
1 8

Macroenhancements for Calling Multiargumental
Subroutines or Assemblies of them

Chavdar Korsemov, Stefan Koynov, Hristo Toshev

Institute of Information Technologies, 1113 Sofia

1. Introduction

The paper presents ways for improving the Turbo Pascal programming environment.
In nature there are lots of complex processes with tremendous lengths of the input-

output vectors. At that some of the coordinate values of the vectors vary more rapidly and
other values - slower. This means that some of the coordinate vectors are relatively static
while the rest of them are relatively dynamic. In such cases the relatively dynamic vector
coordinates seem to be a more impressive object of interest.

This formulation is supported by imposing number of examples from different aspects
of the living nature and from different processes in technique, too. Next follow some of the
most typical cases:

1) Monitoring and control of processes in industry, the army, the scientific research,
etc.:

- systems for technological control;
- real-time systems;
- adaptive systems;
- information redirection in computer systems;
2) Macroenhancements for programmers as means for developing the friendly

programming environment:
- macroassemblies;
- compiler preprocessors;
- packages for scientific research;
- developer’s packages.
In the first group (monitoring and control) any unit has time-varying parameters and

some of them vary more intensively than other parameters. The time-variance is a
consequence from the modes of exploitation, from the unit aging and also from the design.
Surely the most impressive and undoubted examples can be found in the living nature with

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ . BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 48
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 48

София . 1999 . Sofia

1 9

its most complex organisms and their higher nervous activities which can be stimulating
(accelerating) and retarding (inhibiting) at the same time.

The second group concerns programming where the processes are realized as
subprograms of different levels and the input-output vectors as input-output variables and/
or arrays. This case is a dynamic alternative of the global static memory definitions for the
different subprograms. The idea is that the relatively static variables should be default
parameters in the subroutine calls and the relatively dynamic ones should be explicitely
declared. At that these two groups of variables for a concrete subroutine should be with
varying bounds and varying contents for the different calls. The ideal decision in such cases
is when the relatively dynamic arguments are declared with key operands in the macrocalls
which generate the consequent subroutine calls and the relatively static arguments in the
macrocalls are omitted. The default values are indicated in accordance with the
argumental type in a way which has nothing in common with the true values of the variables
(for example by empty strings for the string variables and by zero values for the numeric
variables). The usage of key operands in the macrocalls instead of positional adds a new
degree of freedom for the programmer and at the same time it makes the program more
friendly.

2. The Center procedure

The developed below approach is based on the popular text-centering procedure in friendly
programs. This procedure might serve as a starting point to improve the programming
environment (for example Turbo Pacal), if it is generalized for the most often used PC
periphery (screen, printer and disks) and if it is consequently unified in accordance with
the typical buffer lengths for the concrete output devices.

This procedure can be written in three different ways depending on the type of the
output device - the screen (which is the default case), PRN or ASCII/text disk files. The
expansion of the device type for the procedure thus including the printer and the text files
leads to the generalization and in a way to the unification of the concrete device to a virtual
device which leads in its turn to certain advantages in programming. The Turbo Pascal
programming environment has different standard units for the different standard output
devicesCrt for the screen, Printer for the printer and System for text files. These library
units use analogical, but different subroutines (procedures and functions) for the algorithm
in any of the three cases. The screen version is the most popular one concerning the
“friendly” programs; the other two cases make the program decision more aesthetic in the
sense that the output information is centered and thus it is symmetrical. The three versions
are analyzed below and the version-specific operators are bold.

2.1. The screen

This is the original form of the procedure:

procedure Center(Line : string);
uses Crt;
begin { Center }
 GotoXY(41 Length(Line) div 2, WhereY); writeln(Line);
end; { Center }

It is possible for the other two cases that the maximal string length shall be declared
as a numeric constant (which can be tuned for every concrete source code) instead of the
constant 41 the programmer may use a ‘type const’ declaration. In addition we need a ‘var
i : integer;’ definition for modeling the ‘GotoXY(...,WhereY);’ operator. So the ‘GotoXY’

2 0

operator is modeled by a FOR loop as it follows:

GotoXY(41-Length(Line) div 2, WhereY) 
 for i := 1 to 41 - Length(Line) div 2 do write(..., ‘ ‘);

The first argument in the ‘write’ operator is of ‘text’ type and its name for printers (prn
or lpt1) is ‘Lst’.

