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Abstract

In a recent work [!], a family of symmetric polynomials of the eigenval-
ues of a square complex matrix was defined and & one-to-one relation with a
corresponding family of polynomials of matrix entries was established. Several
consequences and applications of this result were pointed out and discussed. In
this paper, we summarize results which follow from this work and particularly
refer Lo the class of nonnegative matrices.
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1. Introduction. Given a matrix A = [a;;] € My(C), the multiset of
eigenvalues Aj,..., A, of A (spectrum of A) will be denoted by A = (A\1,...,An).
We shall write A > 0 (A > 0) if A = [a;;] € Mp(R) with ai; > 0 (a;; > 0),
1,7 =1,...,n. It is well known that the spectrum of a matrix A > 0 contains
a nonnegative eigenvaiue (Perron root of A) which is greater or equal to the
absolute value of any other eigenvalue. In the spectral theory of nonnegative
matrices there is plenty of results in the form of inequalities which give upper
and lower estimates of the Perron root, establish relations among the Perron
root and the other eigenvalues, provide criteria for specific matrix properties, etc.
Several other types of inequalities are also known to hold for the eigenvalues of a
nonnegative matrix. We shall briefly mention some of them.
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If A >0 and s; denotes
n
(1) a= i F=0120
i=1

then we have the power sum inequalities

(2) sp>0, k=0,1,...

ak > 0 and since sy, = tr(A¥),

s

Indeed, the nonnegativity of A implies tr(4%) >

T

1
inequalities (2) follow immediately.

Less obvious relations among the power sums are obtained by Loewy, London
and Johnson, e.g. see [?]. In this case, we have

(3) nmqlskmzs}f, km=12....

Inequalities (3) can be deduced from the well known Hoélder’s inequality and it is
easily seen that the equality in (3) is attained if A is a scalar matrix, i.e. A = al,
o > 0. Also, it follows from (3) that n™ 1s,, > s7*, m = 1,2,... which together
with the obvious inequality s; > 0 imply the power sum inequalities (2).
Another type of inequalities follow from the result in [}], where it is shown
that the elementary syminetric functions of the eigenvalues of an M-matrix satisfy
the classical Newton’s inequalities. In particular, let A1, ..., A, be the eigenvalues
of a nonnegative matrix A with Perron root A; = Jgax |Ai]. Then AT — A is an

M-matrix with eigenvalues 0,A\; — Ag,...,A\; — A, which satisfy the inequalities

] €j-1 €41
(4) 1> A . A i=1,...,n—1,
M~ () G

where e; is the j-th elementary symmetric function of the sequence 0,A; —
A2y oy A1 = Ay for 5 =0,1,...,n. In the general case, inequalities (3) and (4) are
independent. More precisely, it is shown in [*] that neither the two conditions (2)
and (3) together imply (4) nor the two conditions (2) and (4) together imply (3).
However, a relation between (3) and the inequalities of Newton is pointed out
in [*], where it is shown that each inequality in (3) for m = 2 and k = 1,2, ...
follows from the first Newton’s inequality applied to the eigenvalues of A* for
k=1,2, ..., respectively.

Apart from their independent interest, inequalities involving eigenvalues of
a nonnegative matrix play an important role in the study of certain properties
of other matrix classes and matrix-theoretic problems. Typical examples in this
respect provide the class of M-matrices [5'5] and the various forms of the inverse
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eigenvalue problem for nonnegative matrices [']. In the latter case, it is clear that
each of the inequalities (2)—(4) provides a necessary condition for an n-tuple of
complex numbers Ap,..., A, to be the spectrum of a nonnegative matrix.

In this paper. we present a family of inequalities relating the eigenvalues
and diagonal entries of a nonnegative matrix. These inequalities follow from the
main result in [}] and can be viewed as a broad generalization of the power sum
inequalities (2). In fact, (2) turns out to be the simplest special case in our
family of inequalities. Another set of inequalities satisfied by the power sums of
the eigenvalues of a nonnegative matrix is also given.

