BBJIITAPCKA AKAJEMMA HA HAYKUTE . BULGARIAN ACADEMY OF SCIENCES

[POBJIEMM HA TEXHMUECKATA KMBEPHETMKA U POBOTUKATA, 48
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 48

Codms . 1999 . Sofia

CASE-based Development of Web-enabled Database
Applications. The Promise and the Dead-end of the Relational

Approach

Vassil T. Vassilev

Institute of Information Technologies, 1113 Sofia

1. Introduction: the Web-enabled information systens as the key to the
Information Society

The first industrial tedyolagy, which solved successfully the complex task for autaratic
generation of Web-enabled information systems, is the one incorporated in Orae
Desiener/2000 product suite of Oracle Corp [1]- Its Web generator produces
PL/SQL-coded database applications for running under OracLe WeB APPLICATION
S [2] as a background process (see Fig- 1). The Web Server Generator [5] was
added to the Desicer/2000 toolkit in 1996 as complementary to the client-server
generators from the Orcie Deaorr/2000 suite— Forms, Graphics and Reports. It
is an additional altemative together with the programing generators producing
applications coded in Visual Basic and C/C™, which were included earlier in the
release. The Web Server Cenerator of Dsiee/2000 is fully integrated with all visual
diagramers for developing applications with relational databases, which are the core
of the relational concept of RAD. For the fist time they were producing fully featured
and error free applications for renote Intemet/intranet data management, entirely
developed using graphical diagramers, which enploy the relational approach.

In order to access the databases over the World Wide Web using standard Web browsers,
such as Netscape NaviGaTor or MicrosorT INTERNET ExPLORER, the respective URL should
be visited first. Itis in fact a virtual URL since its entering leads to an execution of application
procedures, which are stored on the database server. The structure of such a virtual link is the
following:

http:\\<website>: <port>\<database access descriptor>\<cartridge>\<server
procedure>

Web Server File System

Web Client
(HTML Browser,
f—]
HTML Responses == '—_g
[) (ages) F=—12 %
— HTTP E
— = Listener
Ry Request Broker Static HTML pages
HTTP Requests
S Application
Agent
World Wide Web Reguest Database Server
— Interpretation ———
ﬁ HTML 4
Library Dita SGL Database
Generation Procegsin .

Fig. 1. Internet/intranet access to database information through Oracle Web Application Server

where the first part of the URL— http:\\<website>:<port> —specifies the Intemet
address of the Web sernver and the IP port on which the HTTP listener receives requests
over WW, while the second one is virtual only and it does not exist as a physical
address. It provides specific to the We Arucaniov SRer Information instead. When
processed it is dynamical ly converted into execution of respective stored database
procedures; for example, the URL

http-\\ones. 1inf.acad-bg-8383\ana_doa\plsg\main$._startup

points to the Web server of the Institute of Information Technologies, which is a
Windoas NT computer named owas. iinf.acad.bg with non-secure 1P port 8338 listening
o HTTP requests. Behind the curtains this virtual LRL hides the fact, that the host
owas. 1inf.acad.bg runs the Oracie We ArrLicaTion SsRver For NT and it also acts as
a home for the OracLe 7 Workeroup Server ForR NT. The HTML page supplied in
response 1o the extermal requests via this URL over the World Wide Web is dynamical ly
generated during execution of the procedure startup. It belongs to the user scheme
where the PL/SQL package main is stored on the server.

Although the procedures, which Wes ArrLicatiov Serer executes for generating
HTML, could be written in any CGl-compliant languages —PL/SQL, Java, Perl, VRML
etc., for the purpose of the CASE-based design only PL/SQL might be used. The
reason for stacking to this sonewhat old fashion language in the presence of much
more moderm, object-orierted languages like C™ and Java, is the clear advantage of
using native database language. The new version of Desia&r/2000 [7,4] will also
allow Java to be directly generated by the Web Generator, but this will be a real
advantage only when Java becomes a native language for the database sener.

2. The Oracle CASE Story: 100%Authomatic Generation

Desiaer/2000 as a CASE tool for RAD of information system is built on top of the
success of RDBVS developed by Oracle and others last two decades. It is a graphical
front-end to set of typical canponents of the design prooess, layered iInto three separate
logical levels: modellers, desigrers and generators. The main two modellers from the
toolkit cover both the data processing and the data management canponents of the
design prooess:

4

Business Process Model ler, used for specification of business processes on logical
level using high-level tems, such as business function, datastore, dataflow, decision
point, triggering event and output report

Entity Relationship Modeller, giving the abstract model of data in terms of
atities, attributes, ad relatios

The design layer includes several visual diagramers, which specify the physical
implementation of the information system — database and program modules - using
schema diagrams and layout preferences:

Data Diagrammer is used for physical design of the database (tables, views,
SHHEDLS, etc.)

