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1. Introduction

The theory of the artificial neural networks (NNs) is an important division of the artificial
intelligence (AI) theory. It reflects the key components of the AI-systems [1]: representation,
reasoning and learning. On the other hand, according to [2] the artificial NNs differ from
the symbolic AI-machines by the level of explanation, by their processing style and by their
representational structure. If the symbolic AI is described in a “top-down” fashion, the NNs
have a natural learning capability and they operate in a “bottom-up” manner.

If in classical AI the emphasis is on building symbolic representations, which are
discrete and arbitrary and the processing is sequential, the NN models are of a parallel
distributed processing. In such models the processing takes place through the interaction
of a large number of neurons. Each of the neurons sends excitatory or inhibitory signals
to other neurons in the network. In addition, NNs place great emphasis on neurobiological
explanation of cognitive phenomena.

The role of the artificial NNs as a technical counterpart of their biological prototypes
is explained in Section 2.

If in classical AI the processing is sequential, which most probably can be explained
by the sequential nature of natural language and logical inference, and also by the von
Neumann’s machine structure, the parallelism in the NNs makes them more flexible and
robust. The false switching of a single neuron is not crucial for the whole system, because
each feature is spread in parallel to many neurons. The automatic processing of contextual
information is another important corollary of parallelism. Knowledge in NNs is not
represented by declarative expressions, but by the very structure and activation state of the
network. It is the whole NN that is responsible for the solution of a given problem. Every
neuron is potentially affected by the global activity of all other neurons in the network and
the result is an automatic context handling.

The texts most closely related to the NN processing style, but encompassing the
representativeness of classical AI (in hybrid models) are cited in Section 3.
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If in classical AI symbolic representations possess a quasi-linguistic structure and if
due to the limited stock of symbols the new expressions may be composed in accordance
with the compositionality of symbolic expressions, the nature and the structure of
representations in NNs is decisive. Most of the network models proposed to date are very
closely related to the concrete problem: they solve it for the particular class in a way which
cannot be extended easily.

The bibliography for NNs is presented in Section 4; the evolution of ideas in the field
is viewed in a special subdivision.

2. Prototypes of the artificial neural networks in biology and their technical
counterpart

According to the recently modern evolutionary computation the NNs are one of the basic
representatives of the POE (Phylogeny, Ontogeny, Epigenesis) model in the simulated
(artificial) evolution [3]. Having reached a certain level of complexity, the living creatures
develop highly specialized processes which allow the individual to integrate the vast
quantity of interactions with the environment. Such processes are popular as epigenesis
covering the learning systems. There are three systems in the living creatures which
represent the epigenesis: the nervous system, the immune system and the endocrine system.
From the three epigenetic systems, the nervous system has received the most attention. A
typical example is the human brain with some 1010 neurons and 1014 synapses [4] compared
to the four-character genome of length approximately 3.109 [3]. The immune system has
inspired systems for detecting software errors [5], controllers for mobile robots [6] and
immune systems for computers [7]. The endocyne system is made of a large number of
glandular tissues and all of them secrete directly in the blood stream hormones regulating
and integrating bodily functions such as reproduction. From the functional point of view
this system resembles to a certain extent the nervous system in that both help the individual
cope with changes in its environment.

The NNs are the artificial counterpart of these three biological systems, with their
synaptic weights and possibly topological structure changing with the reactions to the
stimuli.

Learning networks exhibit the plasticity necessary to confront complex, dynamical
tasks. Such NNs must be able to adapt at two distinct levels, changing the dynamics of
interneuron interchanges (usually through changes in the synaptic weights) and also by
modifying the network topology itself. The topology modification has proven to be a
successful solution to the stability-plasticity dilemma, i.e. how can a learning system
preserve the already learned, while continuing to incorporate new knowledge [8].