2.2. Prn (Lpt1)

This is the simpler expansion of the original Center procedure:

procedure Center(Line : string);
uses Printer;
var i : integer;
begin { Center }
 for i := 1 to 41 Length(Line) div 2 do write(Lst, ‘ ‘);
 writeln(Lst, Line);
end; { Center }

2.3. ASCII/text disk files

Now we need that the declarations ‘Fail : text’ and ‘FileName : string’ must be in the
procedure body but the ‘assign’, ‘rewrite’ and ‘close’ statements must be out of the procedure.
Also we see that this version becomes an equivalent of the printer version, if FileName :=
‘prn’ ‘lpt1’.

procedure Center(Line : string);
var i : integer;
begin { Center }
 for i := 1 to 41 Length(Line) div 2 do write(Fail, ‘ ‘);
 writeln(Fail, Line);
end; { Center }

All the three versions of the text-centering procedure lead us to the conclusion that
it is possible to unify them in some general procedure which will count for the device type.
Enriched by some textprocessing, this unification naturally leads to the presented below
“universal” procedure WriteF.

3. The Center procedure unified for the basic types of output devices
for IBM PC and the compatibles with them

In cases when there are even two different types of devices then the programmer is
stressed additionally also by the specific features of any of them. As a consequence this
complicates additionally the dialog with the user. On the other hand the proposed method
can be treated as a new decision of integrated programming environment. The WriteF
procedure is an unification of the Center procedure with respect to the possible instanta-
neous type of the output device (which can be the screen, the printer or any text file).

The unified text-centering procedure is designed easy to redirect the output informa-
tion to the most often used output devices. This means that WriteF takes into account the
specific features and the limitations for the different output devices in Pascal programs. Any
Pascal programmer knows that the Crt unit controls the keyboard input and/or the screen
output, that the Printer unit is responsible for the printer (with system names prn or lpt1,

2 1

but the system printer name is Lst) and that the System unit handles the operations with
text files. In cases when there are output text files (‘con’ for the screen and ‘prn’ for the printer
are of the same text type) it is possible to use just one procedure with a kind of a virtual
output text file which at any instant can be the screen, the printer or a disk text file. Now
we may use WriteF for such virtual output files instead of three different versions of the
Center procedure. WriteF may be “included” by an ‘uses’ statement or by the $I directive.
So the new procedure substitutes the three standard Pascal units counting for the
correspondent buffer lengths; in addition it is possible to include elements of textprocessing
(centering and left- right-alignments).

(Surely the specific for the device operations may be handled by the standard compiler
units. Still these specific operations are an object of interest below in chapter 5. The
application of the proposed approach is mainly in dialogous programs with at least two
of the exposed device types, i. e. con + prn or con + text files, or prn + text files.)

The result of the proposed approach is that the generalization of the Center procedure
also for printers and for disk output text files which is properly preprocessed makes the
control of the output text devices and files pleasant and convenient moreover because this
output text periphery is popular for IBM PC computers and compatible with them.

In Fig. 1a, b, c (Appendix) is shown the length of the source code and of the Tpu-
realization of the unit Output in the form of the accessible by the programmer interface
comment section of the unit with the WriteF procedure.

The next chapter is a convenient illustration for an usage of WriteF properly
upgraded with the output macro. For this reason this chapter gives the correspondence
between the WriteF parameters and the corresponding to them key operands of the output
macro.

4.Turbo Pascal source code macrogenerator: independence on the
subroutine call format

The good programming style presents the essence of the thought / the program algorithm
as clearly and quickly as possible. The first obstacle though comes from the unalterable
subroutine call format. Even if the programmer tends to alter the argument sequence in the
format. Or if she/he is keen on skipping the default parameters  the relatively static
parameters. This double obstacle is overcome by the macroprocessors. They guarantee the
subroutine call format sequence allowing at the same time the plasticity of the true source
code of the programmer: the programmer is allowed to skip the static arguments and at
the same time she/he may declare the dynamic arguments in any arbitrary sequence (if the
operands are of a key type). As a result the source code for the compiler is generated by
the macroprocessor which rearranges the arguments in the subroutine calls in the due
sequence at the same time including the skipped parameters (or including indications that
these parameters are defaults). Such preprocessings are orders quicker than the time
necessary for the programmer to follow the subroutine call formats “by hand”.

