
3

A Network Flow Approach to Clause Inference*

Vassil Sgurev

Institute of Information Technologies,1113 Sofia

1. Introduction

The clause inference based on the resolution principles of J. R o b i n s o n [1] plays a
fundamental role in different logical programming systems and in artificial intelligence
as a whole. This role is illustrated completely and successfully enough in the well-known
book of R. K o w a l s k i [2].

During the second half of the 80-ies, various quantitative methods have been
suggested interpreting the logical, and particularly the clause inference, reducing this
inference to solving problems of integer and/or binary programming [3].

Not setting forward all the positive aspects of the quantitative approaches suggested,
we have to note, that they possess a number of inconveniences and shortcomings, connected
with the lack of an efficient graphic illustration of the inference and the impossibility for
satisfactory representation of the predicate properties with their help.

The present paper suggests a new quantitative approach towards clause inference,
based on the application of a special class of network flows, which in our opinion avoids
the limitations above mentioned and realizes efficient quantitative representation of the
clause inference in the form of a flow on a graph.

Unlike the graphic interpretations presented upto now, the logic operations, the
resolution and the inference are realized through the network nodes, and the atomic
formulae and clauses are regarded as directed arcs in the same network. The flow functions
on these arcs accept values of either zero (false) or one (truth).

2. Network flows

A Directed Network, or a Directed Graph G=[N,U] consists of а set N of elements x, y,...,
and of а set U of ordered pairs (x,y) of elements of N. The elements of the set N are called
vertices or nodes, those of U arcs or edges.

* The present paper is written in conformance with contract No И-605 with the National Fund for
Scientific Investigations at the Bulgarian Ministry of Education and Technologies.

БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ . BULGARIAN ACADEMY OF SCIENCES

ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 46
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 46

София . 1997 . Sofia

4

If xN, then A(x) (i.e. After x) is the set y N for which (x,y) U:

A(x)= {y N / (x,y) U},

B(x) = {y N / (y, x) U} (Before x).

Let s and t be two nodes from N. The stationary flow of a value of v, from s towards
t in the network [N,U] is a function f over U with values into the set of Non-negative integers,
satisfying the linear equalities and inequalities:

 v, x= s,
(2.1) f(x,y) f(y,x) = 0, x = s, t,

 yA(x) yB(x) v, x = t.

(2.2) f(x,y) c(x,y) for all (x,y) U,

(2.3) f(x,y) 0 for all (x,y) U.

The variables f(x,y) have integer values.
We call s a source, and t a sink, (2.1) is called equation of conservation, the

function c(x,y) is the arc capacity of the arc (x,y). If the flow f is given, the number f(x,y)
is called the arc flow on arc (x,y).

The network flow (2.1)(2.3) is known as classical flow and was introduced by
Ford and Fulkerson [4].

For the representation of the clause inference we need a more complicated class of
network flows called in [5] linear flows. In these the relatively simple way of giving the arc
capacity constraint of the Ford and Fulkerson flows by equation (2.2) is replaced by a
definition using linear constraints:

(2.4) bi(x,y) f(x,y) Ci; i I={1, 2, ..., k},
 (x,y) Di
where

R', if i I and (x,y) Di ,bi(x,y)
= 0 otherwise;

R' is the set of the real numbers different from 0;
Ci R', Ci >0;
Di are non-intersecting subsets of arcs, for which for any

(2.5) i,j I, Di Dj = ; (Di) = U.
 iI

The basic properties of the linear flow (2.1), (2.3), (2.4) and approximative and
precise methods for solving the optimizаtion problems associated to these flows are given
in [5].

3. Network flow representation of clauses

It is possible to find out network flow representations for each operator (and, or, not,
implies) of propositional logic. In this paper we have focused our attention on clausal form
propositions because of their large application in logic programming.

5

3.1. Clauses

A clause, in propositional logic, could be defined as an expression of the form

B1, B2,... , Bm A1, A2,... , An ,
where Ai and Bi are atomic formulae. A1, ..., An are the joint conditions of the clause and
B1, B2,... , Bm are the alternative conclusions.

If n = 0, it states that: B1 or B2 or ...or Bm.
If m = 0, it states that, it is not the case that:

A1 and A2 and ... and An.

If m = n = 0 then it is an empty clause and is interpreted as a sentence being always
false.

An atomic formula is an expression of the form P where P is a propositional symbol.

