
107

Knowledge Acquisition in TRACE*

Gennady Agre* Roberto Paggio, Leon Batachia

 Institute of Information Technologies, 1113 Sofia
 Italsoft – Ingegneria di Sistemi, Roma
 Research Institute for Informatics, Bucharest

1. Introduction
TRACE (TRAnsferring CHARADE technology in Central and Eastern Europe) is an ongoing
research project whose objective is to provide a software platform enabling the development
of applications for the management of environmental emergencies. The TRACE system falls
within the wide category of Environment Management Systems (D e n z e r et al. [2]), or
more precisely in the one of Environmental Decision Support Systems (EDSS) (G u a r i s o
et al. [3]), which is gaining an ever increasing consideration by the public administrations
and the scientific community. Indeed, the protection of the environment and the principle of
sustainable development are high priority issues in most countries; on the other side, advances
in ICT research made possible the provision of cost-effective and reliable solutions.

EDSSs are characterised by a complex approach involving several technologies, tools
and devices, and dealing with different aspects of environment-related activities, and therefore
addressing user needs which are differentiated according to the specific application domain,
the operational context, the tasks to be supported, the organisational structure, the applying
regulations.

Activities may be grouped in five general functional areas [10]:
prediction (risk analysis, forecasts);
medium/long-term planning;
monitoring and surveillance;
crisis/emergency management;
post-incident damage evaluation and reclamation.
Another important classification criterion takes into account the context in which an

EDSS must operate. Three kinds of contexts are usually identified: real-time management,
training and simulation. TRACE is conceived as a system for real-time emergency
management, whose main objective is to support the user (a decision-maker operating in a
co-ordination centre) in assessing a crisis situation and building an effective intervention
plan. The main benefits to be expected from such approach are:

* This research is done under the support of TRACE INCO-COPERNICUS Project CP-960138, funded by the European
Union within the ESPRIT programme.

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ . BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 48
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 48

София . 1999 . Sofia

108

decrease the human error rate (time and risk pressure are key factors in emergency
management, which result in error-prone decisions);

diminish the time required for performing a full assessment of the situation, by
exploiting the Geographical Information System (GIS) visual capabilities and providing the
ability to filter and display context-driven information;

enable concurrent management of multiple situations (a common case for instance in
wildfire domain);

support optimised and safe usage of intervention resources (means, personnel,
equipment, natural resources), which are usually limited in number and capabilities, and
therefore must be exploited at best;

 facilitate the training of operators.
Although these features can be found also in other EDSS, the innovative character of

TRACE relies on the attempt to provide them in a cost-effective, fully programmable
environment.

The present paper is devoted mainly to the Task Editor a component of the EDDS
being developed within TRACE project. It is a tool for knowledge acquisition and
documentation within the Task analysis (TA) and task modelling methodology developed
within CHARADE project [1]. TE is intended to support the task modelling activities for two
pilot applications fire prevention and fighting in Bulgarian hard-to-reach massifs and
wind-throw management in Romanian spruce forests

The paper is organised in six sections. The second section following the introduction
briefly describes the TRACE architecture. The third and forth sections consider the conceptual
framework of the TRACE system, including user and application modelling methodologies,
tools and techniques. The fifth section provides an example of a TRACE application which is
currently under development. The last section is a conclusion.

2. TRACE architecture

The organisation of the various TRACE components shown in Fig. 1 reflects the typical
architecture of most EDSS systems. The HCI part is in charge of driving the overall dialogue
between the user and the system. It exploits a run-time task model, i.e. a structured model of
the activities of the user, and a session controller, which enables concurrent handling of
multiple emergency situations. The task model is effective in driving user action throughout
a session, by providing continuous feedback about the situation being monitored, showing
the realisation status of each task, enabling or disabling commands according to the current
progress, displaying information which is relevant to the current task context (M a r t i [8]).

Fig. 1. TRACE components

109

The Situation Assessment module provides support for a quick analysis of an emergency
situation, including basic spatial analysis and computational models based on geographically
referenced data (e.g.: spread model). It exploits a general mechanism for handling dependencies
and propagating events among objects, thus enabling automatic re-calculation of relevant
information.

The Intervention Planning module enables the user to define missions and automatically
retrieve an appropriate set of resources to accomplish missions goals. Requests for resources
may be stated either in specific terms (e.g. a fixed number of resources belonging to a certain
type), or as general criteria (e.g. minimisation of intervention costs). User requests for resources
can be expressed with a simple language by the user, and are then translated into constraint
satisfaction problem, which is handled by the constraint manager.

