5), bA; ...;a(, -, ..., a6, bS);
andupdate the best solutions iferror <best.

4 8



Step 4. Only for the last dotained solutionwith error =best repeat Step 1.

Step5. Alinear transformationof the optimal hyperplare.

The aimof this step is itsmtraining observations to go into the subspace
corresponding to the group of each of them, whi le the other n-mpoints keepthei r subspace
(Warmack and Gonzalez[20], AppendixA).

4. Experiments and Discussion

Toevaluate theefficacy of FCS heuristicalgorithm, testswere performed using randomly
generated multivariate normal distribution (two groups) as follows: a) 4, 5and 6
attributes; 100 dbservations (50 per group) — 20 data sets were generated per every
attributes” nurber; b) 4, 5and6 attributes; 200 cbservations (B0 per group) — 20datasets
weregenerated pereveryattributes’ snurber . Foral l simulations the comoncovariance
matrixwas equal tounity matrixandal I canponents of mean vector per groupwere equal
to1.0pergroupland0.8pergroup?2.

The FCSalgorithm has two parameters — k (Step 0) and v (Step 1) that correspond
to the respective nunber of clasest observations (points) . These parameters take the
fol loving values during our simulated study - k=25and v=5.

The experiment includes 20 simulated data sets per every combination of Na
and No.

Table1l.
Mean number of misclassifications Mean number of major pivots

Na [ No

D&C FCS H1 H2 LDF D&C FCS H1 H2
4 100 | 14.9 16.0 19.8 17.4 | 20.6 53819 371.6 107.3 |1197.1
5 100| 1.8 13.1 18.1 148 | 17.3 190730 397.1 141.0 |1631.8
6 100 89 10.6 15.4 1201 15.1 387433 455.1 189.9 |3164.2
4 200 | 338 H.4 4.3 0.6 | 4.7 238144 482.5 215.7 |2507.2
5 200 26.7 28.9 3¥%.2 319 | 345 1245623 551.7 302.7 |3980.6
6 2001 21.9 243 3».3 28.7 | 0.5 3616615 533.5 341.9 |4413.3
Table 1 (continuation)
Na | No Mean number of minor pivots Mean pricing

D&C H1 H2 D&C FCS H1 H2
4 100 | 16544.8 2978.7 29903.4 883152.6 229800 | 11799.3 | 133492.3
5 100 | 47909.9 3590.4 39143.8 3317446.7 | 521450 | 15762.0 | 184315.5
6 100 | 74610.2 4477.5 68501.8 6877750.0 | 78750 21571.7 | 362617.0
4 200 | 84291.6 11696.5 129029.5 4871555.6 | 765650 | 45279.9 | 529898.6
5 200 | 343491.7 | 14779.9 185061.5 25318089.7 | 955750 | 64070.2 | 847418.2
6 200 | 821557.9 | 15906.2 200442.8 75362453.8 | 1170100| 73037.7 | 947413.4

Tablel. Legend:

Na— number of attributes; No — number of observations;

D&C — Divide and Conquer algorithm(Duarte Silva and Stam[6]);
FCS - Fast corbinatorial searchheuristic;

H1 —Heuristic1 (Rubin, 1990); H2—Heuristic2 (Rub in[13]).
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e corpare the proposed heuristicalgorititm FCSwith the fol lowing discrimination
procedures: a) exact algorithm“Divide and Conquer’” (D&C) proposedbyDuarte
SilvaandStam [6]; b) two heuristic procedures (H1 and H2) developed by
Paul Rubin[13]; ©) linear discriminantanalysis (LDF).

The computational efforts of every algorithm (except LDF) wereevaluated by:

8 Number ofmgjor pivots. Amajor pivot isonewhere the selectednonbesic variable
ispivoted intothe basis (@boutm arithmetical operations) . The FCSalgoritimperforms
one major pivot for a construction of every hyperplane passing through mtraining
deenatias.