In this chapter the authors propose a macroprocessor of this type applied for a small
example. The example is an upgrade of the already discussed text-centering procedure
enlarged to include printers and disk text files. For example the macrocall

&output text=’This is a macroprocessor test’;

will generate the following subroutine call (the zero and the empty strings indicate the
default parameters):

{+} WriteF(‘This is a macroprocessor test’, ‘’, 0, ‘’);

2 2

The only limitation comes from the Turbo Pascal source code line length (version at
least 5.5 and above). The generated program code is embedded between the standard
Pascal source code; the macrogenerator output code is marked at the beginning with
‘{+} ‘.

This macroprocessor may be additionally develop to include arguments of the array
type. This can be done if the arrays defining the key words and their values are
bidimensional. The second dimension coinsides with the “dynamic” index of the vector
argument.

The second example is an illustrative program which is an input for the macroprocessor;
after this program piece follows the macrogenerated Pascal source code:

program MacroTest; { Turbo Pascal macrogenerator test file }
uses Output; { Unit Output includes the WriteF procedure }
var s : array[1..3] of string;
 l : byte;
begin
 {Dialog setting the macro information }
 write(‘Input the device name: ‘); readln(s[1]);
 write(‘Input the maximal line length: ‘); readln(l);
 write(‘Input the alignment ([left], center, right): ‘); readln(s[2]);
 write(‘Input the text for output: ‘); readln([3]);

 &output file=s[1], mll=l, align=s[2], text=s[3];

 { ‘On-line’ macrocall }

 &output text=’This is a SCREEN sample test’;

end.

Correspondence between the WriteF parameters and the &output operands. The
WriteF procedure calls require the following sequence of the arguments (this limitation is
overcome by the &output macro format):

I parameter: string for output. This is the only obligatory parameter. In the &output
macro the correspondent operand is ‘text=...;’;

II parameter: name of the output device / disk text file. Legal are the system names
con, prn and any disk text file names. The macrogenerator analyzes the file type (for disk
text files). If the file is hidden, ‘system’, a disk volume identificator or a directory name, the
generation is aborted with a warning; only if the file is read-only, then the attribute is reset
to read-and-write. The default for this parameter is the system name con and it is indicated
by the macrogenerator with an empty string. In the &output macro the correspondent
operand is ‘file=...;’;

III parameter: maximal line length. In fact this is the output device ‘buffer’ length
and it naturally depends on the given name (the second WriteF parameter). The default
for this parameter is zero. Next come the maximal line lengths for the screen (‘con’), the
system printer (‘prn’) and for disk text files:

con 79 characters;
prn  136 characters;
text files 255 characters.
In the '&output' macro the correspondent operand is ‘mll=...;’;
IV parameter: text alignment. This parameter resembles the same property of

textprocessing systems except for the text justification. So the possible values may be:' left',
'center' and 'right'. The default for this parameter is 'left' and it is indicatd by the
macrogenerator with an empty string. In the '&output' macro the correspondent operand

2 3

is ‘align=...;’.
Next follows the generated Pascal source code for our second example. Fig. 1 is a copy

of the unit Output interface comment section which gives all the necessary information for
the programmer when calling the WriteF procedure.

program MacroTest; { Turbo Pascal macrogenerator test file }

uses Output; { Unit Output includes the WriteF procedure }

var s : array[1..3] of string;
 l : byte;

begin

 { Dialog setting the macro information }

 write(‘Input the device name: ‘); readln(s[1]);
 write(‘Input the maximal line length: ‘); readln(l);
 write(‘Input the alignment ([left], center, right): ‘); readln(s[2]);
 write(‘Input the text for output: ‘); readln([3]);

 {+} WriteF(S[3], S[1], L, S[2]);

{ ‘On-line’ macrocall }

 {+} WriteF(‘This is a SCREEN sample test’, ‘’, 0, ‘’);

end.

In Fig. 2 (Appendix) the file sizes for the two macrogenerator versions are presented.
The first version works in the “statement-per-line” mode which is necessary for program
codes with too long statements (with too long string constants or with too long comments).
The second version is the “normal” one. It has the ‘{+} ‘-preffix in the beginning of the
generated Pascal program lines.