3. Methodological Framework

TRACE is a generic software platform providing support for application development at two
different levels. As a software library, it consists of a set of programmable objects implementing
basic functions for the management of environmental emergencies. As a methodological
framework, it includes guidelines and tools for designing applications through task modelling
methods.

3.1. Task analysis

Task analysis and task modelling is a general methodology for modelling activities which can
be observed in a large variety of domains from human factors (ergonomics and cognitive
psychology) to artificial intelligence or software system design. The notion of an activity may
have very different scopes depending on the focus of interest. TA provides a simplifying
approach to activity analysis; it relies on the identification and representation of the task
structure underlying the activity. Generally speaking, a task is “what is to be done”, while an
activity is “what is effectively done”. An activity is structured as the processing of a series of
tasks performed by the operator and the system.

TA aims at capturing and representing task structures underlying user activities – mainly
routine and operative activities. The result of TA is a task model – a model of the task structure
of an activity that needs to be validated through a confrontation between its predictions and
the observed traces of the effective activity. In this context we wish to emphasise the variety of
the knowledge to be captured – Declarative knowledge (the goal and condition of a task and
the object involved) and procedural knowledge (the process component of a task) (J o h n s o n,
N i c o l o s i [6]).

TA distinguishes between design-time and run-time exploitation of a task model. Design-
time exploitation (predesign task model) specifies the requirements for the design of the user
interface, data and functionality of a system, while run-time exploitation (design task model)
refers to the insertion of a task model as a particular software component of a system (K i r w a n
A i n s w o r t h [7]). A task model is specified as:

the description of roles as sets of tasks (a role is a set of tasks that an individual is
responsible for performing);

the description of tasks, along with additional information regarding representatives
and typicality, interruptability of tasks, and temporal relations among tasks;

the description of objects, described as a list of features.
The task-modelling notation used in TRACE includes a graphical notation for rep-

resenting tasks (which is the main kind of notation used in the task model) and a notation for
representing objects. The graphical notation is partially derived from TKS notation (J o h n s o n

110

J o h n s o n [5]). The examples in Fig. 2, Fig. 3 and Fig. 4 illustrate some of the means for
representing hierarchical task-subtask structure, as well as logical and temporal relations
(M a r t i N o r m a n d [8]).

Fig. 2. Representing hierarchical sub-task structure

Fig. 3. Representing logical relations between tasks

111

Fig. 4. Representing temporal relations

3.2. Representing an emergency situation

As claimed in the previous section, task models provide a convenient way of representing the
decision-making process of emergency management. Such information may be exploited in a
computerised system to guide the user in the actual decision-making process of each emergency
management session.

To this end, we need to bridge system functionality and user task model, by specifying
for each task the set of results which must be achieved to consider it fully accomplished. In
other words, we may replace the abstract notion of task goal with a set of concrete objects the
value of which must be computed or updated by the system (or even provided by the user)
during task execution.

By establishing a propagation mechanism which automatically updates the realisation
status of each task – according to the status of computation of each object in the task’s goal -
we obtain a way of controlling the flow of activity for each TRACE session, and thus supporting
the user in performing the right action at the right moment. Furthermore, this mechanism
may also be applied to handle dependencies among computable objects. Actually all
environmental emergencies share a number of general tasks which should be accomplished
to manage them, such as: characterisation and classification of the specific emergency,
assessment of the potential damage, control of the phenomenon, organisation of the damage
reclamation.

All tasks rely on information which is dynamic in nature, since it is collected from the
external world, or it is obtained through computational models the results of which evolve
with the time elapsed, or are in turn depending on other parameters which need to be updated
according to a certain rate. For instance, the assessment of a situation relies on heterogeneous
information that is either collected on the emergency site, or retrieved from territorial databases.
This information may be exploited by simulation models to forecast how the situation will
evolve, as well as by heuristic rules providing a synthetic, easy to read characterisation of the
situation. In general, each feature of a situation is called in TRACE an index. Examples may
be: global severity, set of values at risk, spread forecast, suggested intervention strategy,
suggested intervention time, suitable operational resources and so forth. Each index has a
value the computation of which may depend on the values of other indexes.

An emergency situation may therefore be represented as a network of tasks and situation
indexes organised in a network of dependencies, which is ruled by a publish&subscribe
mechanism (see (P a g g i o et al. [11]) for more details). This mechanism ensures that the
status of each item – either a task or a situation index – is automatically updated during each
phase of a session execution, preserving the global network consistency and enabling the user
to monitor the current status of operations.

