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Abstract. In this paper, we consider a family of symmetric polynomials of the eigenvalues of
a complex matrix A and find an explicit expression of each member of the family as a polynomial
of the entries of A with positive coefficients. In the case of a nonnegative matrix, one immediately
obtains a family of inequalities involving matrix eigenvalues and diagonal entries. Equivalent forms
of some of the obtained results as well as connections with known results and specific applications
are also presented. In the concluding part of the paper, we provide comments and conjecture
further inequalities related with nonnegative matrices.
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1 Introduction

Let A = [aij ] ∈ Mn(C) and N = {1, 2, . . . , n}. For α ⊆ N, 〈α〉 will denote the cardinality
of α and by A[α] we shall denote the principal submatrix of A in rows and columns
indexed by α. The multiset of eigenvalues λ1, . . . , λn of A (spectrum of A) will be denoted
by Λ = (λ1, . . . , λn). In the next section,we shall consider polynomials of λ1, . . . , λn and
when no matrix is specified, λ1, . . . , λn will be interpreted as independent variables. The
notation A ≥ 0 (A > 0) will be used if A = [aij ] ∈ Mn(R) with aij ≥ 0 (aij > 0,)
i, j = 1, . . . , n.

Several types of symmetric polynomials of the eigenvalues of a square matrix are well
known and play an important role in matrix theory. Typical examples are the elementary
symmetric polynomials

ek =
∑

1≤i1<...<ik≤n

λi1 . . . λik , k = 0, 1, . . . , (1.1)

where e0 = 1 and ek = 0 for k > n, and the power sums

sk =
n∑

i=1

λk
i , k = 0, 1, . . . . (1.2)

Polynomials ek and sk are related with matrix entries by the equalities

ek =
∑
α⊆N
〈α〉=k

det A[α] and sk = tr (Ak), k = 0, 1, . . . (1.3)
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which are widely used in various matrix theoretic contexts.
Apart from their importance in the study of certain matrix properties, symmetric poly-

nomials appear in the representation theory of symmetric groups, algebraic and analytic
combinatorics, mathematical physics, etc. It is well known [6] that both sets of polynomi-
als (1.1) and (1.2) represent natural choices for constructing bases of the ring Λn,Z of all
symmetric polynomials of λ1, . . . , λn with coefficients in Z. Thus, any element of Λn,Z can
be uniquely written as a polynomial in the elementary symmetric polynomials or a poly-
nomial in the power sums which, in view of (1.3), implies that any symmetric polynomial
in the eigenvalues of a matrix can be written in terms of matrix entries. However, finding
the explicit form in which an element of Λn,Z is written as a linear combination of the ele-
ments of a given basis is not always straightforward and the study of relationships among
the various bases of Λn,Z is an important subject in the theory of symmetric functions.

In this paper, we define a family of symmetric polynomials of the eigenvalues of a
matrix A ∈ Mn(C) and obtain an expression of each member of the family as a sum of
products of the entries of A. The polynomial family includes as special cases the power
sums and the complete homogeneous symmetric polynomials of matrix eigenvalues. Our
approach is based on analytical tools involving scalar and matrix power series expansions.
A connection with the classical MacMahon’s Master Theorem from enumerative combi-
natorics is also pointed out. In the special case when A is a nonnegative matrix, one
immediately obtains a family of inequalities relating the eigenvalues and diagonal entries
of A. Some other applications of the obtained results are given in addition. In the con-
cluding part of the paper, we provide comments and conjecture further inequalities related
with nonnegative matrices.

