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Applications of Reference Point Method for the Analysis of
Linear Fractional Programming Problems*
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1. Introduction

The (scalar) linear fractional programming problem can be presented in the following
way:

p(x)
(1)    max [ f(x) = ]

q(x)
s.t.

      x  S  Rn,

where p(x) and  q(x) are linear functions and the set S is defined as follows:

       S = {x|Ax = b, x 0}.

Here A is a real  m n matrix. We will suppose that S is a bounded polyhedron and
q(x)>0,  x  S. It is well known [1]  that the goal function in (1) has a global maximum
on S and has not any other local maxima. This maximum is obtained at an extreme point
of S. These properties are in the base of the Gilmore and Gomory’s algorithm [1] for solving
problem (1). This algorithm is a modification of the simplex method for linear program-
ming  (LP) problems. Charnes and Cooper have proposed another algorithm [1, 9], based
on variables substitution and replacing LP problem.
The multiple objective linear fractional programming problem can be presented in the
following way:

            p1(x)
   max  

q1(x)

p2(x)   max  
q2(x)
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...
                        ps(x)   max  

qs(x)

s.t.
x  S.

Here S,  pi(x) and  qi(x) are defined as in problem (1). The parameter  s determines the
number of partial criteria in (2). We will assume that qi(x)>0,  i,  x  S.

Some information about applications of linear fractional programming problems
can be found in [1, 4, 8, 9]. In [9] S t e u e r  proposes a well described example of problem
(2) however the book does not contain a geral method for an analysis of this problem. In
[8]  N y k o w s k i  and  Z o l k i e w s k i   have proposed for problem (2) a replacing MOLP
problem and a corresponding compromise programming procedure for its solving (using
ADBASE software). In [4]  D u t t a, R a o  and  T i w a r i  have shown a way to improve
the results from [8] for the special case when all qi(x) coincide.

Problem (1) and problem (2) are treated here in two ways. On one hand linear
programming problems are proposed with the following idea. If for problem (1) we know
a feasible point (that is not the optimal one) we can find another feasible point, where the
goal function has a better  value. If for problem (2) we know a feasible point that is not
weak efficient, we can find another feasible point that is better with respect to all partial
criteria. On the other hand problem (1) and problem (2) can be analyzed with the use of
some replacing multiple objective linear programming  (MOLP) problem, described in
[8]. In this paper N y k o w s k i  and  Z o l k i e w s k i have proposed a compromise
programming procedure for analysis of replacing MOLP problems. Instead of such
procedure the reference point method [10, 11] is used here for obtaining weak efficient
points for the replacing problem and in this way for solving problem (1) and for analyzing
problem (2).

2. The scalar linear fractional programming problem a method with given
feasible point

Let us consider the following LP problem

(3)     max t
s.t.

p(x) = L0 q(x) + t,
      x  S

Here  p(x),  q(x)  and S are defined as in problem (1); in addition we have

    p(x0)
(3a)     L0 (x) = ,

    q(x0)

where  x0 S  is not the point that gives the maximum in problem (3).
Theorem 1. Let   x0 S and the condition (3a) hold. Suppose that  the point  (x1, t1)

is a solution of problem (3). Then we have

        p(x1)     p(x0)
           
        q(x1)     q(x0)      .
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The proof can be done supposing the opposite and obtaining a contradiction.
It must be pointed out that the solution of problem (3) does not give always the

maximum defined by  problem (1). For the point determined by this solution we can write
and solve a similar problem and as a result we will get a new better point or we will discover
that the searched maximum is obtained. This  can be illustrated by numerical examples.

3. The scalar linear fractional programming problem a method with an
auxiliary MOLP problem

Under the assumption p(x)>0, q(x)> 0 ( x  S) we will consider the following problem

(4.a)     max p(x),
max  (A  q(x))

s.t.
      x  S,  {p(x)>0; q(x)>0 ( x  S); A 0}.

Under the assumption  p(x)>0, q(x)> 0 ( x  S) we will consider the  problem

(4.b)     max  p(x),
    max  q(x)

s.t.
  x  S,  {p(x)>0; q(x)>0 ( x  S)}.

Here the functions p(x), q(x) and the set  S are defined as in problem (1). In addition
A 0.

Theorem 2.  If the conditions p(x)>0; q(x)>0 ( x  S) hold, then the point  x0 that
gives the maximum in problem (1) is a weak efficient point for problem (4a). If the
conditions p(x)<0; q(x)>0 ( x  S) hold, then the point x0 that gives the maximum in
problem (1) is a weak efficient point for problem (4b).