5. Principal classification of the standard procedures and functions in
Turbo Pascal

The authors made a classification for the subroutines of the most intensively used Turbo
Pascal units (i.e. Crt, Graph, System and Dos). The shortest classification concerns the Crt
unit and the longest  the Dos unit.

Next follow these classifications in details.

5.1. The Crt unit subroutine classification

This unit contains 20 subroutines. With respect to the macrogenerator we grouped them
in two basic groups:

 Textprocessing subroutines (TextColor, TextBackground, TextMode);
 Videomode subroutines (LowVideo, NormVideo, HighVideo).

5.2. The Graph unit subroutine classification

This unit contains 79 subroutines. Fig. 3 (Appendix) presents the classification for these
procedures and functions.

5.3. The System and Dos units subroutine classification

Unit System contains 28 disk operation subroutines and unit Dos contains 43 subroutines.

2 4

In Fig. 4 of the Appendix a possible classification of the standard procedures and functions
for disk operations in Turbo Pascal for these two units is shown.

6. Macrodecisions for Turbo Pascal compiler standard subroutines

This chapter proposes an illustrative macro-covering of the already viewed Turbo Pascal
standard subroutines. The overall estimation shows that at the average one macro covers
about 8,95 compiler subroutines. And this is in addition to the basic enhancements to use
default parameters and explicit parameters in any arbitrary sequence for the generated
subroutine calls!

Next follow the lists of the possible macro-coverings of the Turbo Pascal standard
subroutines from the previous chapter. These lists begin right after the headlines. The
reader will note that the macro key operands usually reflect the subroutine names.

6.1. Possible coverings for the Crt unit subroutines (see also 5.1.)

Textprocessing macro:

&text Color=..., Background=..., Mode=...;

 Videomode macro:

&video mode=...;

6.2. Possible coverings for the Graph unit subroutines (see also 5.2. and Fig. 3)

Drawing and filling of graphical primitives:

&line /LineFrom=..., LineTo=...\, style=...;

 \LineRel=... /

&poly draw=..., fill=...;
&ellipse StAngle=..., EndAngle=..., XRadius=...,
 YRadius=..., fill=..., /PieSlice=...\
 \Arc=... /

Graphical subsystem setup macros:

&GraphColor BackGround=..., Color=..., Pallete=...,
 AllPallete=...;

&fill pattern=..., style=..., flood=...;

&GraphPar BufSize=..., mode=...;
&GraphText justify=..., style=...;
&GraphSys type=...;
&GraphCurs or move=...;
&GraphDev clear=....

6.3. Possible coverings for the disk operation subroutines (see also 5.3. and Fig. 4)

&env type=..., count=..., str=..., var=...;
&common DosVer=..., CBreak=..., verify=...;
&disk type=...;
&dir type=...;

2 5

&file assign=..., mode=..., event=..., i/o=..., param=...,
 DOS=..., change=..., env=..., find=..., FAttr=...;
&DateTime type=..., FType=..., P/UTime=...;
&int type=..., no.=..., MsDos=...;

Now it is evident why the authors obtained from a total of 170 Turbo Pascal standard
subroutines for the units Crt, Graph, System and Dos (only the procedures and the functions
for disk operations are counted from the last two units) only 19 covering macros. Or why
a single macro covers at the average 170/19=8,95 subroutines.

7. Conclusions and trends for future research

The paper presents a solution for improving the working environment when programming
in Turbo Pascal (and for other programming languages in analogy). The starting point for
this is the popular text-centering procedure on the computer screen. Amplified with other
properties now this subroutine is fertile with ideas for a Turbo Pascal macroprocessor
which allows the subroutine call arguments to be skipped or to be defined in any arbitrary
sequence.

The first step in this direction leads to the unification of the upper bound for the buffer
length which is device-oriented and it may be at most 79 characters for the screen, up to
136 characters for the system printer and up to 255 characters for disk text files. Next it is
possible to include textprocessing elements; textprocessing may be centering or alignment
(left or right) of the string. The three upper bounds for the buffer length are intimately
connnected with the usage of the system names ‘con’ and ‘prn’ thus making possible the
program-mode output redirection. The result of this step is the enlarged text-centering
device-dependent procedure WriteF with its personal unit Output. The new version of the
Center procedure may serve as a kind of a standard for a “virtual” text output for IBM PC
and compatibles with them.