Module Data Diagrammer designs the interactive applications built on top of
the existing data stored in the database (for querying, inserting, updating and deleting)

Module Logic Diagrammer helping the process of writing programing logic
(procedures, functions and triggers in PL/SQL for storing on the sernver) and

Modulle Structure Diagramer necessary for specification of the structural links
between complex sets of modules, comprising the interactive applications of the
information system

All the carponents included in the two levels are unified and tidely integrated.
They work as visual diagramers, which allow specifying the intermal components,
the extermal links and the display preferences of the diagrams in focus in a highly
simplified and helpful manner. Based on the descriptions behind the visual diagrams,
on the next level the respective programing generators can produce interactive
gpplications, which implement particular information systams for processing data fram
the databese.

Oracle

ﬁ Designer/2000
%g = . Oracle Web
ban

Designer/2000 Module Application Server
Repository ‘Design

WebServer
Generator

g

[N

Oracle
Database server

packages
Module E.rgs;lgn

ebServer .~ Oracle ™
Generator _«*
Package ™ !

Library

Module logic

Module Structure

Fig. 2. CASE-based approach for development of Web-enabled database applications

Web-enabled applications could be also developed using the same CASE-based
technology through the WebSenver Gererator (see Fig- 2). Briefly this process works

5

in the followving way . First, using the data and module diagrams prepared during the
design stage, the WebSernver Generator generates several PL/SQL packages for storing
and manipulating data. They are then installed on the Database Server using PL/SQL
interpreter. During realtime already, when the listener of the Ws Arruicatiov SRR
accepts requests for visiting particular URL”s from certain Web browser, it passes
them to the Web Request Broker component of the Wes AppLicatiov Server, which
directs them to the respective cartridoe for interpretation. In this case this isthe PL/
QL cartridge. It interprets the code of the corresponding PL/SQL procedures stored
on the database server and retums the result in the form of HIML code, which is
itself retumed by the HTTP server to be interpreted by the Web bronser of the remote
client. When this interaction includes several steps for full data prooessing, e.g- query-
view-update sequence of actions, this procedure is repeated under the control of the
client logic using standard HTML mechanisms — clicking URL”s, Filling forms,
sumirtting buttors, etc.

3. An example: development for the Web using Designer/2000

Let take an exarple of sinple office information system. It deals with information
about the office departments and the staff working in them. The information will be
accessed over the corporate intranet, or from the World Wide Web. On the Fig.3 Is
shown the screen of the Data Diagramer with the physical data diagram of this
system, converted from the corresponding Entity-Relationship model . The only two
tables in this application represent the departments (DEPT) and employees (BVP)
‘together with sare relationships official ly recorded by the canpany. They are placed
in the VASSIL datascheme, and EMP_ID and DEPT_ID columns identify the records,
respectively. The colums in the table DEPT which describe the information about
departments are DEPT_DEPTNO, standing for its registration number,
DEPT_NAME, for its name and DEPT_LOC for address information. The columns
EMP_EMPNO in the EMP table stand for the number, EMP_EMPNAME for the
name, EMP_JOB for the job and EMP_MGR for the duties of the employees. The
‘two tables are related via Works-in relation (EVP_DEPT_KK is the foreign key in

Data Diagrammer VASSIL (1) - |OFFICE INFORMATION]
! File Edit View Utilities Tools Window Help 1= x|

sl ol s laln) wlxlelils] ala) S1oks] alumlt) 2

=]
EMP_EMP_FK
A
EMP @ VASSIL (#)
" L |DEPT @ VASSIL (# [1]
EMP_DEPT_FK |
|

<]] g

Fig. 3 Teble design for sinple office application

the EMP table pointing to the corresponding record in the DEPT table, while
BVP_DEPT_ID is the placeholder for 1t in EVP). In addition, the reflective relation
Supervised-by gives information about the personal chiefs of each staff menber (it is
denoted as EMP_EMP_FK with EMP_EMP_ID as a placeholder for it).

After campletion of the database design the corresponding DDL cammands could
be gererated by the Server Cenerator of the toolkit (see the listing on Fig. 4). They
ocontain QL statements for creation of tables, for indexing of records, for checking
primary, unigue and foreign key constraints, etc'.

