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1. Introduction

Recently, a class of nonparametric mathematical programming (MP)-based techniques
has attracted considerable research attention  linear programming (LP) and mixed-
integer programming (MIP) approaches to the discriminant problems (S t a m , 1997). The
well known MP formulations are based on the geometrical point of view with respect to
the discrimination. More precisely they construct hyperplane (linear function of the
attributes) by minimization of some criterion, based on the values proportional to the
Euclidean distances (perpendicular from every observation to this hyperplane) or/and their
signs. Such an approach is part of the distance-based discrimination. A lot of studies have
been devoted to the comparison of the most well known MP-based (different variants of the
LP and MIP) formulations between them and with the most frequently used statistical
methods (LDF  linear discriminant function, QDF  quadratic discriminant function,
LR  logistic regression)  in terms of their classification performance, using either real
or simulated data (A b a d  and B a n k s [1], A s p a r o u k h o v  and D a n -
c h e v [3], A s p a r o u k h o v  and S t a m  [4], B a j g i e r  and H i l l [5], D u a r t e
S i l v a  and  S t a m [6], J o a c h i m s t h a l e r  and  S t a m [7, 8], K o e h l e r
and E r e n g u c [9], L a m, C h o o  and W e d l e y [10],
N a t h, J a c k s o n  and J o n e s [12], R u b i n [13, 14], S t a m  and   J o a c h i m -
s t h a l e r [16, 17], S t a m  and J o n e s [18]). The conclusions of these studies are not
uniformly supportive of the MP-based methods but there is a fair amount of support for the
statement that the MIP methods have classified surprisingly well if the data are highly
skewed or outlier-contaminated. Very often these methods clearly outperform the above
mentioned statistical discriminant methods. That is why we will direct our attention to the
MIP-based classification procedures.

Let us consider a classical sample-based two-group classification problem: g1 and  g2
are two distinct groups; there is available a training sample of n (n1 from g1 and n2
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from g2) observations whose objects are described by a m-component vector of attributes
xT = (x

1
,..., x

m
). The aim of the classification analysis is a decision function (classifier)  f(w,x)

to be found, such that  xg1 if  f(w, x)і w0, otherwise  xg2 ; w is a vector of the decision
function’s parameters and w

0
  is a cutoff value. The most frequently  used decision function

is linear  f(w, x) = wTx  this is a hyperplane in the m-dimensional attribute space.
The conventional MIP-formulation of the linear classifier construction is as follows:

          n
minimize z=y

i
        i=1

subject to:
xTw + M yi 

 і 0, i  g1; i = 1,..., n1,
    xTw M yi < 0,   i  g2; i =  n1+1,...,  n1+ n2,

where  wk (k= 0, 1,...,  m) are unrestricted (they correspond to the coefficients of the decision
hyperplane); the 0/1 integer variable yi = 1 if the i-th observation is misclassified, and
 yi = 0 otherwise (correct classification), i = 1, ..., n; M is a sufficiently large positive real
number. Obviously the objective function z is equal to the number of misclassifications.

MIP models directly attack the objective of minimizing the number of misclassifications
at high computational cost, whereas LP models attack that objective indirectly at lower cost
(B a j g i e r  and  H i l l, [5]). There are several studies devoted to MIP classification
algorithms (e.g. W a r m a c k  and G o n z a l e z [20], S o l t y s i k  and  Y a r n -
o l d [15], D u a r t e   S i l v a  and  S t a m [6], R u b i n [13], K o e h l e r  and E r e n-
g u c [9]). Unfortunately all known MIP-based classification formulations are NP-hard (A
m a l d i  and  K a n n, [2]) and there is no hope to obtain fast (polynomial time) algorithms
for their solving unless P = NP. Almost all authors use the “branch and bound” techniques.
These techniques are well studied in the general case (for solving arbitrary MIP problem)
but they are not efficient, since they have exponential computational complexity and do not
take into account the specificity of the classification problem. That is why there is reason
to consider the use of heuristic procedures that give competitive accuracy with the MIP
models but are substantially faster. Such heuristics can be used also to provide a good initial
feasible solution to a branch-and-bound mixed-integer classification models.

The purpose of this paper is to introduce such a heuristic that is based on the fast
combinatorial search taking into account the specificity of the classification problem. The
paper also presents preliminary test results for the proposed heuristic, the two known
heuristics (R u b i n [13]), the MIP-based classification algorithm (D u a r t e  S i l v a and
S t a m [6]) and the linear discriminant analysis (LDF), using randomly generated data
with multivariate normal distribution.