112

4. Task Editor

Task Editor (TE) is a graphical knowledge acquisition and documentation tool developed to
support designers in creating and maintaining task models. The basic principles of TE design
are as follows:

Supporting conceptual level operation by focusing the user on the concept of the task
model besides its graphical representation. The interaction between the user and the editor
must be carried out mainly in terms of task analysis language thus avoiding details irrelevant
to the knowledge acquisition process.

Building syntactically consistent and complete models by applying context-sensitive
syntactical checks at each step of the process of creation of the task model and by maintaining
strict correspondence between its textual and graphical counterparts.

Developing special means making it easier for the user to localise the incomplete
fragments of the constructed model.

System driven interaction with the user preventing the user from possible errors and
allowing her/him to concentrate on the relevant part of the knowledge to be acquired.

Direct manipulation of the graphic structure supporting graphical, palette-based editing
capabilities for direct manipulation of task structures. This is an exploitation of the graphical
tree metaphor, and a prerequisite for future extensions of the tool towards generality
(configurable palette of task symbols and task connectors).

Unified processing of predesign and design task models facilitating operation with
the editor.

4.1. Architecture

The TE architecture consists of four main modules (see Fig. 5). Data structures represent the
current stage of a constructed domain model. The Logical Data Structures (LDS) are related
to the object-oriented internal representation of the model in the TA terms while Graphical
Data Structures (GDS) contain information used for visualising the model (i.e. task symbol
co-ordinates etc.). The LDS are maintained by a set of functions forming the General
Functionality module (GF). The Human Machine Interface module (HMI) supports the
communication between the user and the current domain model using a “client-server”

Fig. 5. Task Editor architecture

113

interaction with GF. It also supports some configurable graphical structures used for module
visualisation (graphical symbols used for representing different types of task and relations
etc.).

4.2. Logical Data Structures

A domain model is represented as a document containing one pre-design and several design
task models. Each design model is generated from the same predesign model and reflects
different aspects related to concrete software implementation. Each model contains three
main parts – a set of task pages showing the task diagrams, the set of task model objects the
tasks are referred to and the set of task pages currently marked for deletion. The latter denotes
those tasks that are not currently included in the domain model but may be used in the future.
All task pages are organised into hierarchical tree-like structures via hyper links used for
splitting descriptions of complex tasks into several manageable and completed chunks aimed
at documentation. Each task page contains a task diagram representing a tree the nodes of
which are tasks connected via temporal, logical, task–subtask or pre-/post-requisite task
relations. Each task is in turn a complex object containing a number of attributes used for
coding various types of declarative task knowledge.

4.3. General Functionality

According to the main purpose of the GF its functions are grouped into the following four
clusters:

Browsing functions are intended to access any arbitrary element of the model. Browsing
the task diagram and using shortcut keys for navigation allows a context-sensitive
access to the task. Direct access to a given task page is provided by browsing a task
page structure. In both cases the browsing process is facilitated by task and page
completion status reflecting in a graphical form the state of the syntactical completeness
of the current task or task page.

Create/Edit functions are intended for maintaining the task model. They allow a
direct graphical manipulation on the task structure as well as automatic creating and
updating of the task page structure. All Create/Edit operations are automatically
checked for consistency and accompanied with automatic updating of the task and
task page completion status.

Visualisation functions are intended to maintain the image of the task model on the
screen. These functions preserve the task model integrity and provide zooming, grid
and alignment facilities.

Documentation functions are intended for storing the model on a “hard medium”
(files, paper documents etc.). These functions create new and edit existing documents.
They also print the task model as a collection of specially designed task and object
description forms, preview task pages and export task specifications to a text file 4.4
Human Machine Interface.

4.4. Human machine interface

The design of the HMI module which is part of the editor is guided by the requirements of TE
target environment MS Windows 95/NT. The main TE screen is shown in Fig. 6. The
workspace is composed of a menubar, a message (status) bar, a graphical palette containing
some graphical symbols used in the model and two scrollable panels: the Structure Panel and
the Task Diagram Panel. The Structure Panel provides a synthetic view on the different task
pages included in a task model, and typical tree control facilities for browsing and selecting

8 Problems of Engineering Cybernetics and Robotocs, 48

114

task pages. On the diagram panel the active task page is presented. Task diagrams may be
edited with direct manipulation from within such panel. The textual task attributes are created/
edited by specialised dialogue boxes.