Imediately aftervards or, altermatively, sorenhat later —they should be executed
on the server which will act as a database server through standard SQL interpreter,
such as QL*Plus. Directly fran the data diagram the Web Sernver Generator generates
the PL/SQL package for accessing the database tables from WW via the W
ArrLicaTion SRR this package is called Application Programming Interface for
that table (API). Ore pair of files will be autaratical ly gererated per each table inthe
database (Fig- 5): -pks Tile for the forward declarations, and the .pkb file for the
procedure code. The structure of the APl package CGHDEPT generated for the table
DEPT of our system is listed on Fig. 6, whille the code is shown on Fig- 7.

REM

REM This ORACLE7 command file was generated by Oracle Server Generator
REM Version 5.5.10.0.0 on 19-MAR-98

REM

REM For application VASSIL version 1 database VASSIL

PROMPT Creating tables..

CREATE TABLE dept(dept_id NUMBER(10,0) NOT NULL,
dept_deptno INTEGER NOT NULL,
dept_dname VARCHAR2(240) NOT NULL,
dept_loc VARCHAR2(240) NULL);

CREATE TABLE emp(emp_id NUMBER(10,0) NOT NULL,
emp_dept_id NUMBER(10,0) NOT NULL,
emp_empno INTEGER NOT NULL,
emp_ename VARCHAR2(240) NOT NULL,
emp_job VARCHAR2(240) NOT NULL,
emp_emp_id NUMBER(10,0) NULL,
emp_mgr VARCHAR2(240) NULL);

PROMPT Creating sequences..
CREATE SEQUENCE dept_seq INCREMENT BY 1
START WITH 1 MINVALUE 1 NOMAXVALUE
NOCYCLE NOCACHE NOORDER;
CREATE SEQUENCE emp_seq INCREMENT BY 1
START WITH 1 MINVALUE 1 NOMAXVALUE
NOCYCLE NOCACHE NOORDER;
PROMPT Adding Primary Key constraints to the tables..
ALTER TABLE DEPT ADD (CONSTRAINT DEPT_PK PRIMARY KEY (DEPT_ID)
USING INDEX PCTFREE 10);
ALTER TABLE EMP ADD (CONSTRAINT EMP_PK PRIMARY KEY (EMP_ID)
USING INDEX PCTFREE 10);
PROMPT Adding Unique Key constraints to the table
ALTER TABLE DEPT ADD (CONSTRAINT DEPT_DEPTO_UK UNIQUE (DEPT_DEPTNO)
USING INDEX PCTFREE 10
ALTER TABLE DEPT ADD (CONSTRAINT DEPT_DEPT1 Uk’ UNIQUE (DEPT_DEPTNO)
USING INDEX PCTFREE 10);
ALTER TABLE EMP ADD (CONSTRAINT EMP_EMPO_UK UNIQUE (EMP_EMPNO)
USING INDEX PCTFREE 10);
ALTER TABLE EMP ADD (CONSTRAINT EMP_EMP1_UK UNIQUE (EMP_EMPNO)
USING INDEX PCTFREE 10);
PROMPT Adding Foreign Key constraints to the tables..
ALTER TABLE EMP ADD (CONSTRAINT EMP_DEPT_FK FOREIGN KEY (EMP_DEPT_ID)
REFERENCES DEPT (DEPT_ID));
ALTER TABLE EMP ADD (CONSTRAINT EMP_EMP_FK FOREIGN KEY (EMP_EMP_ID)
REFERENCES EMP (EMP_ID));
PROMPT Creating Table Indexes..
CREATE INDEX EMP_DEPT_FK_ I ON EMP (emp_dept_id) PCTFREE 10;
CREATE INDEX EMP_EMP_FK_T ON EMP (emp_emp_id) PCTFREE 10;

Fig. 4. DOL statements in QL for generation of the office information system database

! Actual ly the [DL statents necessary for creating the database are spread among different fileswith the
same name and different extensions — one for the the tables.tab, one for the sequences .seg,one for the
constraints .con and one for the indexes .ind. 7

[Ceneraed s |

SOL
Table EMP /
Create Package Package cg$emp
Specification __ biks

|_="> okb Records {
2 ==
—— ' ey ”