The proof can be done supposing the opposite and obtaining a contradiction.
Theorem 2 shows that instead of solving problem (1) we can consider problem (4a)

or problem (4b) N y k o w s k i  and  Z o l k i e w s k i [8]  have presented this result in
a more general form for multiple objective linear fractional programming problems and
with assertions that concern the sets of efficient points. For the analysis of the replacing
MOLP problem they have proposed a variant of compromise programming procedure and
the usage of a special software  ADBASE. Here for such purposes the reference point
method [2, 5, 10, 11] will be used.

Having in mind problem (4a) we will consider the following LP problem:

(5.a) min  (D1  D2)
s.t.

     D1  D2  b1 (r1 p(x)),
D1  D2  b2 (r2 A  + q(x)),

      x  S.

Having in mind problem (4b) we will consider another  LP problem :

(5.b) min  (D1  D2)
s.t.

       D1  D2  b1 (r1 p(x)),
       D1  D2  b2 (r2 q(x)),

      x  S.



2 4

Here the set S  is defined  as in problem (1). We have also  bi > 0, i = 1, 2. The
parameters r1 and  r2 are the reference point components. The following conditions must
hold
(6a) r1 >  max p(x), where x  S  for problems (5a) and (5b),
(6b)    r2 >  max (A q(x)),  where x  S  for problem (5a),
(6c)       r2 >  max q(x),  where x  S  for problem  (5b).

Theorem 3.  When the conditions (6a) and (6b) hold the solution of problem (5a)
determines a point x' that is a weak efficient point for problem (4a).When the conditions
(6a) and (6c) hold the solution of problem (5b) determines a point   x' that  is a weak efficient
point for problem (4b).

The proof can be done supposing the opposite and obtaining a contradiction.
Suppose that p(x)>0, q(x)>0 in problem (1). Theorem 3 and the results from [5] allow

us starting from a given feasible point and choosing a suitable reference point to obtain
a weak efficient point for problem (4a)  and to increase  the numerator or to decrease the
denominator of the goal function in problem (1).So we can improve the value of this goal
function. This idea can be illustrated by numerical example and can be used for solving
the general case of scalar linear fractional programming problem.

Theorem 4. Consider problem (4a) and problem (5a). If  r1 and  r2 determine an
attainable point in the criterion space that is not a weak Pareto point, then the solution of
problem (5a) determines a point fm in the criterion space that dominates the point
r = (r1, r2).

Theorem 5. The same assertion as in Theorem 4 is true for problems (4b) and (5b).
The proofs can be done supposing the opposite and obtaining a contradiction.
Roughly speaking the last two theorems show that  the weak efficient points of

problem (4a) or (4b) are attainable  and thus the point giving the maximum in problem
(1) is attainable too. The auxiliary MOLP problem has nearly the same dimensionality,
there is no need of variable substitution. A standard LP software is sufficient however the
auxiliary MOLP problem must be solved several times. This approach could be further
developed using the information for solution sensitivity with respect to the reference point
changes. For such purposes standard software is sufficient too [6].

4. The multiple objective linear fractional programming problem using
a given feasible point and an auxiliary maximin problem

Having in mind problem (2) let us consider the following LP problem

(7)       max  (D1  D2)
s.t.

          D1  D2   ti  (i = 1, ..., s),
           pi (x) = Li

0  pi (x) +  ti  Bi  (i = 1, ..., s),
x  S,  D1 >0,  D2 >0.

Here pi (x), qi (x) and S are the same as in problem (2). In addition we have
   pi(x

0)
(8)  Li

0 (x) =     i,
   qi(x

0)

where  x0 is  a feasible point and is not a weak efficient point. Problem (7) is a generalization
of problem (3).
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Theorem 6. Consider problem (2) and the corresponding problem (7). Suppose
that the conditions (8) hold. Then the solution of problem (7) determines a point  (x1, t1)
such that the following is true

fi(x
1) fi(x

0),

where fi(x) pi(x)/ qi(x), ( i).

The proof can be done using direct estimations of (D1  D2) for the domain where
the announced inequalities hold, and for  domains, where  one of these inequalities at least
is not true.

It is possible to create a sequence of problems similar to problem (7) in the following
way: the solution of given problem from this sequence  determines the values   Li

0  for the
next problem. This sequence of problems will give a sequence of points in the criterion
space. Each point of this sequence will not be worse than the previous one, the sequence
will stop at weak Pareto point thus determining a weak efficient point for problem (2).