2 Main Result

Given integers m and n, 1 ≤ m ≤ n, let Qm,n be the set of all strictly increasing sequences
of the form i = (i1, . . . , im) where i1, . . . , im are elements from the set N. Clearly, Qm,n

consists of
(

n
m

)
sequences. If j = (j1, . . . , jm) is a sequence of nonnegative integers, | j | will

denote the sum | j | = j1 + . . . + jm. The order of elements in j = (j1, . . . , jm) will matter
so that the number of all ordered nonnegative sequences satisfying | j | = k for some
nonnegative integer k, is

(
k+m−1

k

)
. The complete homogeneous symmetric polynomial of

degree k in m independent variables x1, . . . , xm will be denoted by

hk(x1, . . . , xm) =
∑
| j |=k

xj1
1 xj2

2 . . . xjm
m . (2.1)

For a matrix A ∈ Mn(C), the principal submatrix obtained by deleting rows and
columns of A with indexes i1, . . . , im is denoted by A(i1, . . . , im). A special notation is
used for the diagonal entries of a matrix, i.e., [A]p denotes the diagonal element of A at
position (p, p). This notation is particularly suitable in identifying diagonal elements of
powers of a given submatrix of A. Thus, [A(i1, . . . , im)q]p denotes the diagonal element at
position (p, p) of the q−th power of A(i1, . . . , im); note that, in this case, p ranges from 1
to n−m.

Now, let A ∈ Mn(C) be given with spectrum Λ = (λ1, . . . , λn). For each m, 1 ≤ m ≤ n,
we shall consider polynomials of λ1, . . . , λn given by

sk,m(Λ) =
∑

i∈Qm,n

hk(λi1 , . . . , λim), k = 0, 1, . . . . (2.2)
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Note that the special cases m = 1 and m = n reduce to sk,1(Λ) = sk and sk,n(Λ) =
hk(λ1, . . . , λn), k = 0, 1, . . . . We shall also define a family of polynomials of the entries of
A. In particular, given m, 1 ≤ m ≤ n, let pk,m(A) denote

pk,m(A) =
∑

i∈Qm,n

rk(A; i1, . . . , im) (2.3)

where

rk(A; i1, . . . , im) =
∑
| j |=k

[Aj1 ]i1 [A(i1)j2 ]i2−1 . . . [A(i1, . . . , im−1)jm ]im−m+1 (2.4)

for k = 0, 1, . . . . Thus, sk,m(Λ) is a homogeneous symmetric polynomial of degree k in the
eigenvalues of A while pk,m(A) is a homogeneous polynomial of the same degree in the
entries of A. Both sk,m(Λ) and pk,m(A) are polynomials with positive integer coefficients.
From (2.1)-(2.4), it can be easily seen that if A is a triangular matrix then sk,m(Λ) =
pk,m(A). We shall prove this equality in the general case.

Theorem 2.1 Let A ∈ Mn(C) and Λ = (λ1, . . . , λn) be the spectrum of A. For each m,
1 ≤ m ≤ n,

sk,m(Λ) = pk,m(A), k = 0, 1, . . . . (2.5)

Proof. Given m, 1 ≤ m ≤ n, we shall construct two power series with coefficients sk,m(Λ)
and pk,m(A), k = 0, 1, . . . , respectively, and show that both series represent expansions of
one and the same function. Let

f(λ) =
n∏

i=1

(λ− λi) = det(λI −A) (2.6)

and define Fm(λ) as

Fm(λ) =
λm

m!
f (m)(λ)

f(λ)
(2.7)

where f (m)(λ) is the m-th derivative of f(λ), i.e. f (m)(λ) = dmf(λ)/dλm, 1 ≤ m ≤ n. By
differentiating m times the product in (2.6), it is obtained

Fm(λ) = λm
∑

i∈Qm,n

(λ− λi1)
−1 . . . (λ− λim)−1. (2.8)

For values of λ satisfying |λ | > max1≤i≤n |λi | , each term of the product in the right
hand side of (2.8) expands in a geometric series so that after multiplication, we have

Fm(λ) =
∑

i∈Qm,n

∞∑
k=0

hk(λi1 , . . . , λim)λ−k

=
∞∑

k=0

sk,m(Λ)λ−k. (2.9)

On the other hand, differentiating the determinant function in (2.6) by applying m-times
the differentiation formula [5]

d

dλ
det(λI −A) =

n∑
i=1

det(λI −A)(i), (2.10)
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it is obtained

Fm(λ)=
λm

det(λI −A)

∑
i∈Qm,n

det(λI −A)(i1, . . . , im)