CmmePa&aw

Table DEPT
Create Package //// Package cgbdept

Specification

pks
'=:>. pkh Records

Procedures

Procedures

Creﬂe Package

Fig- 5. Generating PL/SQL packages for Web Server Database API

— Name: Cg$DEPT
— Description: DEPT table APl package declarations

CREATE OR REPLACE PACKAGE cg$DEPT IS
— Primary key of the DEPT table
DEPT_PK CONSTANT VARCHAR2(240) :=
— Column default prompts
P2_DEPT_DEPTNO CONSTANT VARCHAR2(240) := “Dept No.~
P3_DEPT_DNAME CONSTANT VARCHAR2(240) := “Dept Name~’;
P4_DEPT_LOC CONSTANT VARCHAR2(240) := “Dept Location’;
— DEPT row type
cg$row DEPT%ROWTYPE;
— DEPT row type variables
TYPE cg$row_type IS RECORD
(DEPT_DEPTNO cg$row.DEPT_DEPTNO%TYPE
,DEPT_DNAME cg$row.DEPT_DNAME%TYPE
,DEPT_LOC cg$row.DEPT_LOC%TYPE
,DEPT_ID cg$row.DEPT_ID%TYPE
,JIN_NOTES VARCHARZ2(240));
TYPE cg$ind_type IS RECORD
(DEPT_DEPTNO BOOLEAN DEFAULT FALSE
,DEPT_DNAME BOOLEAN DEFAULT FALSE
,DEPT_LOC BOOLEAN DEFAULT FALSE
,DEPT_ID BOOLEAN DEFAULT FALSE);

TYPE cg$pk_type 1S RECORD
(DEPT_ID cg$row.DEPT_ID%TYPE, JN_NOTES VARCHAR2(240));
— Procedures for accessing DEPT from Web Application Server side
PROCEDURE ins(cg$rec IN OUT cg$row_type
,cg$ind IN OUT cg$ind_type);
PROCEDURE upd(cg$rec IN OUT cg$row_type
,cg$ind IN OUT cg$ind_type);
PROCEDURE del(cg$pk IN cg$pk_type);
PROCEDURE Ick(cg$old_rec IN cg$row_type
,cg$old_ind IN cg$ind_type
,howait_flag IN BOOLEAN DEFAULT TRUE);

END cg$DEPT;

Fig. 6 Structure of the PL/SQL package for the database API

— Name: Cg$DEPT
— Description: DEPT table APl package definitions

CREATE OR REPLACE PACKAGE BODY cg$DEPT IS
PROCEDURE err_msg(msg IN VARCHAR2, type IN INTEGER, loc IN VARCHAR2 DEFAULT

— Name: err_msg

— Description: Pushes onto stack appropriate user defined error message

- depending on the rule violated

— Parameters: msg Oracle error message

- type Type of violation e.g. check_constraint: ERR_CHECK_CON
loc Place where this procedure was called for error trapping

<Forward specifications of other auxiliary procedures for this APl package>

PROCEDURE err_msg(msg IN VARCHAR2, type IN INTEGER, loc IN VARCHAR2 DEFAULT
“) IS
con_name VARCHAR2(240);
BEGIN
con_name := cg$errors.parse_constraint(msg, type);
IF (1=2) THEN
NULL ;
ELSIF (con_name = “DEPT_PK” AND DEPT_PK IS NOT NULL) THEN
cg$errors.push(DEPT_PK, “E”, “AP1”, -9999, loc);
ELSIF (con_name = “EMP_DEPT_FK” AND type = cg$errors.ERR_DELETE_RESTRICT)
THEN
cg$errors.push(cg$errors._MsgGetText(4, cg$errors.ERR_DEL_RESTRICT,
“Dept”, “Emp’),
“E’, “API1”, -9999, loc);
ELSE
cg$errors.push(SQLERRM, “E”, “ORA”, SQLCODE, loc);
END IF;
END err_msg;
<Body definitions of other auxiliary procedures for this APl package>

— Name: ins
— Description: APl insert procedure

— Parameters: cg$rec Record of row to be inserted

- cg$ind Record of columns specifically set

PROCEDURE ins(cg$rec IN OUT cg$row_type,
cg$ind IN OUT cg$ind_type) IS
cg$tmp_rec cg$row_type;

BEGIN
up_autogen_columns(cgrec, cgind, “INS’); — Autogen + Upper
INSERT INTO DEPT (DEPT_DEPTNO, DEPT_DNAME, DEPT_LOC, DEPT_ID)
VALUES (cg$rec.DEPT_DEPTNO, cg$rec.DEPT_DNAME, cg$rec.DEPT_LOC,
cg$rec.DEPT_ID);
slct(cg$rec);

EXCEPTION
WHEN cg$errors.mandatory_missing THEN
validate_mandatory(cg$rec, “cg$DEPT.ins.mandatory_missing’);
cg$errors.raise_failure;
<Definition of other exceptional situations during inserting into the table bepT>

WHEN OTHERS THEN
cg$errors.push(SQLERRM, “E”, “ORA”, SQLCODE, “cg$DEPT.ins.others”);
cg$errors.raise_failure;
END ins;
<Body definitions of the procedures for updating, deleting and locking of the table
DEPT>

END cg$DEPT;

Fig- 7. Body of the generated PL/SQL package for the table DEPT

Later on, or in parallel with the database specification, design and generation
process described here, one could also develop the application for database
management according to the business logic of information processing- On Fig. 8 is
shoan the screen of the Modulle Data Diagrammer containing the module design for
sanple office information system, which could be used for registration of the staff
fram the different departments.