B A (B if A) corresponds to the more familiar A B (if A then B) and is used
in order to draw attention to the conclusion.

3.2. Network flow representation of a clause

A clause B A, or the equivalent A B, could be represented in terms of network flows
as a block consisting in a node, the associated arcs and some constraints which guarantee
the obtaining of arc flows corresponding to the values of the truth table of the implication.
This table is

A B (A B)

F F T
F T T
T T T
T F F

The logical constant True (T) is interpreted as an arc flow having the value 1,
F as a flow equal to 0. Of course several different representations are possible. We have
chosen to consider a case corresponding to the Modus Ponens inference rule:

A B, A, infers B.

We will have the values of (A B) and A at the input of the node, the value of B being
at the output. The resulting piece of network is as in Fig. 1.

f(a,b) corresponding to the truth value of A, f(c,b) to the truth value of (A B), f(b,y)
to the truth value of B. According to the conservation equation the input flow in the node
must be equal to the output flow and we need an arc (b,t0) to evacuate the extra flow
occurring in some cases.

Thus we have the following table of the desired values of the arc flows:

Fig. 1

6

 f(c,b) f(a,b) f(b,y) f(b,t0)

1 0 1 0
1 0 0 1
1 1 1 1
0 1 0 1

The third line corresponds to Modus Ponens case.
The constraints that are necessary to obtain these values are:

(3.1) 2f(b,y) f(c,b) 1,

(3.2) f(b,t0) 1.

We need another constraint in order to exclude the possibility of having both f(a,b)
and f(c,b) equal to 0 (i.e. having both A and (A B) at false, which is impossible according
to the truth table of the implication). Such constraint is:

(3.3) f(a,b)+ f(c,b) 1,

where f(c,b), f(a,b), f(b,y) and f(b,t0) are integer numbers.
Our next step is to consider Horn clauses having more than one condition and only

one conclusion:

B A1,..., An.

We have focused our attention on these clauses as being simpler and very useful in
logic programming. The node corresponding to a Horn clause is as in Fig. 2.

a1
a2 b
...... y
an

c t0

Thus we have the following table of the desired values:

 f(c,b) f(a1,b) f(an,b) f(b,y) f(b,t0)

1 0 1 n
1 0 0 n
1 1 ... 1 1 n
0 1 ... 1 0 n

Here the constraints do not vary much as the first one doesn’t depend on the number
of inputs. This first constraint is

 f(c,b) + 1
(3.4) f(b,y)

 2

We can write it, together with the other two constraints, in a way more appropriate
to mathematical programming:

(3.5) 2 f(b,y) f(c,b) 1,

(3.6) f(b,t0) n,

Fig. 2

7

(n is the number of conditions),

 n f(ai,b)
(3.7) f(c,b)+ 1.

 i=1 n
In order to represent a general Non-Horn clause with more than one conclusion an

additional node S0, which supplies some flow if the available input flow is not sufficient,
is needed. In the corresponding network we have now n + 2 input arcs and m + 1 output
arcs (Fig. 3).

S0

a1 y1
b

 y2
an

ym
c t0

The table of the desired values is:
m

 f(c,b) f(ai,b) f(an,b) (f(b,yi)) f(b,t0)
 j=1

1 0 1 n
1 0 0 n
1 1 ... 1 1 n
0 1 ... 1 0 n

m
 (f(b,yi)) is equal to 0 if all the f(b,yj) are equal to 0, and is equal to 1 if at least one
j=1

of the f(b,yj) are equal to 1 (B1, ...,Bm being a disjunction of conclusions). The constraints
are:

(3.8) 2 f(b,yj) f(c,b) 1 for j=1 to m,

(3.9) f(b,t0) n,

 n f(ai,b)
(3.10) f(c,b)+ 1.

 i=1 n
In this case we are interested in minimizing the flow f(S0,i) (it isn’t absolutely

necessary as both f(b,t0) and f(i,bj) are bound) so as to limit the unusable flow. This might
be done with an optional constraint like:

(3.11) f(S0,i) m 1,

which overvalues f(S0,i).

3.3. Some special clauses

Horn clauses of the kind: B are interpreted as assertions or as facts and, in order to
be represented in flow terms, could be viewed as B True. Knowing that

(3.12) f(S0,i) = 1

Fig. 3

8

and using the same constraints as above, the network might be as in Fig. 4.