B Number of minor pivots. Aminor pivot isone inwhich the selected nonbasic
variable remainsnonbasic by going from its upper bound to lover bound or from its loner
bound to upper bound (marithmetical operations) . The FCSalgoritim isacorbinatorial
algorithm, basedongeoretrical interpretations of the classificationproblemand itdoes
notcarry outminor pivots.

O Pricing. “Pricing” refersto the sub-routine of the Simplexmethod invwhich this
algorithmspendsmostof itstime. Apricing isperformed each time acolum (associated
withanonbasicvariablewhich iscandidate toenter thebasis) isevaluated (“priced”)
regarding to its inpact to the dbjective function. The pricing corresponds toabout 2(m+1)
arrtimetical goeratians.

Tablelsumarizes the statistics for nurberofmisclassificationsand computational
effortsof investigated classificationproosdures (@lgorithms) .

Thedotained resultsassureus of theefficacy of the proposedheuristicprooedure since
rtsnunberofmisclassificationsis:

—definitely less than LDF, H1 andH2 and

—greater that the D&Calgorithm, but the bothvalues are almost comparable,
whi le 1ts computational efforts are many times less than theexact D8Callgoritm’s ones
andalmostequal (ingeneral) with theH2 heuristic (that isbetter thanH1 by itsnurber
ofmiclassificatios).

5. Conclusions

WeproposeafastheuristicalgorittmFCS for solving the classical two-graup classification
problem. Themain ideaof the algorithm is to create consecutively several sets of
“promising”’ observations. Thenasmal I partofthe possible corbinationsof abservations
ineachsetareevaluated insearch forabetter dbjective functionvalue. Thecarriedout
simullated study (withnultivariate normal distribution datasets) demonstrates that the
ootained FCS solutions are very close (in respect to the number ofmisclassifications) to
the optiimal solutionswhiletheir conputational efforts (pivots, pricing) aremany tines
ks
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SBPUCTMUECKAas [IPOoLeypa IJif 3a0auM KJIaCCUPMKALMM B OIBYX IPyIIIIax

Bacw I'. Tyyaukm*, OrHsaH K. AciapyxoB* *

*UHCTUTYT MHPOPMALMOHHEIX TexHoJiormi, 1113 Copus
**[[eHTP BMOMENUIIMHCKOI'O MHXeHepcTBa, 1113 Copusa

(PeswomMme)

OCHOBHEIE @OpMyJ'U/IpOBKM CMECEHO~LEJIOUMCIICHHOT'O ITPOI'PaMMIPOBaHVA aTaKynT
IIPAMO LIeJIb — MVMHVIMVISMPOBAHME YMCIIa OUMOOUHEBIX K_J'IaCCM@)MKaLU/HZ, npn UEM OHU
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TPelyoT OOJIbIME BEUMCIIATENILHEE YCUITS . [I03TOMY LIeJjleCcoo0pasHO PaCCMOTPUBATE
IpVMEeHEeHUEe DBPUCTUUECKMX ITPOLENYP, KOTOPhE MMEIT CPaBHMMY TOUHOCTE, HO
padoTanT Iopas3no CrlcTpee . B 3TOV CTaTHM [IPENCTaBJIEHa TakKas DBPUCTMKA, KOTOopas
OCHOBEIBAETCS Ha OBICTPOM KOMOMHATOPHOM IIOMCKe, MMeS B BUIY CIelUudury
kJlaccudrKaLuMOHHOM 3aaun. OCyleCTRIJIEHO CUMYJIMPOBaHOE UCCIIeNOBaHUeE
(C MyJbTHMBaApPMALMOHHBEIMM MHOXECTBaMM IaHHHIX, KJMeKIMX HOPMaJibHOE
pacnpenesiesue) . OHO [IOKA3EBAET, UTO IIPedJIOKEeHHAS DBPUCTMKA JaET pelleH s
OuUeHb OJMBKMe (10 OTHOWEHMO UMCJIIa OUMOOUHBIX KJIACCUQUKALIMM) K ONTMMAJIELHEIM
PelleHraM, TOTIa KaK BEMUCIIMTEJIbHEE YCWUITMA (MIMBOTEL, IIPaliCMHI') Ha MHOT'O pas
MEHBIIE .
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