5. The multiple objective linear fractional programming problem a usage
of an auxiliary (modeling) MOLP problem

Having in mind problem (2) we will consider two cases.. Under the assumption
pi(x)/ qi(x) >0 (for all i and all x  S) we will consider the following MOLP
problem

max p1(x) max  ( q1(x)),
(9a) max  p2(x)         max  ( q2(x)),

. . . . . .
max  ps(x)         max  ( qs(x))

s.t.
        x  S.

Under the assumption  pi(x)/ qi(x) < 0 (for all  i  and all  x  S)  we will consider
another MOLP problem

max p1(x) max  q1(x),
(9b) max  p2(x)         max  q2(x),

. . . . . .
max  ps(x)         max  qs(x)

s.t.
      x  S.

Problems  (9a) and (9b) are proposed in [8] where the following is proved.
Theorem 7. [8] If pi(x)/ qi(x) > 0 (for all i and all x  S) then the set of efficient points

for problem (2) is a subset of the set of  efficient points for problem (9a). If
 pi(x)/ qi(x) < 0 (for all i and all x  S) then the set of efficient points for problem (2) is
a subset of the set of  efficient points for problem (9b).

It is possible that for some i we have pi(x)/ qi(x) > 0 (all x  S) and for all the rest
j  we have  pj(x)/ qj(x) > 0 (all x  S). For this case the auxiliary MOLP problem is as follows
[8]: for each i the criteria  max pi(x) and max ( qi(x)) are taken into account, for each  j
the criteria  max  pj(x) and  max  qj(x) are taken into account. Thus all the criteria in the
auxiliary MOLP problem are determined. In addition x  S.

Then we have a similar theorem: The set of efficient points of problem (2) is a subset
of the set of efficient points for the so formulated auxiliary MOLP problem.
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It must be pointed that the mentioned theorems concern the sets of efficient points.
However it is well known [8,9] that the set of weak efficient points of a multiple objective
linear fractional programming problem is easier for handling than the set of efficient
points, moreover we do not lose  generality. In [8] the auxiliary MOLP problem is treated
by compromise programming with the usage of ADBASE software. For the same purpose
we will use here the reference point method [10, 11] and especially the approach from
[2, 5]. It is important to note that the technique for handling the set of weak efficient points
broadly described in [2] will be put in the base of the analysis proposed here.

Suppose that in problem (2) we have

(Cond)    pi(x)/ qi(x) > 0,  i = 1, ..., h, and for all  x  S.
 pi(x)/ qi(x) < 0,  i = h+1, ...,  s and for all x  S.

Then the auxiliary MOLP problem is

max p1(x) max  ( q1(x)),
(10) max  p2(x)         max  ( q2(x)),

. . . . . .

. . . max  ( qh(x)),

. . . max  ( qh+1(x)),
max  ps(x)         max  ( qs(x))

s.t.
        x  S.

From [2, 5]  we know that the weak efficient points of problem (10) can be determined
by the solutions of the following LP problem

min  (D1  D2)
s.t.

D1  D2  b1
nu(r1

nu p1(x)),
D1  D2  b2

nu(r2
nu p2(x)),

(11) . . .
D1  D2  bs

nu(rs
nu ps(x)),

D1  D2  b1
de(r1

de+ q1(x)),
D1  D2  b2

de(r2
de+ q2(x)),

. . .
D1  D2  bh

de(rh
de+ qh(x)),

D1  D2  bh+1
de(rh+1

de qh+1(x)),
. . .
D1  D2  bs

de(rs
de+ qs(x)),

s.t.
x  S.

Here the superscript nu denotes parameters that concern the numerators in the
criterion functions in problem (2), the superscript  de denotes parameters concerning the
denominators in the same problem. All parameters denoted by  r  are  components of the
reference point for problem (10). It is known [2] that the reference point in (11) must
dominate the ideal point for problem (10). This will assure that the solution of problem
(11) determines a weak efficient point for problem (10).
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The following theorem is needed because it concerns the set of weak efficient points.
Theorem 8. Suppose that in problem (2) qi(x) > 0, for all i and all  x  S. Suppose

also that the condition (Cond) holds. Then if the point  x0  S   is a weak efficient point
for problem (2), it is a weak efficient point for problem (10).

The proof can be done assuming the opposite and obtaining a contradiction.
It is known from [2,5] that the value of chosen criterion at an efficient point for

problem (10) (obtained for fixed reference point and solving problem (11)) can be
improved by changing the corresponding component of the reference point only and solving
the so changed problem (11). This allow to move in the set of weak Pareto points, of
problem (10) i.e. in the set of weak efficient points of problem (2) too. The choice of the
changes in the reference point can be improved using the information for the solution
sensitivity with respect to the reference point [7].

