```
ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 48
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 48
София . 1999 . Sofia
```


An Approach for Non-Conflict Time Scheduling in Packet Radio Networks with TDMA

Kiril Kolchakov

Institute of Information Technologies, 1113Sofia

Introduction

In packet radio networks with time divisionmultiply access (TDMA), each one of the nodes is transmitting in determinedtime intervals, calledtime slots [1]. The non-conflict functioning of the radio network requires that the neighbouring nodesmust not interfere in the environment during one and the same time slot [1, 2]. Some approaches for nonconflict schedulingare described in the references, whichuse neural networks [1]. Themain shortcoming of these approaches is the lack of a guarantee for convergency, while the approach suggested is always convergent. No proof is necessary for this confirmation since it is obvious-the convergence is guaranteedby the increase of time slots number when necessary.

The formalization of the procedures defining the slots number andthe construction of a non-conflict schedule is very important in networks with a large number of nodes.

Approach description

Anecessary condition is to have the topology of thepacket radionetwork withtime division multiply access, which gives information about the neighbouring nodes. A list with the following structure is filled for everynode- the node number, the "neighbouring" and "nonneighboring" field, the field "neighbouring" containing thenumbers of all thenodes, with which it is directly connected, while the "non-neighboring" field- all the remaining ones. The next stage is connected with the determining of the number of "time slots" $-m$, their initial definingbeingnot final. During theprocess of schedule constructionthe increase of mmay be implied. In order to define m, the node with a "neighbouring" fieldwhich consists of the maximumnumber of members, is searched for in the lists. $S_{\max }$ denotes the maximal number of "neighbouring" nodes and then m is defined by the formula $m=S_{\max }+1$. It is assumed that i is the one, which possesses the maximal number of
"neighbouring" nodes. The strategy selected is to represent node i and its neighbouring nodes asbasic inevery of the definedslots, minnumber (each slot is assigned a node). For each one of the time slots a list is defined comprising of: the time slot number, field "represented" andfield "obligatory absent". The "represented" fieldcontains initially only one number per a node (node i or any of its neighbouring) . The field "obligatory absent" includes at first only the neighbouring nodes of the node represented in the given slot.

Node i and it s neighbours only are located in the time slots at this stage, the rest of the nodes, non-neighbouring to node i, withnumbers found in the "non-neigbouring" field of node i list, remain tobe distributed. It is assumed that the location can start fromthe non-neigbouring to node i, which possesses thehighest number and from a slot with number one. It is also possible to start from the lowest number of a non-neigbouring node, as well as from a slot with number mor from the highest number of a non-neigbouring node and a slot with numberm, or from the lowest number of a non-neigbouring node and a slot with number one, but this will not lead to any advantage, just to another schedule.

The procedure checks at first whether the non-neigbouring node with the highest number jis not inthe "doligatoryabsent" fieldof slot No 1 (surely it is not present for the first iteration) . Hence, node jcanbe represented in slot No 1, the list of which gets a new form- inthe field "represented", nodes iand jarealreadypresent, while inthe "dbligatory absent" fieldbesides the numbers of the neighbouring to node i, the numbers of the neighbouring to node j are also present. The same procedure is executed with the next number of the non-neighbouring to node i, node $k(k<j)$ and slot No 2. Naturally the list of slot No 2 is altered in ananalogous way to this of slot No 1 . After the slots are over under thecondition that there arestill non-neighbouringnodes to node i, that arenot distributed, it is started fromslot No 1 . There is a real possibility some of the non-neigbouringto node jnodes to be inappropriate for representation inthe initiallydefinedmslots. In order to ensure convergency of theprocedure, the number of the slots is increased until all the nodes in the network canbe represented.

The approach is formally described as follows:

1. S_{i} denotes the set of nodes neighbouring to node i.
2. N_{i} denotes the set of nodes non-neigbouring to node i.
3. Wdenotes the set of all the nodes in the network, having in mind that $W=S_{i}+N_{i}$ for every node; i.e. for $i=1$ upton.
4. For $i=1$ upto n this set S_{i} is looked for, which contains the maximumnumber of members and is denoted by $S_{\max }$.
5. The number of the time slots is defined according to the formula: $m=S_{\max }+1$.
6. The represented and obligatory absent nodes are defined for each one of the time slots from P_{1} upto P_{m}.
7. The node with the highest number among the set of the undistributed in the time slots nodes is selectedand it is checked inwhich one of the time slots it canbe represented, starting from P_{1}. It shouldbe accounted, that the addition of a new node to a given time slot causes a change in theobligatory absent fieldof this slot. This iteration continues upto the last one, i.e., upto the lowest number of nodes. It is possible some nodes to remain undistributedinthe slots sodefined.
8. If some undistributednodes are present, new time slots are added until the entire finishingof all the nodes in thenetwork. It is dovious that theprocess is always convergent.