The module has two components, which are placed on the diagram in a sequence
from top o bottom. The First component contains one table usage, namely the basic
usage of the database table DEPT, required for stating department before inserting
any staff information. The second modulle contains two usages of the table BWP — one
mester—-detail usage, corresponding to the relation Works-in and one lookup usage of
the sare table, correspoding to the reflective relation Supervised-by. Fram this diagram
after clicking the proper button the Web Server Generator of Desieer/2000 produces
three separate PL/SQL packages — one per each module component plus one master
package for the whole goplication (see Fig- 9).

10

[D_OFFICE IN. . =1 E3

-'.-I!l K'

DEPT
DEFT_DEF
DE!

DEFT_LOC
DEPTIID

THO

PT_DNAME First module component

B4 _DEPT_FK

Bur_BaF_ T -

Second module companent

‘__;ﬁ

Bl

|-

i

Fig. 8. Modulle design of database table usages cortaining both mester—detail and look-Up relationships

A

Module Design for
WehServer

Generated Files

Mod_A

pplication

Top-Level
Module

Mod_A

Module

— Mo

Components

Module

Generated
Packages

v
o
=

Mod_A

Al
%
&

=

od_B

55!
z &

od_C

ALl
_UX
>

o

Maod_D

PKS

PKB|

Fig. 9. Generating PL/SQL packages for Web Server Database Application

11

The structure of the packages is specified by the PL/SQL code generated in the
-pks File for this module, produced by the Web Sernver Generator . It contains forward
declarations of the procedures for that package (see Fig. 10). Each package has one
main procedure named Startup and several other procedures corresponding to the
DV statements in SQL, but customised according to the module logic. For the set of
three packages generated for our office information system from module diagram
OFFICE they are:

create or replace package OFFICES$ is

end

procedure
procedure
procedure

Startup;
FirstPage;
ShowAbout;

create or replace package OFFICE$DEPT is

procedure
procedure

Startup;

ActionQuery(

P_DEPT_DNAME in varchar2 default null,
Z_ACTION in varchar2 default null);

end

procedure

procedure

procedure

function

QueryView(

P_DEPT_ID in varchar2 default null,

Z_JUST_NON_BASE in boolean default false,
Z_FORM_STATUS in number default WSGL.FORM_STATUS_OK);
QueryList(

P_DEPT_DNAME in varchar2 default null,

Z_START in varchar2 default null,

Z_ACTION in varchar2 default null);

QueryFirst(

P_DEPT_DNAME in varchar2 default null,

Z_ACTION in varchar2 default null);
QueryHits(

P_DEPT_DNAME in varchar2 default null) return number;

create or replace package OFFICESEMP is

procedure

procedure

procedure

procedure

procedure

function

procedure

end;
Fig- 10 Structure of the generated PL/SQL packages for the office application module

OFFICES: Startup is the main procedure of the modulle. It begins the interactive
session invoking the procedure FirstPage. The only work the procedure FirstPage
does is to invoke proper procedures from the package corresponding to the second
component, in this case OFFICE$DEPT.

12

Startup(

P_EMP_DEPT_ID in varchar2);

FormInsert(

P_EMP_DEPT_ID in varchar2 default null,

Z_FORM_STATUS in number default WSGL.FORM_STATUS_OK);
QueryView(

P_EMP_ID in varchar2 default null,

Z_JUST_NON_BASE in boolean default false,
Z_FORM_STATUS in number default WSGL.FORM_STATUS_OK);
QueryList(

P_EMP_DEPT_ID in varchar2 default null,

Z_START in varchar2 default null,

Z_ACTION in varchar2 default null);

QueryFirst(

P_EMP_DEPT_ID in varchar2 default null,

Z_ACTION in varchar2 default null);
QueryHits(

P_EMP_DEPT_ID in varchar2 default null) return number;
Actionlnsert(

P_EMP_EMPNO in varchar2 default null,

P_EMP_ENAME in varchar2 default null,

P_EMP_JOB in varchar2 default null,

P_EMP_MGR in varchar2 default null,

P_EMP_DEPT_ID in varchar2 default null,

Z_ACTION in varchar2 default null);

OFFICE$DEPT: the procedure ActionQuery queries the database table DEPT
using specified by the user criteria, QueryList shoas the list of records which match
the stated criteria, Queny/irst shons the First of them whille Quenyiew is used for
detailed description of any record in that table;

OFFICESEMP: this package besides the procedures which are also present in
OFFICESDEPT package contains the procedures FormInsert and Actionlnsert which
organize the inserting of new records in the table BWP with information for the staff
members.