=λm
∑

i∈Qm,n

det(λI −A)(i1)
det(λI −A)

det(λI −A)(i1, i2)
det(λI −A)(i1)

. . .
det(λI −A)(i1, . . . , im)

det(λI −A)(i1, . . . , im−1)
.(2.11)

It is easily seen that for |λ | > max1≤i≤n |λi | , each factor of the product in (2.11) is a
diagonal element in the inverse of some principal submatrix of (λI − A). By expanding
these inverse matrices in matrix power series and taking the respective diagonal entries,
we get

det(λI −A)(i1)
det(λI −A)

= λ−1
∞∑

k=0

[Ak]i1λ
−k

det(λI −A)(i1, i2)
det(λI −A)(i1)

= λ−1
∞∑

k=0

[A(i1)k]i2−1λ
−k

... (2.12)

det(λI −A)(i1, . . . , im)
det(λI −A)(i1, . . . , im−1)

= λ−1
∞∑

k=0

[A(i1, . . . , im−1)k]im−m+1λ
−k.

Substituting (2.12) into (2.11) and multiplying gives

Fm(λ) =
∑

i∈Qm,n

∞∑
k=0

rk(A; i1, . . . , im)λ−k

=
∞∑

k=0

pk,m(A)λ−k. (2.13)

Since the left hand sides of (2.9) and (2.13) agree, a comparison of coefficients in the right
hand sides implies equality (2.5).

Given a matrix A ∈ Mn(C), it follows from (2.5) that pk,m(A) is invariant under a
similarity transformation of A, i.e. pk,m(A) = pk,m(S−1AS) for any nonsingular matrix
S. Since AB and BA have the same spectrum for any A,B ∈ Mn(C), it also follows from
(2.5) that

pk,m(AB) = pk,m(BA). (2.14)

Conversely, from (2.14) one can easily obtain (2.5) by using the Schur triangularization
theorem and the fact that equalities (2.5) are obviously satisfied for a triangular matrix.

The following result is a consequence of Theorem 2.1 concerning nonnegative matrices.

Corollary 2.1 Let A = [aij ] ∈ Mn(R), Λ = (λ1, . . . , λn) and A ≥ 0. For each m, 1 ≤
m ≤ n,

sk,m(Λ) ≥
∑

i∈Qm,n

hk(ai1i1 , . . . , aimim), k = 0, 1, . . . . (2.15)

Proof. Let diag(A) denote the diagonal matrix with diagonal entries a11, . . . , ann. For
any nonnegative matrix B = [bij ] ∈ Mn(R), we have [Bk]i ≥ bk

ii for i = 1, . . . , n and
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k = 0, 1, . . . . By applying this inequality in (2.4), it is easily seen that

pk,m(A) ≥ pk,m(diag(A)) =
∑

i∈Qm,n

hk(ai1i1 , . . . , aimim) (2.16)

and thus, (2.15) follows from (2.5) and (2.16).
Obviously, in the simplest special case m = 1 Theorem 2.1 yields sk = tr (Ak) and

Corollary 2.1 reduces to the inequalities sk ≥
∑n

i=1 ak
ii, k = 0, 1, . . . .

In what follows, we consider polynomials (2.2) in the cases m = 2 and m = n. For
m = n, we have sk,n(Λ) = hk(λ1, . . . , λn) and in this case, we shall use the celebrated
MacMahon’s Master Theorem [7] in order to find another expression of sk,n(Λ) in terms
of the entries of A.

Theorem 2.2 (MacMahon’s Master Theorem) Let A = [aij ] ∈ Mn(C), X =
diag[x1, . . . , xn] and Xi = ai1x1 + . . . + ainxn, i = 1, . . . , n. The coefficient of the term
xj1

1 xj2
2 . . . xjn

n in the power series expansion of 1/ det(I −AX) is equal to the coefficient of
the term xj1

1 xj2
2 . . . xjn

n in the expansion of the product Xj1
1 Xj2

2 . . . Xjn
n .