The second step leads to the usage of default (optional) parameters by simply
skipping them. The explicit parameters may be defined in any arbitrary sequence. This
splitting the list of the subroutine arguments to default and to explicit but defined in an
arbitrary sequence is available by a respective program which rearranges them in the due
order and indicating the presence of default parameters. This program is a macroprocessor
the output of which is an input for the Turbo Pascal compiler; two versions of this
macrohandler are presented.

The so designed Turbo Pascal macrohandler is easy to expand with new macros which
will be processed in the same way for the presence of parameters which may be default and
explicit but in an arbitrary order. Every macro may correspond to a single subroutine call
or to an assembly of such calls. The first possibility is demonstrated with the expanded text-
centering decision WriteF. The second possibility is an object of interest for the subroutines
of the most often used units Crt, Graph, Dos and the disk operations of the System unit.

The principal advantage of this approach is in cases of processes which are rich of
events (i. e. macros) for applications of intensive modeling when the events will have
parameters varying to different extents (i. e. default and explicit). The paper proves that a
total of 170 Turbo Pascal standard procedures and functions may be covered by some 19
macros for the units Crt, Graph, Dos and System (with rrespect to the disk operations for
the last). Or that a single macro covers at the average about 179/19=8,95 subroutine calls.

This approach can be applied to any programming language thus reducing the stress
of the programmer in a way which liberates him from the tyranny of the usual subroutine
call format. This is valid during the whole cycle of input and tuning the object program.
The efficiency of the approach is as greater as the variety of subroutine calls or their

2 6

combinations rise. The macrohandler rearranges the arguments in the due sequence for
orders quicker than the programmer will do that “by hand”. And now she/he has the
possibility of true skipping the relatively static parameters. And the main enhancement is
that this approach makes the program source codes more elegant, more distinct and better
readable.

unit Output;
interface
uses Dos;

 procedure WriteF(Line, { Empty  nonempty }
 FileName : string; { ‘con’  ‘prn’  text file }

MaxLineLength: byte; { device-dependent }
 Align : string); { ‘left’’center’’right’ }

{ Directs the output to output text devices or files to }
{ con, prn (lpt1) or disk new/old archive [read-only] files }
{ }
{ MaxLineLength default & range according to the device type and }
{ set to the possible maximal device-dependent length. }

{ RANGES of the arguments: }
{ }
(* FileName {‘con’, ‘prn’ or ‘lpt1’, disk file names} *)
(* MaxLineLength  { [1..79], [1..136], [1..255] } *)
{ }
{ (*) Admits empty strings and zero integer MaxLineLength as default }
{ (wildcard) arguments. }

{ WILDCARD & DEFAULT arguments: }
{ }
{ FileName = ‘ : FileName = ‘con' }
(* MaxLineLength = 0: MaxLineLength = {79, 136, 255} *) }
{ Align = ‘' : Align = ‘left' }
{ }
{ (*) Disk file type checked. For output on hidden/system files, Volume }
{ IDentifiers or DIRectories the procedure is aborted. }
{ }
{ n Line is aligned to the left, centered or to the right. }

{ ALIGN data set: }
{ }
(* Align  { ‘left, ‘center, ‘right } *)
{ }

Fig. 1. Unit Output; body of the INTERFACE comment section

8. Appendix

2 7

{ SUMMARY TABLE: }
{ }
{ Topic Line FileName MaxLineLength Align }
{ }
{ Wildcard ‘’ ‘’ 0 ‘’ }
{ }
{ ‘con’ - 79 }
{ Default ‘’ ‘con’ ‘prn’ - 136 ‘left’ }
{ file - 255 }
{ }
{ ‘con’ - [1..79] }
{ Range ‘prn’ - [1..136] ‘left’,’center’,’right’ }
{ file - [1..255] }
{ }
 end.

Fig. 1. Unit Output; INTERFACE comment section summary table

Output Pas 6307 23.04.98 13:36
Output Tpu 3760 23.04.98 13:36

MacPas1 Pas 5668 23.03.98 18:11
MacPas1 Exe 7008 23.03.98 18:12
MacPas2 Pas 8181 26.03.98 17:14
MacPas2 Exe 6720 26.03.98 17:15

Fig. 1. Unit Output; Unit file parameters

1. Drawing and filling of graphical primitives

a) Lines (Line, LineTo, LineRel, SetLineStyle, SetWrite Mode);
b) Polygons (Arc, Circle, Ellipse, FillEllipse, PieSlice).