2. Heuristic procedure based on a fast combinatorial search

The proposed heuristic is based on a mathematical statement and a heuristic assumption.
The first is considered and discussed in W a r m a c k  and  G o n z a l e z [20]. We

will explain briefly this idea. Let us consider the described in the above section classical
sample-based two-group discriminant problem: two groups (g1, g2 ), a training set from n
(n1  from g1,  n2  from g2 ) observations described by  m attributes x1 ,..., xm  . The aim is
the linear classifier (decision hyperplane) with the minimum number of misclassifications
to be constructed so that if wTx >w

0
 then assign  x to  g1; otherwise  assign x to g2, where

wT = (w1, w2 ,..., wm , w0 )  is a weight vector and w0 is a cutoff value. Therefore we have
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a system of n linear inequalities (one per each observation) and are looking for a minimal
system of r inequalities (misclassifications) without which the other n r  linear inequalities
(correct classifications) form a consistent system. This is a problem of a discrete
optimization and in general case there is not a unique solution. If we replace the inequalities
with equalities then each observation forms a hyperplane in the (m+1)-dimensional
attribute space. W a r m a c k  and G o n z a l e z [20] use the term edge for the intersection
of these m observation hyperplanes. Each edge is described by a system of m homogeneous
equations (observations) with m+1 variables (that means each edge is described by the
hyperplane containing these m observations). Their algorithm proceeds by iteration
through sequence of edges and exploits actively the following assumption (Haar condition):
every m  (m+1) matrix formed by the intersection of m observation hyperplanes contains
at least one m  m submatrix which is nonsingular. In other words the Haar condition
means that is no m+1 points (training observations) that lie in a hyperplane in the m-
dimensional attribute space and also there is no m points that lie in a (m2)-dimensional
plane. It may be accepted that the Warmack  Gonzalez algorithm contains in generally
two steps:

 First step: Construction of a hyperplane from combinations of m observations and
finding its misclassifications (violated inequalities) accepting that the m observations of
the hyperplane are correctly classified. W a r m a c k  and G o n z a l e s [20], proved (this
is the mathematical statement we used) that the end of this step is an optimal hyperplane
(with the minimum number of misclassifications).

 Second step: A  linear transformation of the optimal hyperplane, so that the m points
(observations) of it go into the subspace corresponding to the group of each of them, while
the other nm points keep the subspace defined by the first step (W a r m a c k  and
G o n z a l e z [20], Appendix A).

We will base our heuristic procedure on the above discussed mathematical statement
and will search for “promising” (from classification point of view) combinations of m
training observations.

The heuristic assumption is that some classifiers hardly depend from the closest (in
Euclidean sense) points (training observations). This intuitive assumption is a basis for
most nonparametric statistical discriminant procedures as kernel and nearest neighbour
estimators, neural networks etc. Obviously the insignificant translation and/or rotation of
given hyperplane could change the subspace (in respect to it) mainly of the closest points.
Therefore it seems that the closest points are the most “promising” that should be taken
into account when we would like to improve the classification accuracy of one decision
hyperplane. Or with other words if we use m training observations (the Haar condition
holds) to construct the decision hyperplane in the m-dimensional attribute space, then we
should replace some of these m observations (points) with the closest (to the hyperplane)
points and should investigate the accuracy of the new hyperplanes.

Based on the discussed above mathematical statement and heuristic assumption the
main idea of our heuristic procedure is at every step to try to improve the obtained up to
now decision hyperplane by forming of new combination of m observations taking:

m1 observations from the set M (we call it the set of the “most promising”
observations);

and one observation from the set P (we call it the set of the “promising” observations).

3. Fast combinatorial search (FCS) heuristic algorithm

We will use the following notation during the description of the FCS algorithm:
xi = (xi1,..., xim)'  i-th training observation with the values of its attributes;
best  the best (minimum) number of misclassifications;
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M(i)  the set of the “most promising” observations of step i;
P(i)  the set of the “promising” observations of step i.