The above theorem is an important result in enumerative combinatorics having a number
of applications and various extensions and generalizations. In relation with this result, we
note that

det(I −AX) =
∑
α⊆N

(−1)〈α〉 det A[α] det X[α]

= 1−
∑

∅6=α⊆N

(−1)〈α〉−1 det A[α] det X[α] (2.17)

and thus, the power series expansion of 1/ det(I −AX) is given by

1
det(I −AX)

=
1

1− Σ
= 1 + Σ + Σ2 + . . . (2.18)

where Σ is the sum in the right hand side of (2.17).
We shall apply Theorem 2.2 by using the following notation. Given a series P (x1, . . . ,

xn) in powers of x1, . . . , xn, c(P (x1, . . . , xn) : xj1
1 . . . xjn

n ) will denote the coefficient of
xj1

1 . . . xjn
n in P (x1, . . . , xn). In this notation, MacMahon’s Master Theorem states that

c

(
1

det(I −AX)
: xj1

1 . . . xjn
n

)
= c(Xj1

1 . . . Xjn
n : xj1

1 . . . xjn
n ). (2.19)

Now, by substituting x1 = . . . = xn = x in the power series expansion (2.18), it is easily
seen that

c

(
1

det(I − xA)
: xk

)
=
∑
| j |=k

c

(
1

det(I −AX)
: xj1

1 . . . xjn
n

)
. (2.20)

On the other hand

1
det(I − xA)

=
n∏

i=1

(1− xλi)−1 =
∞∑

k=0

hk(λ1, . . . , λn)xk (2.21)

and, hence, by (2.19), (2.20) and (2.21) it is obtained

hk(λ1, . . . , λn) =
∑
| j |=k

c(Xj1
1 . . . Xjn

n : xj1
1 . . . xjn

n ). (2.22)
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With X1, . . . , Xn as defined in Theorem 2.2, equality (2.22) gives an alternative expression
of sk,n(Λ) = hk(λ1, . . . , λn) obtained by means of this theorem.

Next, we state an explicit formula for sk,2(Λ) as a polynomial of the power sums
s0, . . . , sk for k = 0, 1, . . . and show some applications of this result.

Proposition 2.1 Let Λ = (λ1, . . . , λn), sk,2(Λ) be given by (2.2) with m = 2 and sk

denote the power sums (1.2). Then

sk,2(Λ) =
1
2

 ∑
p+q=k

spsq − (k + 1)sk

 , k = 0, 1, . . . . (2.23)

Proof. The sequence sk, k = 0, 1, . . . is defined by the generating function
∞∑

k=0

skx
k =

n∑
i=1

1
1− xλi

(2.24)

and also, for any λi1 and λi2 , the sequence hk(λi1 , λi2), k = 0, 1, . . . can be given by

∞∑
k=0

hk(λi1 , λi2)x
k =

1
1− xλi1

1
1− xλi2

. (2.25)

By summing the left and right sides of (2.25) over all i = (i1, i2) ∈ Q2,n and taking into
account (2.2), it is obtained

∞∑
k=0

sk,2(Λ)xk =
∑

i∈Q2,n

1
1− xλi1

1
1− xλi2

=
1
2

( n∑
i=1

1
1− xλi

)2

−
n∑

i=1

(
1

1− xλi

)2
 . (2.26)

Using the power series expansion(
1

1− xλi

)2

=
∞∑

k=0

(k + 1)λk
i x

k, i = 1, . . . , n (2.27)

it follows from (2.24) and (2.26) that

∞∑
k=0

sk,2(Λ)xk =
1
2

( ∞∑
k=0

skx
k

)2

−
∞∑

k=0

(k + 1)skx
k

 . (2.28)

By equating the coefficients of the equal powers of x in both sides of (2.28), we ob-
tain (2.23).

In the rest of this section, we use equality (2.23) in order to establish a trace property
of the bialternate product of matrices and to obtain a relation between the power sums of
the zeros of a polynomial and the power sums of the zeros of its first derivative.

