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1. Introduction

Thetheoryoftheartificial neural networks (\N\s) isan inportantdivisionoftheartificial
intel ligence (A theory . Itreflects thekeyooponertsofthe Al-systans [ 1] - represantation,
reasoningand learmiing. Ontheother hand, acoording to [2] theartificial NNsdiffer from
thesynolicAl-rachinesby the level of explaration, by their prooessingstyleandby their
representational structure. I thesynbolicAl isdescribed ina*“top-domt” fashion, theNNs
have anatural learming capabi ity and they operate ina“‘bottom-up’” manner .

ITinclassical Al theenphasis isonbui Idingsymbol ic representations, whichare
discreteand arbitraryand the processing issequential , theNNmodelsare of aparal lel
distributedprocessing.- Insuchmodels the processing takes place through the interaction
ofa large nurber of neurons. Eachof the neurons sendsexcirtatory or inhibitory signals
tootherneurons inthenetwork. Inaddition, NNsplace greattemphasisonneurobiological
explanation of cognitive phenamena.

Theroleoftheartificial \\sasatecical counterpartoftheirbiolagical prototypes
iseplained inSection?2.

IT inclassical Al the processing is sequential , whichmost praoably canbe explained
by the sequential nature of natural language and logical inference, andalsoby thevon
Neumann”smachine structure, the parallelism in the NNs makes themmore Flexible and
robust. Thefalse switchingofasingle neuron isnotcrucial for thewhole system, because
each feature is spread inparal lel tomany neurons. Theautomatic processingof cortextual
information isanother important corollary of paral lelism. Knowledge inNNs is not
represented by declarativeexpressians, butby the very structureandactivationstateof the
network. It isthewholeNN that is responsible for the solutionafagivenproblem. Bvery
neuron ispotential lyaffected by theglobal activityofal | other neurons inthenetworkand
theresult isanautomaticoontexthandling.

The texts most closely related to the NN processing style, but encompassing the
representativenessofclassical Al (inhybridmodels) arecited inSection 3.

*The paper was supprted by National Science Foundation, grant 1-611/9.
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IT inclassical Al syrmbolic representations possessaquesi-linguisticstructureand if
due to the limited stock of symbols the new expressions may be compased in accordance
with the conpositional ity of symbol ic expressions, the nature and the structure of
representations inNNs isdecisive. Most of the networkmodel s proposed to date are very
closelyrelated tothe concrete prabllem: they solve it for the particular class inawaywhich
cannotbeextendedessily.-

ThebibliographyforN\s is preserted inSection4; theevolutionof idess inthe field
isviened inaspecial subdivision.

2. Prototypesoftheartificial neural networks inbiologyand theirtednical
counterpart

According to the recentlly modern evolutionary computation theNNs are one of the basic
representatives of the POE (Phylogeny, Ontogeny, Epigenesis) model inthe simulated
(artaficial) ewolution [3] - Having reachedacertain level of carplexity, the livingcreatures
develap highlly specialized processeswhichal lowthe individual to integrate the vast
quartity of interactionswith the enviroment. Suchprocessesare popular asepigenesis
coveringthe leaming systems. Thereare three systens inthe living creatureswhich
represent the epigenesis: the nernvous system, the inmune systemand theendocrine system.
Franthe three epigeneticsystens, thenenous systemhas received themostattention. A
typical example is the human brain with some 10%° neurons and 10 synapses [4] camnpared
to the four—character gename of length approximately 3.1C° [3] - The immune systemhas
inspiredsystens for detecting softwareerrors [5], control lers formaobi le robots [6] and
immune systems for computers [ 7] - The endocyne system ismade of a large number of
glandular tissuesardal I of thensecrete directly in theblood streamhormones regullating
and integrating bodi ly functions suchas reproduction. Fromthe functional pointofview
thissystemresarbles toacertainextent thenenvous system inthatboth help the individual
copewithchanges in Itsenviromment.

TheN\sare theartificial coutterpartof these threebiological systams, with their
synapticweightsand possibly topological structure changingwith the reactions to the
stnuli.