In general, the so described results about the usage of unattainable reference points
and attainable points in the criterion space could be applied in creating a computational
procedure for finding preferable weak efficient points for problem (2).

6. Some examples

Example 1. Let us consider an example [1] of (scalar) linear  fractional programming
problem. We will use the vector approach and the reference point method. The problem
is

           2x1 + x2 +2
max    

x1 + 3x2 +4
s.t.

2x1 + x2  4;      2x1 + x2   14;
      x1    6;     x1, x2  0.

It is evident that qi(x) > 0 for all feasible  x  but p(x)  can change the sign In this case
we will use problems  (4.a) and (5.a). We assume  A = 0. In addition  b1  = b2= 1, and
r1= 10,  r2= 1.  Then the problem (5.a) becomes

min  (D1  D2)
s.t.

D1  D2  r1 + 2x1   x2  2,
D1  D2  r2 + x1 + 3x2 + 4,

          x1 + x2  4;   2x1 + x2  14,
x2  6;    x1  0 ,    x2  0;
  u1  u2 =  2x1 + x2 + 2,
  v1  v2 = x1 + 3x2 + 4,

r1 = 10,
r2 = 1 .

The solution gives  u1 = 2.75,   v1 = 6.25,  u2= 0,  v2 = 0:
The value of the goal function in problem (1) is  2.75:6.25 = 0.44.
If  r1 increases we must get an increased value of the numerator. Let r1 = 12,

r2 = 1. Now the solution gives  u1 = 3.25,  v1 = 7.75,   u2 = 0,  v2 = 0.
The value of the goal function is  3.25:7.75 = 0.4193548.



2 8

Here (as in the general case) the goal function has a unique global maximum and
has not any other local maxima. If this change of the numerator does not increase the goal
function we must try to decrease the denominator. We choose r1= 10,  r2 = 4. From the
solution we obtain   u1 = 2,  v1 = 4,   u1 = 2 , v1 = 4 . The value of the goal function is
2 : 4 = 0.5. This is the searched maximum. Further increasing of   r2  does not change the
solution. Further increasing of  r1  increases the value of the numerator, but the goal function
value decreases.

Example 2. We will use here an example of C h o o,  considered in [9].  This book
contains a very good description of the weak efficient set, but there is not a full algorithm
for analysis of the problem. The very problem is

      x1
  max  f1 =  

      x2
(12)    max  f2 = x3,

(x1 + x3)max  f3  =   
     1+ x2

s.t.
1 x1 , x2 , x3  4.

The weak efficient set Ew is [9]

Ew = U1   U2   U3   U4  U5 ,

where
U1 = {x  S| x = (a, b, c), a=bc},
U2 = {x  S| x = (4, b, c), bc  4),

U3 is the set  of all convex combinations of the points
(1, 4, 4), (1, 4, 1), (4, 4, 1), (4, 4, 4),
U4 is the set  of all convex combinations of the points
(4, 1, 4), (1, 1, 4), (1, 4, 4),(4, 4, 4).
U5 is the set  of all convex combinations of the points  (4, 1, 1), (4, 1, 4), (1, 1, 1).
A part of the experimental results is given in Table 1. The first column contains the

row number.The next three columns contain the components of some initial feasible point
(in the argument space) and the next three  the corresponding criteria values. The
parameters of problem (7) for this feasible point are computed and Bi  1. The so
formulated problem (7) is solved and its solution determines a new feasible point.The
components of the new feasible point are printed in the next triad of columns. The
corresponding criteria values are printed in the last triad of columns.

It can be seen that the solution of problem (7) gives each time a weak efficient point.
It must be noted that this point is obtained each time with the first solution of problem (7)
Following formulations (10) and (11) an auxiliary MOLP and a corresponding LP
problems  (with reference point) are considered for problem (12). The initial reference
point is given by

r1= 5, r2= 1, r3 = 5,r4 = 1, r5 = 6.