The NN applicational domains are known as soft computing [9] related to ill-defined
problems coupled with the need of a permanent adaptation or evolution; being the artificial
realization of the POE model epigenetic axis, the NN paradigm yields impressive results
frequently rivaling (if not exceeding) those of the traditional methods. The artificial NNs
find application mainly in the software and less in the hardware; their tasks include data
analysis, function approximation, association, categorization and within-class categorization,
pattern recognition and pattern classification, data compression, predicition and control
[10].

The idea of evolutionary artificial NNs including besides the epigenetic axis also the
phylogenetic one, has received attention in recent years. The phylogeny in living nature
covers the evolution of species by itself [11, 12]. From the NN point of view the technical
solution is a population of NNs where evolution proceeds at the global (population) level
and learning taking place at the individual (NN) level. Examples are the works of L i u
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and Y a o [13], N o l f i  et al. [14] and Y a o [15], though they are currently completely
off-line. Another interesting (natural) example is that of the Baldwin effect, which ehxibits
an intricate interplay between phylogeny and epigenesis. The use of this process in
simulated systems has been explored, e.q. by [16] and [17]. The PE (Phylogeny, Epigenesis)
plane in nature is related also with the language acquisition in human beings: to what extent
this ability is innate (phylogenetic) or acquired (epigenetic). A brief historical perspective
one can find in [18] and an exploration of this issue in artifical settings, in [19, 21].

3. System modeling: mathematical equations, neural networks and fuzzy
systems

The description (knowledge) of a system may be formulated in three different ways: by
mathematical equations, by parameter distribution (NNs) and by linguistic rules [22].

Though their evident simplicity, the mathematical equations are impractical for
complex reasons in complex systems: once, to define the exact relationship between the
varying parameters (variables), and twice, in the case of time-varient systems.

This disadvantage seems to be overcome in the sets of linguistic rules. Such sets permit
easy changes and they even include the ill-defined languages which allow contradictory
conclusions from one fact.

The mathematical equations and the crisp/fuzzy If/Then rules formulate the
algorithm of the process explicitly. The NNs formulate the algorithm of the process
implicitly and they are a typical example for a distributed information processing. The
artificial NNs can be viewed as iterative systems in two ways: once, as structurally-iterative,
when their architecture is a simple iteration of aggregating elements (directed graph),
twice, as algorithmically-iterative; in this case the algorithm tends to find the centroids of
the different classes (for self-organizing systems) or to be trained by a supervisor. The
disadvantages with the NNs concern the unpredictable behavior at every instant of the
network operation and also the unproved convergence for every particular case (therefore
instead of total convergence it is a usual approach to prove the asymptotical convergence
of the process); even little changes in the input data lead to a new, but similar training of
the network. Finally, the NNs have less designability than the fuzzy systems. Still the NNs
together with the fuzzy systems are much better for applications for ill-defined problems
than the systems of mathematical equations.

The tendency towards fusion of fuzzy logic and NNs producing the so called adaptive
fuzzy systems is already in the past [23 27]; fusion of these two has lost much of its novelty
now [2832]. New trends are a fusion of fuzzy logic and chaos as well as NNs. A fuzzy system
is a modeling of a human brain summarized from the human expert’s behavior and chaos
is a nonlinear dynamical behavior generated by massive NNs of the human brain.