B : Emp - Microsoft Internet Explorer _ [x|
_File Edit View Go Favorites Help
@ 2 0 N & @ &6 8 X
|| Back For.. Stop Refr... Home Search Favo... Print Font
| Address |hltp:},"rnitkolmitfxxxNASSII_$[MP.Formlnsert?P_DEPT_DEPT_ID= 1 j | Linksl
=

Emp

Enter values for new Emp record

Employees No.: [INF542-1952]
Name: I\l’as sil T. Vassilev

Position: |F’tesearch Associate

Responsibilities: |D|stnbuled Databases Laboratory

Insert | Clear |

Fig. 11. Working with the Office Information System over WW using INERET BxrLoreR

The package bodies of the packages (-pkb files) may cortain also some auxiliary
procedures, which are not public, but using the procedures declared in the files with
forvard declaratians ((pks files) all the builld-in fuctional ity of tre pedece is aailable.
In thisvay, the generated packages could be used for implementing different business
functions. Honever, only one of them is an entry point for data processing according
to the designed module logic. The actual screen of a Web browser during running of
the real office information system according to the above module logic at the stage of
information processing specified in the second modulle component is shown on
Fig. 11.

4_ 100% or less?

All dynamically generated from Wes AppLicaTion Server HTML pages, which are
designed using WebServer Generator of Desicr/2000, belong to the following
categories of interactive forms (Fig. 12):

— Startup Page; organises the sequence of virtual pages in one logical sequence
of HIML frames or pages without data processing functions.

13

— About Page; contains only irformattion logs with no data processing functions.

— Query Form; generates an interactive form for entering of conbination of
search criteria conceming one particular basic table usage.

— Query First/List Form; shoas the list of records matching the entered search
criteria ina tzble form.

— Actiion View/Insert/Update Form; shoas one particular record fran the list of
records shom on the Record List form;

— Delete Confirmation Page; introduce an additional level of security for
catfimation of deleting goerations.

These interactive forms have been used for long time in many approaches for
developing information systems before coming of the Web, e.g- in terminal-based
cantralised systems, in client/server distributed systemns, in visual applications
programmed using languages like VisuaL Basic, VisuaL C, etc. When using the CASE tool
for RAD of information systems, however, these forms could be automatically generated by
the Web Generator from specifications of the table and column usages, layout preferences and
display styles. They could be given completely interactively using the diagrammers and
navigators included in the DesigNER/2000 toolKit.

Startup Page Maodule Content ;
e e e View Form
Personnel Enquiry System]
Welcome to the personnel enquiry system. Employees AL et
/ » About Page - BLAKE D;Et’
eJob Grades Record List . =
s IO OEBEH nilies Lli D 7698 Please confirm delete.
Narne: BLAKE
En— e L [
= AllssqUEY Select the employee of interest
Salary: [32950
:\?' Name Department
L3
ame : ALLEN SALES [.lndalﬂlﬁ’e-)uewh |Reveﬂh [lele‘e!
Dlepartment. [%SALES =ry— = =
BLAKE SALES
; e
T MARTIN SALES
\ Guery Form I SelEe Enter New Employee:
Records 1 to 4 10 I:I I
About Personnel Enquiry First k[Wed } [Freviouk[Cast kE nser
This application was generated by L_H'_I LJ[—hE s | Eorm
\WebServer Generator! .3 'de——E-—p—l’——nW mployees record
Oracle WebServer 2.0 I ¥'

About

Page

Fig. 12. Dynamical ly generated HTML forms for Web-access to database tables

It sounds good, because these forms cover most of the known data usages iIn
contenporary data processing, but in practice it is far fran sufficient for building real
Web gpplications although for quite different reason. Roughly speaking, the essential
drawback of this approach is rooted in the way the Web Generator produces the
PL/SQL packages for the designed applications from the respective module
specifications (see the forward definitions of the generatted procedures on Fig- 10).
Each PL/SQL packages may contain procedures for generating of all the above listed
data usages, but per package they could use not more than one basic table or view.
This simply means, that iT Your application uses data from N tables, N packages will
be gererated, too, and each of themwill contain respective sequence of “‘query form-

14

record list-view form” data usages of that table. This pattem for organising of the
modules is employed here because it is especially convenient in Web setting, since
this way one dynamically generated HTML form could refer to at most one basic
table. Fran the point of view of the desiign process this could be regarded as very low
level of data granularity. It could be much more useful, it the level of granularity
changes fram ertiire table usage 1o separate colum usage instead. Unfortunately, it is
not possible without campete revising of the generation strategy. The fact, that even 2
years after issuing of the farst family of the suite the next family does not address fully
this issue erther, only confirms that the CASE strategy here should be completely
revised.