5. Application Scenario

In order to demonstrate the TRACE approach in developing EDSSs, two pilot applications
were considered. The first EDSS application, denoted Demonstrator 1 within the project, is
intended to support the decision making in the case of wind-throw management in Romanian
forests. The second one, denoted Demonstrator 2 is intended to support the decision making
in the case of fire prevention and fighting in Bulgarian hard-to-reach massifs. The applications
address two types of emergencies, frequently encountered in the European forest sector. The
wind-throw is a typical event mainly in the Norway spruce. The forest fires are quite frequent
in the Mediterranean countries. The approaches in the two cases are different in many respects
and only few features are common. While a fire should be controlled in real time and the most
effort is done during the fire, in the case of a wind-throw the main logistic problems occur
after the catastrophic event has been finished. The differences concerning the type of decisions
to be supported in the two cases and the intervention plans defined in both situations were
taken into account in elaborating the specifications for the two EDSS applications. In the
paper only the development process for Demonstrator 1 will be considered.

Fig. 6. TE screen layout

115

The development of Demonstrator 1 is based on the guidelines of the methodological
framework proposed in the TRACE project. The process of knowledge acquisition and
documentation has been following the task analysis methodology and has been implemented
by the TRACE Task Editor. This is the first real application of that tool in practice.

Starting from the pre-design task model (see Fig. 7) that reflects the user view concerning
the flow of activities in post wind-throw management, we created the design task model (see
Figure 8). It was obtained by evolving the predesign task model taking into account what the
TRACE system can do (the basic functions of the components of the generic software platform
developed within the project) and iterating either of the following:

add new tasks or subtasks;
modify existing task (by replacing simple tasks with more complex sub-trees) in order

to separate system and user pieces of activity;
After allocating the tasks between the user and the system, the work was concentrated on

the system tasks in order to identify the objects involved in the task execution. In addition to
the domain task analysis mentioned above, the user data files available for running the
application, the available cartographic data and in general all the data the users usually
manipulate in case of a wind-throw event were taken into account.

Fig. 7. Wind-throw management pre-design task model (partial view)

116

Fig. 8. Wind-throw management design task model (partial view)

Apart from defining the application specific data, the types of the resources and their typical
capabilities used in post wind-throw emergency actions have been identified. In order to
exploit the framework of defining actual missions in the TRACE system, a set of specific
mission stereotypes to be integrated in the mission types library has been defined.

We identified also geo-referenced data specific to the application (data describing forest
stands, forest roads, electric networks crossing the forestland, etc.). These geo-referenced
data are manipulated using the GIS tool integrated in the TRACE system (Map Objects).
Demonstrator 1 mainly aims at supporting the decision-making in:

Post wind-throw emergency actions like estimate wind-throw consequences, rescuing
people in danger, opening locked roads, opening locked railways, repairing damaged electric
networks, repairing damaged bridges, etc.

Post wind-throw medium/long run actions like estimating the timber volume in the
affected area, designing reforestation plans for the affected area, modifying the cutting plans
at the level of subordinated production units, etc.

Facing with an emergency situation is a current activity in post-wind-throw management.
Developing applications for supporting the decision-maker in this kind of activity was a
primary objective of the TRACE technology. The application under development exploits the
dependency management mechanism by representing an emergency situation as a network of
tasks and situation indexes organised in a network of dependencies. From the implementation
point of view, the interface of the application is linked to the dependency management module.
This connection means that the interface provides support for mapping user commands onto
task requests. The overall dialogue between the user and the system is guided through
underlying task structure, in terms of tasks realisation status, filtering of commands which
are not enabled at a given stage of a situation handling, suggestions on the following steps to
be performed.

The user is supported in rapidly assessing the emergency situation and creating effective
intervention plans that exploits at best the available resources. Intervention plans are defined
by the user on the basis of plan and mission stereotypes identified in the domain analysis
stage. A simple example of mission stereotype with the goal of facing the emergency situation

117

of locked road by fallen trees is presented below:
mission type name: open_road

a) resource types which might be involved in this kind of mission: dozer, trailer, tractor,
loading_tractor, sawing_machine, jeep, fuel_tank, sleeping_wagon.

b) capability list includes: volume_to_remove, dozer_transport, trailer_transport, load/
unload_logs, cuttings_logs, persons_carried, fuel_tank_transport, fuel_volume,
workers_accommodation.