Step 0. Initial solution
Compute the mean vectors O1 (group  g1) and O2 (group  g2). Construct the

hyperplane H0 that is orthogonal to the line O1O2. The m coefficients of H0 are:
 w = O2  O1 . The cutoff value of this hyperplane w0 = 0. This initial decision hyperplane
is equivalent to the linear discriminant function in the presence of independent attributes.

best = min (n1, n2);

i = 1. Let gi  H0 . We will denote this hyperplane by H0 ( xi ) obviously its cutoff value
is w0 = xi w

T. Compute error(xi ) = number of misclassifications for this hyperplane.
If best > error(xi ) then:
    best = error (xi );

M(0) = {the m closest observations to H0(xi ), including xi };
P(0) = {the next k (after the first m) closest observations to H0(xi )};

i = i + 1. Do while in.

Step 1. Investigation of the combinations between the elements of M(0) and P(0).
Construct a hyperplane containing the m observations (points) of M(0). Construct a
hyperplane for every combination (of m points) that consists of m1 observations from
M(0) and one observation from P(0)  the number of these combinations is m x k. Save
the 20 best solutions (hyperplanes). For every one of these 20 hyperplanes create its M(1)
and P(1), where M(1) contains the m training observations that form this hyperplane and
P(1) contains the v closest misclassification observations (in respect to this hyperplane).
Update the value of best. Obviously in general more than one hyperplane will have best
number of misclassifications and  some of these 20 hyperplanes will have number of
misclassifications more than best. Let us denote the next (by its goodness) error between
the 20 hyperplanes with bestnext.

Step 2. Investigation of the combinations between the elements of M(1) and P(1) for
every hyperplane with error = best or error = bestnext. Every time update the best 20
solutions if the current error is less or equal to best. For the last obtained solution with error
= best create M(2) and P(2) per every attribute. Let us take the j-th attribute xi  and let denote
by O (o1, ..., oj,..., om) the middle point of the segment O1O2. . Take the 2m closest
observations to the considered best hyperplane (solution). Assign everyone of these closest
observations to the set of:

"most promising” observations M(2, j) if its j-th attribute is less or equal to oj;
"promising” observations P(2, j) if its j-th attribute is greater than  oj.

Step 3. Investigation of the combinations between the elements of M(2, j) and
P(2, j),  j = 1, ..., m.

Let us accept that card (M(2, j)) і card(P(2, j)) and let the elements of M(2, j) are
a(1), ..., a(s1) and the elements of P(2,  j) are b(1), ..., b(s2),  s1 + s2 = 2m, s1 іs2. Investigate
the following combinations:

a(1), ... , a(m), b(1); ... ; a(1), ..., a(m), b(s2);
a(2), ..., a(m+1), b(1); ...; a(2), ..., a(m+1), b(s2);

. . .
a(s1 m+1), ..., a(s1 ), b(1); ...; a(s1  m+1),..., a(s1 ), b(s2);

and update the best solutions if error best.
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Step 4. Only for the last obtained solution with error = best repeat Step 1.

Step 5. A linear transformation of the optimal hyperplane.
The aim of this step is its m training observations to go into the subspace

corresponding to the group of each of them, while the other n-m points keep their subspace
(W a r m a c k  and  G o n z a l e z [20], Appendix A).

4. Experiments and Discussion

To evaluate the efficacy of FCS heuristic algorithm, tests were performed using randomly
generated multivariate normal distribution (two groups) as follows: a) 4,  5 and 6
attributes; 100 observations (50 per group)  20 data sets were generated per every
attributes’ number; b) 4, 5 and 6 attributes; 200 observations (50 per group)  20 data sets
were generated per every attributes’ s number. For all simulations the common covariance
matrix was equal to unity matrix and all components of mean vector per group were equal
to 1.0 per group 1 and 0.8 per group 2.

The FCS algorithm has two parameters  k (Step 0) and v (Step 1) that correspond
to the respective number of closest observations (points). These parameters take the
following values during our simulated study: k=25 and v=5.

The experiment includes 20 simulated data sets per every combination of Na
and No.
Table 1.