The second fundamental shortcoming of the approach employed by Desiger/
2000 concerms the module gpplication logic. 1T we would like to program more realistic
applications in accordance to the full logic, at the design level we should be able to
describe the characteristics of the data manipulation module and to transfer them
beyond the current computation point. But since HTTP is a stateless protocol, after
completion of the data manipulation at particular virtual URL all the parareters
associated with the underlying PL/SQL procedure expire. Because of this restriction
the onlly way to extend the statte beyond the current URL is to meke an explicit parareter
passing fran the calling PL/SQL procedure 1o the called one. Unfortunately, the Web
Generator again does not make distinction between the abstract module parameters
and the programing language variables. As a consequence, the precise mapping
during package generation cannot be done automatical ly and the module parameters
stay carpletely useless. For this to be changed, we shauld be able to distinguish better
the mechanisms of parameter passing between the procedures (implementation level
of granularity), from the package export/import between modules (design level of
grarularity).

BEven worse: the Web Cenerator does not allow during module structure design
to use even very basic programming constructs besides simple sequencing and
branching. The intermal logic of the module also follows directly the “hardwired”
pattems of query/view interactions during all data manipulation sessions. Bven the
\ery basic “if-then-els2” conditional, which is neoessary for inplemanting of the sinplest
logic at design level is impossible within the Designer. Here the 100% generation
conoept fai ls to respect even the basic requirements behind the design process. This
means, that after finishing of the application generation we should additional ly tune
the intermodulle logic at firer level of granularity, which in practice requires re-
programming of all dynamic HTML generation afterwards, using the Ws AprLicaTioN
Serer PL/SQL Toolkit. For example, the only way to program cyclic sequence of
dynamically generated HTML forms is to use the underlying recursive calls of the
PL/SQL procedures implementing them, controlling the recursion using standard
buttons. Even the new, second release of Desiaer/2000 which is expected this year
alloas do not solve this issues. Although it is claimed to be possible at design tine to
incorporate some logic into the modules using the underlying control structures of
PL/SQL [3], it does not address the intermodule logic in any way -

5. The next round: Object-oriented CASE

OracLE Desiaer/2000 is not a new product. Its predecessor, Orace CASE DEsiger,
Tailed to cowver the entire process of developrent of information systems in all its
aspects from business modelling, through system analysis, to software development,
generation and documentation. Although the currently available version of the
Dsieer/2000 is somewhat out of date, it is still avaluable tool because of its extreme

15

porver and useful set of utilities. There are some other software tools and CASE
environments, which could be used in the process of development of information
systems as well, but they are either too restrictive, like SDsier fran Ponersoft, or
are oriented tonards general software development, like OMToo, JBunR, etc., to
mention some. However, they cannot be directly used for RAD. Dssieer/2000 is still
the only available tool on the market for rapid enterprise information system
development which takes the full advantages of the re’s — redesign, regeneration,
reusabi lity and reengineering. Unfortunately, its Web generator does not respect very
well the specifics of the underlying HTTP protocol, which still dominates the WW
as a medium for remote access 1o databases. Even the last version, announced some
time ago [3, 4] does not change the underlying problems. There are two canplementary
trends, which willl soon change the picture.

First, the conogpt of navigation or the “drill-dom” metaphor plays an important
role here. It has recently re-appeared in software engineering as a keyword in CASE
setting [4]- It oould rather soon replace the conogpt of rellating entities, the core of the
relational point of view, with the conoept of focusing on an doject under investigation,
the insight of the odbject-oriernted paradign. Although not new in the Information
retrieval research, this concept is much better placed within the contemporary doject-
orieted paradign than the “entirty-relationship’” approach. This technological trend
will be enforced more significantly with introduction of the new family of object-
relational database management systems, based on POSTGRESS and GEM models
[10], already incorporated in the new families of industrial DBVS like ILLUSTRA
fram Informix and Oxae 8 fram Oracle 1tself. These systams only extend the relational
mechanisms, widely used in the contemporary relational databases, using subtyping
and classification mechanians, but this allows also building truly hypertext structure
of the disoourse of data processing.-

Second, the component approach, which pramises significant change in the face
of the contenporary softvare engineering, willl praoebly reach better level of granularity
of the bui lding blocks to be generated by the CASE tools then the concrete relations.
The intensive growth of Java as a programming language for Web development and
QORRA as an industrial standard for buillding distributed appl ications using canponent
structures over distributed networks are the most inportant milestones of this change.
Oracle, Inc. as a leading industrial software company for information systems
developrent, hes tried to ture its glaoal strategy in order to reflect these danges [5]-
But the new Designer/2000 [6] fails to make this transition in a smooth and consistent
way due to its very relational nature, and its inprovements are not substantial from
this point of view.