2 9

Table  1

   No Initial feasible point     Feasible point obtained with
     the problem (7) solution

x1 x2 x3 f1  f2 f3 x1 x2       x3       f1     f2         f3

1 3 4 1 0.75 1 0.8 3 4        1       0.75 1 0.8
 2 2 4 3 0.5 3 1.0 2 4        3       0.5 3 1.0

    3 1 3 4 0.333 4 1.25 1 3        4       0.333    4 1.25
    4 2 2 4 1 4 2.0 2 2        4       1 4 2.0

5 3 1 2 3 2 2.5 3 1        2       3 2 2.5
    6 3 1 3 3 3 3.0 3 1        3       3 3 3.0
    7 2.5 1 3 2.5 3 2.75 4 1.58 3.048 2.53 3.048 2.73
    8 2 1 3 2 3 2.5 4 1.92 3.15 2.08      3.15    2.45
    9 2 2 1 1 1 1 4 4 1 1 1 1
   10 3 3 1 1 1 1 4 4 1 1 1 1
   11 3.5 1.5 1 2.33 1 1.8 2.42 1 1.09 2.42 1.09 1.76
   12 2.5 3 1 0.8333 1 0.875 3.347 4 1.014 0.84 1.014 0.872
   13 1 2 2 0.5 2 1 2.33 4 2.33 0.58      2.33    0.93
   14 1 2 3 0.5 3 1.333 2.555 4 3.555 0.64 4        1.222
   15 2 2 2 1 2 1.333 4 3.8042.195 1.05 2.195 1.29
   16 2 1 3 2 3 2.5 4 1.92 3.15 2.08 3.15    2.45

Table 2 shows the results obtained for various reference points.

Table 2

 No Reference point Obtained Corresponding values of the
components feasible point criteria

r1 r2 r3 r4 r5 x1 x2 x3 f1 f2 f3

  1 5 1 5 1 6 2 3 1 0.6667 1 0.75
  2 6 1 5 1 6 2 3 1 0.6667 1 0.75
  3 8 1 5 1 6 3 2 1 1.5 1 1.333
  4 10 1 5 1 6 4 1 1 4 1 2.5
  5 5 2 5 1 6 1 2.5 1 0.4 1 0.571428
  6 5 3 5 1 6 1 2 1 0.5 1     0.6667
  7 5 5 5 1 6 1 1 1 1 1 1.0
  8 5 1 6 1 6 1 3 2 0.333 2 0.75
  9 5 1 7 1 6 1 2.5 2.5 0.4 2.5 1.0
 10 5 1 8 1 6 1 2 3 0.5 3 1.3333
 11 5 1 10 1 6 1 1 4 1 4 2.5
 12 5 1 5 2 6 1 3 1 0.333 1 0.5
 13 5 1 5 3 6 1 2 1 0.5 1 0.666
 14 5 1 5 4 6 1 1 1 1 1 1.0
 15 5 1 5 1 7 2.5 3.5 1 0.714286 1 0.7777
 16 5 1 5 1 8 3 4 1 0.75 1 0.8
 17 5 1 5 1 9 4 4 1 1 1 1.0
 18 5 5 5 1 7 1 1.5 1 0.6666 1 0.8
 19 5 5 5 1 8 1 2 1 0.5 1 0.6666
 20 5 5 5 1 10 1 3 1 0.333 1 0.5
 21 5 5 5 1 12 1 4 1 0.25 1 0.4
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All points with components  x1 , x2 , x3 , shown in this table are weak efficient for
the auxiliary MOLP problem however only bold faced of them are weak efficient for
problem (12). It can be seen that monotone changes in a reference point component can
lead to a weak efficient point for problem (12). The underlined numbers in the last three
columns are the maxima of the corresponding criteria

7. Some comments

The proposed ways for solving the scalar and the vector linear fractional programming
problems seem to be satisfactory. They use standard LP software only. They do not need
a variable substitution. A correct formulation of the auxiliary LP or MOLP problem and
a proper use of attainable or reference points is needed. The dimentionality of the auxiliary
LP or MOLP problems does not increase significantly. In general these results show that
multiple objective linear programming tools can successfully be used for analysis of other
mathematical programming problems.

Acknowledgment. The author thanks  Dessislava Gueorguieva for her conscientious compu-
tations.
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Применение метода эталонной точки для анализа
дробно-линейных задач программирования
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(Р е з ю м е)

В работе рассматривается скалярная и векторная задачи дробно-линейного
программирования. Для этих задач предлагаются два способа анализа. При
первом способе, решая вспомогательную задачу линейного программирования,
осуществляется переход от заданной допустимой точки (она находится в
аргументном пространстве и не является слабоэффективной) к  новой допустимой
точке, которая лучше исходной. При втором способе используется
вспомогательная задача многокритериального линейного программирования
(МКЛП). С помощью эталонной точки осуществляется движение в множестве
слабоэффективных точек этой МКЛП задачи. Это множество содержит точки,
которые экстремизируют целевую функцию (скалярной задачи), или множество
слабоэффективных точек (векторной задачи). Во всех случая в исчислениях
используются стандартные задачи линейного программирования.