         Mean number of misclassifications Mean number of major pivots
N a N o

D&C       FCS      H1         H2       LDF D&C            FCS           H1           H2

4 100 14.9 16.0 19.8 17.4 20.6 53819 371.6 107.3    1197.1
5 100 11.8 13.1 18.1 14.8 17.3 190730        397.1 141.0    1631.8
6 100 8.9 10.6 15.4 12.0 15.1 387433 455.1 189.9    3164.2
4 200 33.8 35.4 44.3 39.6 41.7 238144 482.5 215.7    2507.2
5 200 26.7 28.9 36.2 31.9 34.5 1245623 551.7 302.7    3980.6
6 200 21.9 24.3 35.3 28.7 30.5 3616615 533.5 341.9    4413.3

Table 1 (continuation)

N a N o           Mean number of minor pivots      Mean pricing

D & C      H1             H2    D&C FCS H 1     H2

4 100 16544.8 2978.7 29903.4 883152.6    229800 11799.3  133492.3
5 100 47909.9 3590.4 39143.8 3317446.7      521450 15762.0  184315.5
6 100 74610.2 4477.5 68501.8 6877750.0      78750        21571.7   362617.0
4 200 84291.6 11696.5 129029.5 4871555.6    765650 45279.9   529898.6
5 200 343491.7 14779.9 185061.5     25318089.7     955750 64070.2   847418.2
6 200 821557.9 15906.2 200442.8     75362453.8     1170100     73037.7   947413.4

Table 1. Legend:

Na number of attributes; No  number of observations;
D&C  Divide and Conquer algorithm (D u a r t e  S i l v a  and  S t a m [6]);
FCS  Fast combinatorial search heuristic;
H1  Heuristic 1 (Rubin, 1990); H2  Heuristic 2 (R u b i n [13]).

4   Problems of Engineering Cybernetics and Robotocs, 48
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We compare the proposed heuristic algorithm FCS with the following discrimination
procedures: a) exact algorithm “Divide and Conquer” (D&C) proposed by D u a r t e
S i l v a  and S t a m  [6]; b) two heuristic procedures (H1 and H2) developed by
P a u l  R u b i n [13]; c) linear discriminant analysis (LDF).

The computational efforts of every algorithm (except LDF) were evaluated by:
a) Number of major pivots. A major pivot is one where the selected nonbasic variable

is pivoted into the basis (about m
3
 arithmetical operations). The FCS algorithm performs

one major pivot for a construction of every hyperplane passing through m training
observations.

b) Number of minor pivots. A minor pivot is one in which the selected nonbasic
variable remains nonbasic by going from its upper bound to lower bound or from its lower
bound to upper bound (m arithmetical operations). The FCS algorithm is a combinatorial
algorithm, based on geometrical interpretations of the classification problem and it does
not carry out minor pivots.

c) Pricing. “Pricing” refers to the sub-routine of the Simplex method in which this
algorithm spends most of its time. A pricing is performed each time a column (associated
with a nonbasic variable which is candidate to enter the basis) is evaluated (“priced”)
regarding to its impact to the objective function. The pricing corresponds to about 2(m+1)
arithmetical operations.

Table 1 summarizes the statistics for number of misclassifications and computational
efforts of investigated classification procedures (algorithms).

The obtained results assure us of the efficacy of the proposed heuristic procedure since
its number of misclassifications is:

 definitely less than LDF, H1 and H2 and
 greater that the D&C algorithm, but the both values are almost comparable,

while its computational efforts are many times less than the exact D&C algorithm’s ones
and almost equal (in general) with the H2 heuristic (that is better than H1 by its number
of misclassifications).

5. Conclusions

We propose a fast heuristic algorithm FCS for solving the classical two-group classification
problem. The main idea of the algorithm is to create consecutively several sets of
“promising” observations. Then a small part of the possible combinations of observations
in each set are evaluated in search for a better objective function value. The carried out
simulated study (with multivariate normal distribution data sets) demonstrates that the
obtained FCS solutions are very close (in respect to the number of misclassifications) to
the optimal solutions while their computational efforts (pivots, pricing) are many times
less.
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Эвристическая процедура для задачи классификации в двух группах
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(Р е з ю м е)

Основные формулировки смесено-целочисленного программирования атакуют
прямо цель  минимизирование числа ошибочных  классификаций, при чём они
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требуют большие вычислительные усилия. Поэтому целесообразно рассмотривать
применение эвристических процедур, которые имеют сравнимую точность, но
работают гораздо быстрее. В этой статии представлена такая эвристика, которая
основывается на быстром комбинаторном поиске, имея в виду специфику
классификационной задачи. Осуществлено симулированое исследование
(с мультивариационными множествами данных, имеющих нормальное
распределение). Оно показывает, что предложенная эвристика даёт решения
очень близкие (по отношению числа ошибочных классификаций) к оптимальным
решениям, тогда как вычислительные усилия (пивоты, прайсинг) на много раз
меньше.