An example realization of the approach

The formal approach for constructing a non-conflict schedule is illustratediby a twelve-nodes packet radio network withtime division multiply access. Fig. 1 shows the network topology.

Fig. 1

For each one of the nodes a list is made with the following structure: on one side the nodes, that are neighbouring to the given node are included, on the other-the rest of them. The list is formed as Table 1.

Table1

Node No	Neighbouring	Non-Neighbouring
1	9,11	$2,3,4,5,6,7,8,10,12$
2	9,10	$1,3,4,5,6,7,8,11,12$
3	$4,6,8,9$	$1,2,5,7,10,11,12$
4	$3,5,11$	$1,2,6,7,8,9,10,12$
5	4	$1,2,3,6,7,8,9,10,11,12$
6	3,7	$1,2,4,5,8,9,10,11,12$
7	6	$1,2,3,4,5,8,9,10,11,12$
8	3	$1,2,4,5,6,7,9,10,11,12$
9	$1,2,3$	$4,5,6,7,8,10,11,12$
10	2	$1,3,4,5,6,7,8,9,11,12$
11	$1,4,12$	$2,3,5,6,7,8,9,10$
12	11	$1,2,3,4,5,6,7,8,9,10$

The strategy for initial determining of thetimeslots inthe schedule is as follows: this node is searched for, in the neighbouring field of which there are maximummembers. For the exampleconsideredthis is node3, its neighbouring fieldin the list containing four nodes ($4,6,8$ and 9). The number of the time slots is determined from that, as $m=S_{\max }+1$, i.e. for the case $m=5$. The node 3 and its neighbours with numbers $4,6,8$ and 9 are represented inevery one of the so defined slots according to the st rategy selected.

In slot No 1 node 3 is represented and towards it a list is attached of the nodes, representedin it and of those that cannot be obligatorily representedin this slot. This approach is applied for each one of the slots. The result is given in Table 2.

Table 2

Slot No	Represnted	Obligatory absent
1	3	$4,6,8,9$
2	4	$3,5,11$
3	6	3,7
4	8	3
5	9	$1,2,3$

At this stage the distribution of only five from the twelve nodes in the network is realized. The nodes remaining for distribution are obtained from the list of node 3-these are the nodes of the "non-neighbouring" field, namely 1, 2, 5, 7, 10, 11, 12.

The approach which begins the distribution from the node with the highest number is accepted (for this case it is 12) andslot No1. Theprocedure checks at first whether node 12 is not present in the "obligatory absent" fieldof slot No1 (it is dovious that for the first iterationthis check is unnecessary) .

In the case discussednode 12 is not present in the "obligatory absent" field for slot No 1 andbesides this it is non-neighbouringto node 3, represented in slot No 1, which is checkedby the procedure-in the field "non-neighbouring" fromthe list of node 3, node 12 must be present.

The same procedure is applied for node 11 and slot No 2. There is a restriction in this case because it is neighbouring tonode 4 (it is not inthe "non-neighbouring" field from the list of node 4, representedinslot No 2) .

The procedure discovers whether node 11 can be represented in slot No 3. In the field "obligatory absent" of slot No 3, node 11 is not present, so it shouldbe checked in the list of node 6 if node 11 is available in the "non-neighbouring" field. It is there, hencenode 11 canbe represented in slot No 3.

The next node is No 10, for which the procedure checks whether it canbe represented in slot No 4 . Node 10 is not present in the "obligatory absent" field of slot No 4 on one side, and on the other-it is non-neighbouring to node 8, apriori represented inslot No 4, which enables its representation in the same slot.