2. Graphical subsystem setup

a) Modes of filling (FloodFill, SetFillPattern, SetFillStyle);
b) Graphical parameters (SetGraphBufSize, SetGraphMode);
c) Graphical textprocessing (SetTextJustify, SetTextStyle);
d) Graphical subsystem total control (InitGraph, DetectGraph,

CloseGraph);
e) Graphical cursor motion (MoveTo, MoveRel);
f) Graphical periphery control (ClearDevice,ClearViewPort).

Fig. 2. The two versions of the Turbo Pascal macrogenerator

2 8

Subroutine 1 2 3 4 5 6 7 8 9 A B C

append
assign 






Block Read
Block Write







ChDir
close







EOF
EOLn
erase




 




FilePos
FileSize

flush 





 

GetDir  

IOResult  

MkDir  

read
ReadLn
rename
reset

rewrite
RmDir 







 







seek
SeekEOF
SeekEOLn
SetTextBuf 



 






truncate  

write
WriteLn







Legend

Authors'
classification:
1 ­ dir operations
2 ­ attachments and
 deattachments
3 ­ processing
 modes
4 ­ checks for events
5 ­ input/output
 operations
6 ­ file parameters
7 ­ analogical to
 DOS commands

Classification
according to [1]:
8 ­ input/output
 procedures
9 ­ input/output
 functions
A ­ procedures for
 text files
B ­ functions for
 text files
C ­ procedures for
untyped files

Fig. 3. Illustrative classification of the unit Graph subroutines in accordance with the fields
of application and from the point of view of their grouping in macros

2 9

1. Date and Time procedures
GetDate, GetFTime, GetTime, PackTime, SetDate, SetFTime, SetTime,
UnpackTime

2. INT handling procedures
GetIntVec, Intr, MsDos, SetIntVec

3. Disk status functions
DiskFree, DiskSize

4. File processing procedures and functions
a) File processing procedures and functions for DOS

FExpand, FSearch, FSplit
b) File processing procedures and functions for Windows

FileExpand, FileSearch, FileSplit
c) File processing procedures and functions for both environments

FindFirst, FindNext, GetFAttr, SetFAttr
5. Other common procedures and functions

DosVersion, GetCBreak, GetVerify, SetCBreak, SetVerify
6. Procedures and functions only for DOS mode
a) Functions for interaction with the DOS environment

EnvCount, EnvStr, GetEnv
b) Process handling procedures

DosExitCode, Exec, Keep, SwapVectors
7. Procedures and functions only for Windows mode

a) Subdirectory handling procedures and functions
CreateDir, GetCurDir, RemoveDir, SetCurDir
b) Functions for interaction with the environment of the operational system

GetArgCount, GetArgStr, GetEnvVar
Fig. 4. Turbo Pascal file subroutines

R e f e r e n c e s

1. F a r o n o v, V. V. Basis of Turbo Pascal. Moscow, MHTU, Festo Didactic, 1991 (in Russian).
2. D e r i e v, I., S. T o k a r. Borland Pascal with Objects 7.0 Procedures and Functions Reference Guide.

Kiev, Dialectica, 1993 (in Russian).
3. M i z r o h i, S. V. Turbo Pascal and Object-oriented Programming. Moscow. Finansi i Statistica, 1992

(in Russian).
4. R u e t t e n, T., G. F r a n k e n. Turbo Pascal 6.0. Sanct Petersburg, Griffon, 1992 (in Russian).

Макрогенераторы, улесняющие обращения к многопараметричных
программ или их ансамблям

Чавдар Корсемов, Стефан Койнов, Христо Тошев

Институт информационных технологий, 1113 София

(Р е з ю м е)

Обсуждается улучшение рабочей среды при программировании в языке Турбо
Паскал, а по аналогии и в других языках. Применяется идея включения
макросредств для удобного обращения к многопараметричных программам или
ансамблям из них.
Этот подход облегчает труд программиста и отличается большей эффективности
при настройке программ.