4. Neural networks: history, periods and bibliographical review

The artificial NNs are systems modeling mainly the massive parallel computations in the
brain. This approach to system complexity enables their success at complex control and
recognition / classification tasks. The biological prototype is mathematically approached
by a weighted directed graph of highly interconnected nodes (neurons). The artififical
nodes are almost always simple transcendental functions whose arguments are the
weighted summation of the inputs to the node; early work on NNs and some current work
uses node functions taking on only binary values. After a period of active development in
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the 1950’s and 1960’s that slowed due to the limitations of the networks then being explored,
NNs experienced a renaissance in the 1980’s with the work of H o p f i e l d [33] on the use
of networks with feedback (graphs with cycles) as associative memories and that of
R u m e l h a r t   et  al. [34] on backpropagation training and feedforward (acyclic graphs)
networks that could learn from input-output examples provided in the training set.
Learning in this sense is carried out by a descent-based algorithm that adjusts the network
weights so that the network response closely approximates the desired responses specified
by the training set. This ability to learn from training data, rather than needing to be
explicitly (heuristically) programmed, was important both for an understanding of the
functioning of brains and for progress in a great variety of applications in which
practitioners had been unable to embed their qualitative understanding in successful
programs. The capabilities of NNs were quickly exploited in a great number of applications
to pattern classification, control and time-series forecasting [35]. Hopfield’s work on
associative memories excited the interest of statistical physicists which began to be
interested in the NN asymptotic behavior. The information theory distinguished itself with
such solid papers as the one of M c E l i e c e  et al. [36] in providing mathematically
sophisticated analyses of network capabilities. The 1990’s saw a significant maturation
both in application and in theoretical understanding of performance and limitations. In
particular, NNs provided a wide spectrum of applied statisticians with a new and powerful
class of regression and classification functions, that for the first time allowed them to make
successful truly nonlinear models involving hundreds of variables. The problem of setting
the type to a “feature” or a “regressor” becomes less critical if it is not necessary to narrow
the choices among the input variables.

The initial generation of books on artificial NNs appeared in the late 1980’s. These
books tended to be either highly simplified overviews with a significant emphasis on
neurobiological issues or edited collections of papers, frequently with a physics orientation
and focus on H o p f i e l d / recurrent / feedback networks. During the last years several
engineering-oriented texts appeared written by capable authors with systems or statistics
background. In this new generation of texts perhaps the first was from H e r t z  et al. [37].
Those of H a y k i n [38] and Z u r a d a [39] are comparable to the text of H a s s o u n
[35]. H a y k i n ’s  is the most comprehensive of these books while H a s s o u n [40] is
somewhat more mathematical while attempting to be comprehensive. Unfortunately the
attempts by all of these authors to be comprehensive leads to the consequence that their
treatment on many important topics is too superficial for advanced professionals and for
the readers of the scientific periodics. Typically, mathematical results are quoted from
other sources and little or no supporting argument, let alone proofs, provided. An attempt
at wider communication that argues for a de-emphasis on rigor becomes corrupted by a
de-emphasis on precision and a frequent absence of significant explanation and development.
A deeper level of explanation can be found in a newer NN literature represented by R i p
l e y [41], S i u  et al. [42] and V a p n i k [43]. These authors either make fewer compromises
with mathematical theory or explain mathematical issues more soundly. Each of these
monographs are more focussed in their treatment of NNs.

Other books that are important for the evolution of the NN paradigm in the course
of time are [4449].

a) More about the NNs during the years (historical notes)

The following historical notes are largely (but not exclusively) based on [5060].
The idea of neurons as structural constituents of the brain was introduced for the first

time by R a m o n  y  C a j a l [61]. Still it took about 30 years when the modern era of
neural networks began with the work of M c C u l l o c h and P i t t s [62]. In their paper,
M c C u l l o c h  and P i t t s  described a logical calculus of NNs. This theory of formal
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NNs featured prominently in the second of four lectures delivered by von Neumann at the
University of Illinois in 1949; von Neumann used idealized switch-delay elements derived
from the idealized neural elements of McCulloch and Pitts in the EDVAC construction
that developed out of the ENIAC.

The late 1940’s and the beginning of the 1950’s marked the theory of the NNs with
texts on the organization of behavior, learning and introduced the idea of the adaptive
systems [6366]. The work of M i n s k y  from 1952 was a predecessor of his excellent paper
“towards AI” [67] with a large section about the NNs.