The bialternate product of A = [aij ] and B = [bij ], i, j = 1, . . . , n is defined as F = A·B
where the entries of F are given by

fpq,rs =
1
2

(
det
[

apr aps

bqr bqs

]
+ det

[
bpr bps

aqr aqs

])
(2.29)
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for p = 1, . . . , n−1; q = p+1, . . . , n; r = 1, . . . , n−1 and s = r+1, . . . , n. Thus, F is a matrix
with dimension

(
n
2

)
×
(
n
2

)
. The product defined by (2.29) has useful applications mainly

in the theory of stability where stability properties of matrix eigenvalues or polynomial
roots are examined, e.g. see [1, 4]. A well known result due to Stephanos [9] states that
the eigenvalues of the matrix

k∑
p,q=0

cpqA
p ·Aq, (2.30)

where k is a nonnegative integer, are given by

1
2

k∑
p,q=0

cpq(λ
p
i λ

q
j + λp

jλ
q
i ), 1 ≤ i < j ≤ n (2.31)

where λ1, . . . , λn are the eigenvalues of A. From (2.30), (2.31) and our definition of sk,m(Λ)
in (2.2), it is easily seen that

tr
∑

p+q=k

Ap ·Aq = sk,2(Λ), k = 0, 1, . . . (2.32)

and by equality (2.23), we have the following result.

Proposition 2.2 Let A ∈ Mn(C), λ1, . . . , λn be the eigenvalues of A and sk be given by
(1.2). Then

tr
∑

p+q=k

Ap ·Aq =
1
2

 ∑
p+q=k

spsq − (k + 1)sk

 , k = 0, 1, . . . . (2.33)

If A in the above proposition is a nonnegative matrix then by (2.23) and Corollary 2.1,
the trace in (2.33) satisfies

tr
∑

p+q=k

Ap ·Aq ≥
∑

i∈Q2,n

hk(ai1i1 , ai2i2) ≥ 0. (2.34)

We note that the bialternate product generally does not preserve the nonnegativity of the
multipliers, i.e. one can easily find matrices A > 0 and B > 0 such that −A ·B > 0. Also,
by the definition of the bialternate product, it can be easily seen that∑

i∈Q2,n

hk(ai1i1 , ai2i2) = tr
∑

p+q=k

(diag(A))p · (diag(A))q. (2.35)

Now, let f(λ) ∈ C[λ] be a polynomial with zeros Λ = (λ1, . . . , λn) and let µ1, . . . , µn−1

denote the zeros of f (1)(λ). By sk and s′k we denote the power sums of λ1, . . . , λn and
µ1, . . . , µn−1, respectively, i.e. sk is given by (1.2) and

s′k =
n−1∑
i=1

µk
i , k = 0, 1, . . . . (2.36)

Considering the case m = 2 in (2.7), we have

F2(λ) =
λ2

2
f (2)(λ)
f(λ)

=
λ2

2
f (1)(λ)
f(λ)

f (2)(λ)
f (1)(λ)

. (2.37)
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It is easily seen that for λ > max1≤i≤n |λi | , the last two fractions in (2.37) are expanded
in power series with coefficients sk and s′k, respectively, so that after multiplication, it is
obtained

F2(λ) =
1
2

∞∑
k=0

∑
p+q=k

sps
′
qλ

−k. (2.38)

From (2.38) and (2.9) with m = 2, we have∑
p+q=k

sps
′
q − 2sk,2(Λ) = 0, k = 0, 1, . . . (2.39)

and by using (2.23), it follows that∑
p+q=k

sp(s′q − sq) + (k + 1)sk = 0, k = 0, 1, . . . . (2.40)

With s0 = n and s′0 = n − 1, equality (2.40) is trivial and we shall omit this case. In
the rest cases, (2.40) can be written in the following determinant form expressing s′k as a
polynomial of s1, . . . , sk.

Proposition 2.3 Given a polynomial f(λ) ∈ C[λ] of degree n,the power sums sk of the
zeros of f(λ) and the power sums s′k of the zeros of f (1)(λ) satisfy

s′k = sk +
(
− 1

n

)k

det


s1 n 0 . . . 0
2s2 s1 n . . . 0
...

...
...