 S0 y
b

c t0

Fig. 4

The same clause could be represented just as an arc, at the beginning of the network,
having a flow of 1 (Fig. 5).

 b y

 Fig. 5

(3.13) f(b,y) = 1

Clauses of the kind: A1, ..., An are interpreted as denials and could be viewed as
False A1, ..., An.

They can be represented in flow terms like a clause node having 0 at his output
(Fig. 6).

a1
a2 b
...... y
an

c t0
 Fig. 6

The constraints being:

(3.14) f(b,y) = 0,

(3.15) f(b,t0)< n.

We don’t treat in that way the denial representing the goal to prove. Instead we treat
it as a (positive) question which answer (0 or 1, i.e. True or False) is to be find.

3.4. Multiplication node

We introduce here an additional node which has no logical equivalent and which is aimed
to multiply the value of an arc flow, representing a certain proposition, the number of times
this proposition occurs in the considered formula, e.g. in:

 B A1, A2
 D A2,C1,C2

A2 has two occurrences, so the value of the corresponding flow must be multiplied
twice.

The multiplication node will “copy” the value of the input arc flow in each output arc.
The additional flow needed to satisfy the conservation equation is provided by a node S0.

9

 f(S0,b) f(a,b) f(b,y1) f(b,y2) f(b,yn)

0 0 0 0 ... 0
 n1 1 1 1 ... 0

and the network representation is as in Fig. 7.

S0 y1
b y2

.......

a yn

 t0
Fig. 7

The constraints are the following:

(3.16) f(b,yj) f(a,b) 0 for i=1 to n
(n constraints).

4. Network Flow Representation (in general)

On the basis of the network flow representation of the separate clauses and the atomic
formulae, described in chapter 3, and depending on the initial set of clauses and/or atomic
formulae, this set and the clauses investigated can be represented with the help of the linear
network flow (2.1), (2.3) and (2.4). In place of the linear constraints, written in their general
form, the different constraints (3.1)(3.16) are used instead.

In this approach one and the same clauses are represented by one and the same graph
arc, if possible, or by different arcs, with guaranteed equality of the flow functions.

Let U' denote the set only of those arcs in the network, with the help of which clauses
or atomic formulae are denoted. Then solving the optimization problem given below with
the help of the specific network flow methods:

(4.1) max f(x,y)
 (x,y) U'

subject to constraints (2.1), (2.3) and the corresponding relations (3.1)(3.16), the exact
states “truth-false” will be obtained for each one of the literals considered depending on
the value one or zero of the respective arc flow function.

In case the problem above described has no solution, the set of clauses is a
contradictory one.

There is no doubt, that the network flow discussed can be applied in an analogous
way for propositional logic interpretation also, but this aspect is not a subject of the present
paper.

The study of the arc capacity of the logical flow obtained is of future interest, as well
as the possibility to transfer some of the network flow results to clause inference.

The application of the network flow approach in logic programming requires the
development of some efficient techniques and methods for this purpose.

1 0

R e f e r e n c e s

1. R o b i n s o n, J. A. A machine oriented logic based on the resolution principle. – J.ACM ,18 (January),
1965, 23–41.

2. K o w a l s k i, R. A. Logic for Problem Solving. Elsevier North Holland, New York, 1979.
3. H o o k e r, J. N. A quantitative approach to logical inference. – Decision Support Systems, Vol.4, 1988,

No 1, 45–69.
4. F o r d, L. R., D. R. F u l k e r s o n. Flows in Networks. Princeton N.J., Princeton University Press, 1962.
5. S g u r e v, V. Network Flows with General Constraints. Publishing House of the Bulgarian Academie

of Sciences, Sofia, 1991.

Сетевой поток подход для клаузиального вывода

Васил Сгурев

Институт информационных технологий, 1113 София

(Р е з ю м е)

Настоящая статья посвещена возможности представления логического вывода
для клауз Хорна как особый класс целочисленного сетевого потока с дополни-
тельными равенствами и неравенствами. Возможность такого представления
позволяет рассматривать этот вывод как экстремальная задача в моделях
исследований операций.

Предлагаемый класс сетевых потоков для интерпретации вывода имеет
ряд особеностей, которые существено отличают его от классического потока
Форда и Фалкерсона.

В работе предложены инструментальные средства, с помощью которых и на
базе указанного сетевого потока из баз знаний с истинными утвреждениями и
условиями "еслито" можно извлечь новые знания.