6. Conclusion

The dbject-oriented paradign is more than 25 years old, and 10 years old is the World
Wide Web 1tself. Nevertheless, only few CASE based RAD tools on the software
market addresses this conbination of technologies in an adequate way. The new
industrial CASE tools for RAD of information systans, expected in days after invertion
of the new development enviromments like Jaa ArBuicr from Oracle itself [9], as
well as the analogous tools from other companies, like JasStoio, for example, will
be based on canpletely new set of bui lding blocks. They will be more flexible to
reflect the natural dbject-orientation of the software development technologies ad
they will probably use industrial standards — e.g. , JavaBeans could be used as a
canponent library standard, 1P as an abstract brokerage service protocol, JOBC as

16

an non-native protocol for accessing relational databases, etc. The long waited
appearance of such tools on the market will probably end up the relational domination
in the CASE domain.

References

1.Dorsey,P., P. Kol etzke. Oracle Designer/2000 Handbook. Berkeley: McGraw-Hill, 1997.

-Greenwa ld, R. Using Oracle Web Application Senver 3. Indianapolis. — In: Que Corp., 1997.

3. Pirie, M Designer/2000 Release 2.0: Rapid Model-Driven Developrent. — Oracle Magazine, Vol.
Xl (6), 197, 15-16.

4.Gwy e r, M. Using Designer/2000 for 100% Generation of Advanced \leb Applications. — In: Proc.Oracle
Developer Conference, Stockholm, 5-6 March 1998. URL htitp://technet.oracle.con~/events/
wd104.pdf.

5. Oracle, Corp. Application Development for the Web.— Oracle Developer Programme Technical Report ,
1997. RL hittp://technet.oracle..com~/product/tool s/des2k/ info/appdev. pdf.

6. Gwy e r, M. Oracle Designer/2000 WebServer Generator Technical Overview. —Oracle White Paper,
February 1996. URL htttp://technet.oracle.com~/product/tools/des2k/info/wingen. pdf.

7.Stow, S.,M. Pir ie. Designer/2000 Release 2.0 Product Overiew. — Oracle White Paper, March 1997.
URL hittp://tedchnet. oracle.com~/product/tool s/des2k/ info/des2k2. 0. pdf.

8. Power Soft, Inc. The Drill Down Metaphor. — Powerbuilder Journal, June 1996. URL
hittp://nmw. ponersofit.com~/pbj-06-96.pdf-.

9. Loennroth, M. Building Database Applications in Java. — In: Proc. Oracle Developer Conference,
Stockholm, 5-6 March 1998. URL htttp://technet.oracle.con~/events/jol02..pdf.

10. Readings in Object-Oriented database Systems. S. Zdonik, D. Maier (eds.). San Mateo, CA:Morgan
Kauffman, 1990.

N

[lpMeHeHe CUCTEeM aBTOMATM3MPOBAHHOI'O NPOEKTUPOBAHUA
(CAIIP) : BOSMOXHOCTM M OI'PAHMYEHMs PEeJIALIMOHHOI'O ITONXOna

Bacwi T. BacwieB

UHCTUTYT MHOOPMALIMOHHEIX TeXHOJIorwMit, 1113 Cogusa

(PeszsowmMme)

[IpencTaBiieH aHalu3 COOTBEPHEIX TEeXHOJIOTUM IJid aBTOMaTUIUPOBAHHOM
pazpaboTkM MHOOPMALIMOHHEIX CUCTEM HOCTYyIa K 0a3aM HaHHBIX [IPM IOMOUM
VHTepHeTa. Ha npuMepe MHOOPMALIMOHHOWM CUCTEMBI, MCIIOJIb3yoIEN
PeNauMOoHHYI0 0a3y IaHHBIX KakK OCHOBY yIlpabJieHus OmsHec-uHbopMalume,
oeMoHCTpUupylTcsa ymobcTea CAIP. [lokaszsaH cleuudmuueckumt njs QUPMEL
ORACLE mnomxog.

2 Problems of Engineering Cybermetics and Robotocs, 48 17