(dozer - volume_to_remove)
(trailer - dozer_transport)
(tractor- trailer_transport, fuel_tank_transport)

(loading_tractor - load/unload logs)
(jeep - persons_carried)
(fuel_tank - fuel_volume)
(sleeping_wagon - workers_ accommodation)
(sawing_machine – cutting_logs)

In Fig. 9 is presented the example of design task model for the management of this
kind of emergency. The creating of the intervention plan is not detailed in the figure, but
when creating actual missions for the plan the user may start from the exemplified above
mission stereotype.

The library of available mission stereotypes can be easily extended with new ones if
the user consider necessary.

In the wind-throw management session the overall allocation process starts from building
mobilisation table (MT), and is activated by the user by creating at least one mission, defining
some requirements for it and launching the automatic allocation. In more detail, it may be
decomposed in the following steps:

Fig. 9. Manage_ locked_ roads design task model (partial view)

118

a. Build the mobilisation table;
b. Define a user request for resources
c. Apply the constraint reasoning techniques for selecting a suitable set of resources to

be allocated;
d. Commit the solution (after the user confirmation).
The first step, automatically performed by the system after the access points in the

emergency area have been identified, assures the computation of dynamic data for each available
vehicle in the resource bases. These dynamic data contain for each vehicle the shortest paths
(or fastest paths, computed taking into account the average speed of every vehicles on different
road types) from the owner base to the intervention points and the estimated travelling times
(specific preparation time for each vehicle may be added).

In the second step the user defines its request following several stages:
i) Defining a plan as a set of missions. The missions are defined from scratch or starting

from mission stereotypes.
ii) Declaring the appropriate number of requested persons, resources for each type and

the amount required of each capability for all missions.
At the level of interface this kind of declarations represents a simple way for formulating

requirement statements which in natural language could be expressed like:
“I want X amount of personnel”;
“I want X resources of type Y”;
“I want enough resources able to perform the X amount of the Y capability”
At the level of actual mission the user must also specify the deadline and the operational

point (it must be one of the intervention points processed in the mobilisation table). Optionally
the user has the possibility to specify general conditions for selecting the resources that may
be used in mission. The conditions are specified using interface elements that enable the user
to build and apply atomic filters or more complex logical AND-OR filters exploiting the filter
generic classes provided at the level of Resource Management module. Examples of statements
which can be managed by this simple formal language are:

“I want resources being on emergency area before given deadline”;
“I want resources belonging to certain bases”;
“I want terrestrial resources from certain bases being on emergency area before given

deadline”, etc.
Applying the filters has the effect of removing from MT all those values not meeting the

user defined statements.
At the level of plan the user may specify the global allocation criteria defining the

allocation strategy. All the missions in a plan share the same global constraints. Appropriate
interface elements enable the user to formulate in a simple way user preferences that in
natural language could be expressed in statements like:

“I want to minimise intervention costs”;
“I want to minimise the number of resources employed”, etc.
The step c, performed by the system, assures the translation of allocation problem into

constraint satisfaction problem terms thus making it possible to exploit the capabilities of the
constraint management module in solving it. If no solution is found the user may repeat the
process from step b, specifying a new, relaxed request.

Usually, for a given set of requirements, many possible solutions can be found. The user
has the possibility to browse the solutions list and to select the preferred one. The commitment
of the selected solution in the step d must not be done until the resource dispatching task is

119

accomplished because resources that are marked “available” in the system repository might
actually be not available, or not ready to be employed.

The decision-makers are interested in being supported not only in the emergency
activities but also in the medium and long-term activities. The main medium/long-term
activities are those concerning the regeneration of the affected area and timber supply
adjustment.

Reforestation plans must be designed in the early stages of post wind-throw
management. The application provides useful data related to the species in the affected area
and the genetic resources demand for each affected forest district. At the same time the
application provides data concerning the seed and seedlings suppliers and their offer for the
species in the affected area. Based on the information provided by the system, the users can
decide on the appropriate policy for the regeneration of the affected area.

Adjustment of the timber supply is necessary in order to modify the current cutting
plans at the level of production units so that they takes the timber volume in the affected area
into account. This modification is necessary in accordance with the sustained yield principle
(J o b s t l, [4]) which states that annual or decennial yields should be as even as possible.
Cutting plans are modified depending on the volume of timber in the affected area and the
implemented policy at the forest county level of decision. The EDSS application provides
support for an appropriate analysis of the possibilities of propagating the economic
consequences of the wind-throw in time or/and in space. Propagating the economic
consequences in time means adjusting only the cutting budget of the production units belonging
to the affected forest districts for one year or more, depending on the size of the wind-throw.
The cutting budgets of the neighbouring forest districts not affected by the wind-throw, are
not adjusted in this case. In space propagation means adjusting the cutting budget of both the
affected forest districts and the neighbouring ones.