Another topic that was investigated in the 1950’s is the idea of associative memories.
It was started by T a y l o r [68] followed by the introduction of the learning matrix by S
t e i n b u c h [69]. 1969 was the year when a text on nonholographic associative memory
appeared [70] concerning two network models: a simple optical system realizing a
correlation memory and a closely related NN suggested by the optical memory. 1972 was
fertile with the idea of the correlation matrix memory based on the outer product learning
rule. It was independently introduced by A n d e r s o n [71], K o h o n e n [72] and N a-
k a n o [73].

15 years after the publication of M c C u l l o c h and P i t t s, a new approach to the
pattern-recognition problem was introduced by R o s e n b l a t t in his work on the
perceptron [74]. It was this paper where the perceptron convergence theorem was stated and
it took two years for its proof, followed by other proofs during the next years. The late 1950’s
and the beginning of the 1960’s was the perceptron epoch for the NNs. W i d r o w  and
H o f f [75] introduced the LMS-algorithm and used it to define the A d a l i n e. Soon after
that W i d r o w and his students introduced the M a d a l i n e [76]. Both structures differ
from the perceptron in their training procedure. N i l s s o n [77] wrote the best exposition
even nowadays of linearly separable patterns in hypersurfaces. It boosted a lot of
publications for perceprons. The book by M i n s k y and P a p e r t [78] cooled down the
enthusiasm for perceptrons showing that there are fundamental limits of the single-layered
perceptrons.

1970’s were eminent with the development of the self-organizing models. V o n  der
M a l s b u r g [79] was the first to demonstrate self-organization with computer simulation.
It was followed by the first paper on self-organizing maps [80] motivated by topologically
ordered maps in the brain. Still it took some years before the ART model was introduced
[81].

1980’s were the years of renaissance for the NNs. Perhaps the two publications which
influenced the research most of all were [82] and [34]. Hopfield introduced the idea of an
energy function as a new understanding the NN operation with symmetric synaptic
connections; he established the isomorphism between such a recurrent network and an Ising
model in statistical physics. This work started the epoch of neural modeling and the NNs
with a feedback became famous as the Hopfield networks. Though its abstraction of the
neurobiological systems, the principle of storing information in dynamically stable
networks, is profound. The origin of this principle may be traced back to the pioneering
works [83] (sigmoid firings), [8485] (additive model of the neuron), [86] (mathematical
dynamical description of the excitatory and inhibitory neurons), [87] (probabilistic model
of the neuron) and [88] (brain-state-in-a-box model). R u m e l h a r t  and  M c C l e l l
a n d  in their book have greatly influenced the use of back-propagation learning and it
emerged as the most popular learning algorithm for the multilayer perceptron training.

Another important texts during the previous decade are [89] establishing the principle
of the content-addressable memory, [90] which received more attention than the W i l l s
h a w - von der M a l s b u r g model, [91] introducing the principle of the simulated
annealing, [92]  the principle of reinforcement learning; [93]  the principle of maximum
information preservation, [94]  the radial basis functions as an alternative to multilayer
perceptrons, [9596]  the method of potential functions.
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5. Conclusions

This paper is a summary of the eminent publications in the field of the artificial NNs from
the point of view of their background, evolutionary models and theoretical history. The
analysis starts from the analogy with the biological prototypes and their technical
counterpart. Then the review proceeds with the place of the artifical NNs between the
systems of mathematical equations and the fuzzy systems. A special place is dedicated to
the history in the development of the artificial NN paradigm; the periods and the crucial
moments in the theoretical process are viewed with an emphasis. A subject of a peculiar
interest is the mathematical formalism and the authors’ styles.
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Искуственные нейронные сети происход, эволюционные
модели и история

Стефан Л. Койнов

Институт информационных технологий, 1113 София

(Р е з ю м е)

Представлен обзор искуственных нейронных сетей как средство моделлирования
искуственного интеллекта. Он основан на биологических прототипах этих сетей
и их соответствие в технике на основе ФОЕ-модели в эволюционном вычислении.
Сделан анализ с точки зрения математического формализма. Подробно
рассмотрены отдельные периоды развития парадигмы искуственных нейронных
сетей.