The same procecure is applied for node 7 and slot No 5 . The check shows that node 7 is not in the "dbligatory absent" field inthe list for slot No 5 and thenext check is whether it is not neighbouring to the apriori representednode 9 in slot No 5 . The check proves that it is not neighbouringtonode 9, because it ispresent in the "non-neighbouring" fieldinthe list of node 9, which enables the representation of node 7 in slot No 5.

The initially defined slots have finished, threenodes have remainedundistributed5, 2 and 1 .

The increase in the slots number is still not necessary since theprocedure has not been appliedfor all the nodes andall the primarily determined slots. The lists of the slots are modified and they obtain the form, shown in Table 3.

Table 3

Slot No	Represnted	Obligatory absent
1	3,12	$4,6,8,9,11$
2	4	$3,5,11$
3	6,11	$3,7,1,4,12$
4	8,10	3,2
5	9,7	$1,2,3,6$

Themodification consists in the expansion of the lists with numbers of the newly representednodes, adding the numbers of the neighbouring nodes to the newly represented in the "dbligatory absent" field. For this punpose the "neighbouring" fields fromthe nodes
listsareused.
According to the strategy chosen the procedure is applied at first for node 5 and slot No 1. The check in the "obligatory absent" field shows that node No 5 is not from the enumerated ones and therefore it canbe represented in slot No 1.

The same procedure is applied for node 2 and slot No 2 and the result is that node 2 canberepresentedinslot No 2 because it isunavailable inthe "obligatoryabsent" field. The last node not distributed is with No1 and the slot, in which the distribution procedure istrying to represent it iswithNo3. Information is obtained framthe list of slot No 3 about the fact, that node 1 is in the "obligatory absent" field, which forbids its representation in this slot. Theprocedure chooses the next slot No 4, fromthe list of which it canbe seen that node 1 canberepresented inthis slot for it is not found in the "obligatory absent" field.

The final formof the schedule is given in Table 4.
The non-conflict scheduling for a twelve-nodes packet radio network with time divisionmultiplyaccess is shown inFig. 2.

Number of the represented node

Slot	2		4	5	6	7	8	9	10	11	12
P1		1		1							1
P2	1		1								
P3					1					1	
P 4	1						1		1		
P 5						1		1			

Fig. 2
The nodes numbers are written on the abscissa axis, while the ordinate contains the numbers of the time slots, indicatingby one the representation of the given node in a correspondingslot.
Table 4

Slot No	Represented	Obligatory absent
1	$3,12,5$	$4,6,8,9,11,4$
2	4,2	$3,5,11,9,10$
3	6,11	$3,7,1,4,12$
4	$8,10,1$	$3,2,9,11$
5	9,7	$1,2,3,6$

Conclusion

The approach has achieved two purposes - automatic determination of the time slots number in the process of schedule construction and obtaining a non-conflict schedule. The lists formation for the separate nodes is theprimary information, enteredat thebeginning of the process, using a radio network topology for the purpose. This couldbe a labourconsuming process for networks with a great number of nodes, which is a shortcoming of the approach, but having inmind that the design of a non-conflict schedule for such
networks is difficult enough, and inmost of the cases-impossible, it couldbeneglected. The advantage of the formal approach described is that it is always convergent, which is achievedwith the increase of the time slots number.

References

1. Funablkl, N., Y. Takefuj. Aparallel algorithm for broadcast scheduling problems in packet radio networks. - In: IEEE Transactions on communications, June, 1993, No 6.
2. Ephremldes, A., T. V. Truong. Scheduling broadcasts in multihop radio networks. - In: IEEE Transactions on communications, April, 1990, No 38, 456-460.
3. Chlamtacl, A. Lerner. Fair algorithms formaximal link activation in multihop radio networks. - In: IEEE Transactions on communications, July, 1987, No 7, 739-746.
4. Baker, J., A. Ephreml des. The architectural organization of amobile radio network via distributed algorithm. - In: IEEE Transactions on communications, November, 1981, No 11, 1694-1701.

Подход для определения бесконфликтного расписания в пакетных сетях с коллективньм доступом и времеделением

Кирил Колчаков
Институт информационных технологий, 1113 София
(P е зюм е)
Предложен формализованный подход для определения бесконфликтного расписания в пакетных сетях с коллективньм доступом и времеделением. Показано значение подхода в сетях с большим числом узлей. Подход иллюстрован при помощи примера радиосети с двенадцатими узлями.