Learmiing networksexhibit the plasticity necessary toconfront carplex, dynamical
tasks. SuchNNs must be able to adapt at twodistinct levels, changing the dynamics of
intermeuron interchanges (usual ly through changes inthe synapticweights) andalsoby
modifying the network topology itself. The topologymodificationhasproventobea
successful solutionto the stabil ity-plasticity dilema, i.e. hovcana leaming system
preserve the al ready learmed, whi le continuing to incorporate newknowledge [8].-

TheNNappl icational domains areknoan assoft carputing [9] related to il 1-defined
problems coupledwith theneed of a permanent adaptation or evolution; being theartificial
real izationof thePCEmodel epigeneticaxis, the NNparadignyields inpressive results
frequently rivaling (ifnotexceeding) those of the traditional methods.. Theartificial \Ns
findapplicationmainly inthesoftwareand less inthe hardnare; their tasks includedata
analysis, fuctionggproxination, association, Gtegorizaticnandwithin-class categorization,
pattem recognitionand pattemclassification, datacampression, predicitionand cortrol
a1

The ideacfevolutionaryartificial N\s includingbesides theepigereticaxisalsothe
phylogeneticone, has receiived atterttion in recentyears. The phylogeny in living nature
coverstheevolutionof specieshy itself[11, 127]. Franthe NN pointof viewthe technical
solution isapopulationofNNswhere evollution proceeds at the glabal (population) level
and learning taking place at the individual (\N) level . Exarples are theworksofLiu
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andYao[13], Nol Fi etal. [14] andYao[15], thoughthey are currently completely
off-lire. Another interesting (natural) earple is trat of theBaldvineffect, whichexibits
an intricate interplay between phylogeny and epigenesis. The use of thisprocess in
simulated systenshasbeenexplored, e.q- by [16] and [17] - The PE (Phyllogeny, Epigenesis)
plare innature isrelated alsowith the language acouisition inhumanbeings: tovwhatextent
thisability isimate (phylogenetic) oracouired (epigeretic) - Abriefhistorical perspective
orecantind in [18]andanexplorationofthis isste inartifical settings, in[19, 21].

3. Systemmodel ing: mathematical equations, neural networks and fuzzy
systens

The description (knovledge) of a systemmay be formulated in three differentways: by
mathematical equations, by parareter distribution (\N\s) andby linguisticrules [22].

Though their evident simplicity, the mathematical equationsare impractical for
carplexreasons incarplexsystans: once, todefine the exact relationship between the
varyingparareters (variables) , and twice, inthecase of time~varient systens.

Thisdisadvantage seans tobeovercare inthesetsof linguisticrules. Suchsetspermit
easy changes and they even include the i1 1-defined languageswhichal low cortradictory
conclusions fromone fact.

The mathematical equations and the crisp/fuzzy 1f/Then rules formulate the
algoritimof the process explicitly. The NNs formulate the algorithm of the process
implicitlyand theyare atypical exanple for adistributed informationprocessing- The
artificial N\\scanbevienedas iterativesystans intwovnays: once, asstructural ly-iterative,
whentheirarchitecture isasimple iterationofaggregating elements (directedgraph),
twioe, asalgoritmical ly-iterative; inthiscasethealgoritimtends tofind thecentroids of
the differentclasses (for self-organizing systens) or tobe trainedby asupervisor . The
disadvantageswith the NNs concerm the unpredictable behavior at every instantof the
network operationand also the unproved convergence forevery particular case (therefore
instead of total convergence it isausual approach to prove theasymptotical convergence
of theprocess) ; even little dhanges in the inputdata lead toanew, but simi lar trainingof
thenetwork. Finally, theNNshave lessdesignebi ity thanthe fuzzy systems. Still theNNs
together wirth the fuzzy systemsare much betterfor sppl ications for il 1-defined problens
than the systems of matthemaitical equations.

The tendency tonards fusion of fuzzy logic andNN\s producing the socal led adaptive
Tuzzy systems isalready inthepast [ 23- 27] ; fusionofthese twohes lostmuchof itsnovellity
now [28-32] . New trends area fusionof fuzzy logicandchaosasvel l asN\s.. Afuzzy system
isamodeling of ahuman brain summarized from the humanexpert”s behavior and chaos
isanonlinear dynamical behavior generated by massive NNs of the human brain.