6. Conclusion

The present paper describes the ongoing INCO-COPERNICUS Project CP-960138 - TRACE.
The main objective of the TRACE project is the transfer of the knowledge-based software
engineering technology developed within CHARADE both in a new operational context and
in another application domain. The results of the project are twofold: on one side, a library of
basic, fully programmable EDSS software objects; on the other, a methodological framework
for designing and building emergency management applications.

As a methodological framework, TRACE includes guidelines and tools for designing
applications through task modelling methods and design patterns. A task model is a hierarchical
structure representing the flow of activity of the user with the system. In TRACE, it is possible
to build the application first by modelling the user of a given domain, then by translating it in
a general model of system-supported activities, and finally by associating system functions
and objects to each task. The execution of a TRACE-supported session thus closely reflects
that observed in current practice, and the user is smoothly guided throughout the entire process
by the underlying task model. The TRACE methodology provides tools and guidelines for all
phases of the application development: task models are built through the Task Editor; a
pattern-based mechanism enables declarative definition of task objects (e.g.: situation indexes)
and their computation algorithms. Run-time creation and management of such objects is
ensured by specific parts of the library.

120

The TRACE project is still in progress, nevertheless most parts of the software platform
are available and currently being validated. Feedback gathered so far among potential end
users is very encouraging, but more significant results are expected when applications will be
developed. In particular, the project is presently working at two pilot applications, which aim
at demonstrating the features of the system in real contexts. One addresses the management
of wildfires in Bulgarian massifs; the other deals with post-wind-throw management in
Romanian spruce forests.

R e f e r e n c e s

1. CHARADE Consortium. Final Report, CEC DGIII – ESPRIT, 1996, p. 6095.
2. D e n z e r, R., D. A. S w a y n e, G. S c h i m a k. Environmental Software Systems. London, Chapman & Hall, 1997.
3. G u a r i s o, A., H. W e r t h n e r. Environmental Decision Support Systems. Chichester, Ellis Horwood Limited, 1989.
4. J o b s t l, H. Dynamic translation model. A concept and tool for forestry planning and validation. – In: Proceedings of

the IV International Symposium on Operational Research, Lubliana, 1997, 273-278.
5. J o h n s o n, P., H. J o h n s o n. Designers identified requirements for tools to support task analysis. – In: Proceedings

of INTERACT’90, 1990, 256-264.
6. J o h n s o n, P., E. N i c o l o s i. Task-based user interface development tools. – In: Proceedings of INTERACT’90,

1990, 383-387.
7. K i r w a n, B., L. K. A i n s w o r t h. A guide to Task Analysis. London, Taylor and Francis, 1992.
8. M a r t i, P., V. N o r m a n d. Bridging software design and usability analysis through task modelling. – In: Human

Comfort and Security. K. Varghese and S. Pflegel eds. Berlin, Springer-Verlag, 1995, 39-50.
9. M a r t i, P. The interface design of an integrated system for handling environmental emergencies. – In: Proceedings of

International Workshop on Cognitive Ergonomics, Padua, Italy, 1995.
10. NOW Consortium. Final Report, CEC DGIII – ESPRIT, 1998, p. 2674.
11. P a g g i o, R., G. A g r e, C. D i c h e v, G. U m a n n, T. R o z m a n, L. B a t a c h i a, M. S t o c c h e ro. A cost-effective

programmable environment for developing environmental decision support systems. Environmental Modelling
& Software Journal (forthcoming), 1998.

Приобретение знаний в TRACE

Геннадий Агре*, ** Роберто Паджо, Леон Батачия

*Институт информационных технологий, 1113 София

**Italsoft - Ingegnetia di Sistemi, Roma

(Р е з ю м е)

В работе описан подход к проблеме приобретения и представления знаний в
системе TRACE, предназначенной для оказания помощи при планировании
действий при природных бедствиях. TRACE представляет собой набор средств
и указаний по разработке конкретных приложений на основе методов
моделирования задач. Использование редактора знаний системы Task Editor
проилюстрировано на примере планирования действий, по отстранению
последствий ураганов в горных районах Румынии.