...
(k − 1)sk−1 sk−2 sk−3 . . . n

ksk sk−1 sk−2 . . . s1

 , k = 1, 2, . . . . (2.41)

Proof. Equality (2.41) can be written as

(−n)k(s′k − sk) = Dk, k = 1, 2, . . . (2.42)

where Dk denotes the determinant in the right hand side of (2.41). Expanding this deter-
minant by the entries of the last column gives

Dk = s1Dk−1 − ns2Dk−2 + n2s3Dk−3 + . . . + (−n)k−2sk−1D1 + (−n)k−1ksk. (2.43)

We shall use induction on k in order to prove equality (2.42). For k = 1 and k = 2, it can
be easily seen that (2.42) follows from (2.40). Assume that (2.42) holds for determinants
of dimension less than k, i.e.,

(−n)i(s′i − si) = Di, i = 1, . . . , k − 1. (2.44)

By substituting (2.44) in (2.43) and then (2.43) in (2.42), we obtain equality (2.40) with
s0 = n and s′0 = n−1. Thus, (2.42) holds for each k = 1, 2, . . . , which completes the proof.
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3 Concluding remarks

In the previous section, we defined a family of symmetric polynomials of the eigenvalues
of a complex matrix A and found an explicit expression of each member of the family as
a polynomial of the entries of A. This result is formulated in Theorem 2.1 and it includes
the power sums sk,1(Λ) and the complete homogeneous symmetric polynomials sk,n(Λ) of
matrix eigenvalues. In the latter case, we found a connection with MacMahon’s Master
Theorem and gave another form of representing sk,n(Λ) in terms of the entries of A. For
m = 2, we have obtained sk,2(Λ) as a polynomial of the power sums s0, . . . , sk and this
result is used in establishing equalities (2.33) and (2.41).

An immediate consequence of Theorem 2.1 is the family of inequalities (2.15) which
are valid for the eigenvalues and diagonal entries of a nonnegative matrix. It should be
noted that eigenvalue inequalities are of considerable interest in the theory of nonnegative
matrices [2] and also in the study of some related matrix classes and problems. Typical
examples in this respect provide the class of M−matrices [2] and the various forms of
the inverse eigenvalue problem for nonnegative matrices [3]. In the latter case, it is clear
that inequalities (2.15) give a necessary condition for an n−tuple of complex numbers
λ1, . . . , λn to be the spectrum of a nonnegative matrix with diagonal entries a11, . . . , ann.
However, in the case of a nonnegative matrix A, it would be of some interest to further
examine the properties of the sequence

sk,1(Λ), sk,2(Λ), . . . , sk,n(Λ) (3.1)

where Λ is the spectrum of A and k = 0, 1, . . . . A particular question about (3.1) is whether
it is a unimodal sequence, i.e. whether there exists an index p such that sk,1(Λ) ≤ sk,2(Λ) ≤
. . . ≤ sk,p(Λ) ≥ sk,p+1(Λ) ≥ . . . ≥ sk,n(Λ). It is easily seen that this property is trivially
satisfied for k = 0 and for k = 1, we have s1,i(Λ) =

(
n−1
i−1

)
(λ1 + . . .+λn), i = 1, . . . , n which

is also a unimodal sequence.
We shall conclude the paper with the following

Conjecture 3.1 Let A ∈ Mn(R), A ≥ 0, f(λ) = det(λI − A) and µi, i = 1, . . . , n − 1 be
the roots of f (1)(λ) = 0. The power sums s′k given by (2.36) satisfy

s′k ≥ 0, k = 0, 1, . . . . (3.2)

The above conjecture is motivated by a previous work of the author [8] where it is shown
that the zeros of each derivative of the characteristic polynomial of a nonnegative matrix
A retain some of the basic spectral properties of A. On the other hand, inequalities (3.2)
could be useful in studying the following inverse eigenvalue problem. Given an n × n
nonnegative matrix with characteristic polynomial f(λ), is there a nonnegative matrix
with characteristic polynomial λm

n f (1)(λ) for some integer m ≥ 0? Note that such a matrix
can be easily found in the case n = 3. Finally, by taking into account (2.41), the above
conjecture can be equivalently restated in terms of the power sums of the eigenvalues of A.
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