4. Neural networks: history, periodsand bibliographical review

Theartificial N\sare systemsmodel ingmainly the massive paral lel computations inthe
brain. Thisapproach to systemcomplexity enables their success at corplexcontrol and
recognition/ classification tasks. Thebiological prototype ismathematical ly gpproached
by aweighted directed graph of highly intercomnected nodes (neurons) - Theartififical
nodes are almost always simple transcendental functionswhose arguments are the
weighted summation of the inputs tothe node; earlywork on NNs and same current work
usesnode functions taking ononly binaryvalues . Afteraperiodofactivedevelopment in
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the 1950”sand 1980” s that sloned due to the limitationsof thenetworks thenbeingexplored,
NNs experienced arenaissance inthe 1980°swith theworkofHopfie l d[33] ontheuse
of networks with feedback (graphswith cycles) as associative memories and that of
Rumelhart et al. [34] onbackpropagationtrainingand feedforward (acyclicgraphs)
networks that could learm from input-output examples provided inthe training set.
Leaming inthissense iscarried outby adescent—based algorittmthat adjusts the network
weights sothat the network response closely approximates the desired responses specified
by the training set. This abi lityto leamfromtrainingdata, rather thanneedingtobe
explicitly (heuristical ly) programmed, was important both for an understandingof the
functioning of brains and for progress inagreat variety of applications inwhich
practitionershad beenunable to embed their qual itative understanding insuccessful
programs. The capabilities ofN\swerequickly exploited inagreat nurber of applications
‘topattem classification, control and time-series forecasting [35] - Hopfield”sworkon
associative memoriesexcited the interest of statistical physicistswhichbegantobe
interested inthe NNasymptoticbehavior . The informattiontheory distinguished itselfwith
suchsolidpapersastheoneofMcEl i ece etal. [36] inproviding mathematically
sophisticatedanalyses of network capabi I ities. The 1990 ssawasignificant maturation
both inapplicationand in theoretical understanding ofperformance and limitations. In
particular, N\s provided awide spectrunof gppl ied statisticianswithanevand porerful
classof regressionand classificationfuctions, thatfor the firsttimeal loved themtomeke
successful trulynonlinear models ilnvolvinghundreds of variables. The problemof setting
thetypetoa““feature’ ora“ regressor’’becares lesscritical ifitisnotnecessarytonarrow
thechoicesamong the inputvariables.

The initial generation ofbooks onartificial NNsgppeared inthe late1980°s. These
books tended tobe erther highly simplified overviewswithasignificantemphasison
neurcbiological issuesoreditedool lectionsofpapers, frequentlywithaphysicsorientation
andfocusonHop i el d/ recurrent/ feedback networks. During the lastyears several
engineering-oriented texts sppearedwr itten by capable authorswith systemsor statistics
badkground. Inthisnewgenerationof textsperhaps the firstwas fronHertz etal . [37].-
ThoseofHay ki n[38] andZurada[39] are conparable to the textofFHassoun
[35]- Haykin’s isthe most comprehensive of these bookswhileHassoun[40] is
somewhat more mathematical whi le attempting tobe camprehensive. Unfortunately the
attemptsbyall of theseauthors tobe comprehensive leads to the consequence that their
treatmertton many important topics is toosuperficial foradvanced professionalsand for
the readersof thescientificperiodics. Typically, mathematical resultsarequoted from
other sourcesand littleor nosupportingargurent, letaloneproofs, provided. Anattenpt
atwider cormunication that argues for a de-emphasis on rigor becomes corruptedby a
de-enphasisonprecisionandafrequentabsence af significantexplanationand developrent.
Adeeper level of explanation canbe found inanewer NN Iiterature represerntedby R i p
ley[41], Siuetal. [42] andVapn i k[43]. These authorseither make fewer compronises
withmathematical theory or explainmathematical issuesmore soundly. Eachof these
monographs are more focussed intheir treatment of NNs.

Other books thatare important for the evolution of the NN paradign inthe course

of timeare [44-49] .
a) More about theNNs during the years (historical notes)

The fol lovinghistorical notesare largely (butnotexclusively) basedon [50-60] -

The ideaof neurons asstructural constituentsof thebrainwes introduced for the first
timebyRamony Cajal [61]. Still it tookabout 30 years when the moderm era of
neural networks beganwiththeworkofMcCul lochandP i tts[62]. Intheir paper,
McCul loch andP i tts describeda logical calculus of NNs. This theory of formal
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NNs feattured prominently in the second of four lecturesdel ivered by vonNeurannat the
University of 111inois in1949; vonNeumanmnused ideal 1zed switch-delay elements derived
fromthe ideal ized neural elements of McCul loch and Pitts in the EDVAC construction
that developed out of the ENIAC.

The late 19407 s and the beginning of the 1950 s marked the theory of the NNswith
texts onthe organizationof behavior, learmingand introduced the idea of the adaptive
systens [63-66] - Theworkof M i nsky from1952wasa predecessor of hisexcel lent paper
“tonwards Al”’ [67] witha large section about the NNs.

Another topic thatwes investiigated inthe 1950 s isthe ideaofassociativemamories.
Itwas startedby Tay 1 or [68] fol loned by the introductionof the learmingmatrixby S
teinbuch[69]. 1969was the year when a text on nonholographicassociative memory
appeared [70] conceming two network models: asimple optical systemrealizinga
correlation memory and aclasely related NN suggested by the optical memory . 1972was
fertilewith the ideaofthe correlationmatrixmemory based onthe outer product learming
rule. Itwas independently introducedbyAnderson[71], Kohonen[72] andNa-
kano [73]-

15yearsafter the publicationofMcCul lochandP i tts, anewapproachtothe
pattem-recognition problemwas introducedbyRosenb latt inhisworkon the
perceptron [ 74] - Itwasthis paperwhere the percepitron convergence theoremwas stated and
it tooktwoyearsfor itsproof, follonedbyother proofsduringthenextyears. Tre late 1950°s
and the beginning of the 1960’ s was the perceptronepoch for theNNs.Widrow and
Ho ff [ /5] introduced the LMS-algorittmandused it todefinethe Adal 1 ne. Soonafter
thatW i drowandhis students introduced theMada l 1 ne [76] - Bothstructuresdiffer
franthe perceptron intheirtrainingprocedure. N i I sson [ 77]wrote the best exposition
even nowadays of linearly separable pattems inhypersurfaces. Itboosted a lotof
publications for perceprons. The bookbyMinskyandPaper t [78] cooled down the
enthusiasmfor perceptrons shoving that thereare fundamental limitsofthe single-layered
perceptrors.

1970”swere eminentwirth the developrent of the self-organizingmodels. Von der
Mal sburg[79]vwesthe first todemonstrate self-organizationwirth computer sinulation.
Itvwesfol loned by the First paper onself-organizing maps [80] motivated by topological ly
ordered maps inthebrain. Still 1t took sare yearsbefore the ART model was introduced

[&d-

1980’ swerethe yearsof remaissance for theNNs.. Perhaps the two publicationswhich
influenced the researchmost of al Iwere [82] and [34] - Hopfield introduced the ideacfan
energy functionas a new understanding the NN operation with symetric synaptic
coections; he established the isomorphismbetween sucha recurrentnetworkandan Ising
model instatistical physics. Thiswork started the epoch of neural model ingand the NNs
with a feedback became famous as the Hopfield networks .. Though I'ts abstractionof the
neurobiological systens, the principle of storing information indynamical ly stable
networks, isprofound. The originof thisprinciplemay be traced back tothe pioneering
works [83] (sigmoid firings), [84-85] (additive model of theneuron), [86] (mathematical
dynamical descriptionoftheexcitatoryand irhibitoryneurons) , [87] (probebilisticmocel
of the neuron) and [88] (brain-state-in-a-boxmodel) . Rume lhart and McClel l
and intheir book have greatly influenced the use ofback-propagation learmingand it
emerged as the most popular learmingalgorithmfor thenulti layer perceptron training.

Another inportanttextsduring the previous decade are [89] estzblishing the principle
of the conternt-addressable memory, [90] which receivedmore attentionthantheWi l 1s
haw-vonderMal sburgmodel, [91] introducing the principle of the simulated
amealing, [9Z] —theprincipleof reinforcament leaming; [93] - theprincipleof maximum
informettion preservation, [94] - theradial besisfurctionsasanaltermative tomul ti layer
perceptrons, [95-96] - themethod of potential functions.
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5. Conclusions

This paper isasumaryof theeminentpublications inthe field of the artificial NNs fran
the pointofviewof their background, evolutionary modelsand theoretical history. The
analysis starts fron the anal ogy with the biological prototypes and their technical
counterpart. Thenthe reviewproceedswith the place of the artifical NNs between the
systems ofmathematical equationsand the fuzzy systems. Aspecial place isdedicated to
thehistory inthe development of the artificial NN paradign; the periods andthe crucial
maments inthetheoretical processare vienedwithanemphasis. Asubject ofapeculiar
interest is themathematical formalismand theauthors” styles.
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VICKyCTBEHHBIE HEMPOHHEIE CeTU— IPOUCXOI, DBOJIOLIMOHHEIE
MOIEJIM U UCTOPUSA

Crepam JI. KOMHOB

UHCTUTY T MHPOPMALIMOHHEIX TexHoJormit, 1113 Copus

(PeszomMme)

[pencrapsieH 0030p UCKYCTBEHHBIX HEVPOHHBIX CETEV Kak CPelCTRO MONEJUIMPOBaHUS
VICKYyCTBEHHOT'O MHTEeJUIeKTa . OH OCHOBAH Ha OMOJIOTVUECKUX [IPOTOTUIIAX DTUX CeTeN
U X COOTBETCTBUE B TEXHUKE Ha OCHOBE ®OE—-MOIe M B SBOJIOLIMOHHOM BEUMCIIEHUN .
CHmeJiaH aHaJM3 C TOYKM 3PEHMSI MaTeMaTudeckoro dopmanm3sMa . [IogpobHO
PaCCMOTPEHE OTHEJILHEIE [1EPMOIE PABBUTUA IapaduTMel MCKYCTBEHHBIX HEMPOHHEBIX
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