2. Main result. The following index sets will be used in the sequel. Given
a positive integer n, let N be the set N = {1,2,...,n}. For integers m and n
with 1 < m < n, we shall denote by Qn,n the set of all sequences of the form

%2 = (i1,...,%m) such that i3,...,i;m € N and 4; < --- < ip. It can be easily
seen that Qmpn has () elements. We shall also use sequences of nonnegative
integers of the form 7 = (ji,...,7m) and in this case [j| will denote the sum

|7l = 41 + -+ + jm. The positions of elements in j = (41,...,Jm) will matter so
that the number of all sequences satisfying |j| = & for some nonnegative integer k,
is (k“;:'l}. With this notation, the complete homogeneous symmetric polynomial
of degree k in m independent variables z1,..., %, is defined as

(5) By enstm)= Y el 5

ll=k

Ior a matrix A € M,(C), the principal submatrix obtained by deleting rows
and columns of A with indexes i1,...,%n is denoted by A(?1,...,%m). A special
notation is used for the diagonal entries of a matrix, i.e., [A], denotes the diagonal
element of A at position (p,p). This notation is particularly suitable in identifying
diagonal elements of powers of a given submatrix of A. Thus, [A(i1,...,im)%p
denotes the diagonal eleruent at position (p,p) of the g-th power of A(iy, ... ,in);
note that, in this case, p ranges from 1 to n — m.

liow, let A = [ai;] € M,(C) be given with spectrum A = (Ay,...,A,). The
following family of polynomials of Aj,..., An is defined and studied in [']. For

each m, 1 < m < n, let sgm,m(A) be the polynomial given by

(6) slli= 3, BalMgsvisdnd B=0T0

1€CQm,n

Note that the special cases m = 1 and m = n reduce to sx1(A) = s and
Skn(A) = hg(Aq, ..., Ap) for £k =0,1,.... Another family of polynomials of the
entries of A is also defined as follows. Given m, 1 < m < n, let pgm(A4) be the
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polynomial of a; 4, 4,7 =1,...,n given by

(D pem(A) = D> Y [AM [AG) o [AGL i) e

€0 [k

for each £ =0.1,.... We note that spm{A} is a homogeneous symmetric palyno-
mial of degree k, pxm(A) is a homogeneous polynomial of the saie degree and
both polynomials have positive integer coeflicients. The main result obtained
in [} proves the following relation between the two families of polynomials (6)
and (7).

Theorem 1. Let A € M,(C) aend & = (A,..., ) be the spectrum of A.
For eachm, I <m < n,

(8) S:’—r,m<A> = pic,m{AL k=0,1,....

The proof of Theorem 1 utilizes analytical tools mvolving scalar and matrix
power series expansions. Equality (8) implies some important properties of poly-
nomials prm(Ad), 1 < m <nand k=0,1,.... Since the spectrum A of a square
matrix is invariant under a similarity transformation, it follows from (8), that
Prom(A) is also invariant under a similarity transformation of A, 1.2,

Pm(A) = prom(S1AS)

for any nousingular matrix S. Sinee AR and B A bave the same spectram for any
A B e My (C), it also follows that

pk,m(f}B) = pk,m(ﬁ;—’i).

From the definition of py m(A) given by (7), it can be easily seen that if A isa
nonnegative matrix then pg n,,(A) takes on nonnegative values for any 1 <m <n
and k= 0,1,.... This fact together with the equality (8) in Theorem 1 enables
us to derive a family of inequalities involving eigenvalues and diagonal entries of
a nonnegative matrix. The result is formulated in the next theorem.

Theorem 2. Let A= [ay] € Ma(B), A = (A,...,A) and A > 0. For each
I<m<nand b=0,1,..., the following inequality holds

(9) 57T hk(a o din) 203 Erlng, - Bin,).

€ n 1€ m.n

Prool. Let diag(A) denote the diagonal matrix with diagonal entries aqy, ...,
Gnn. oinece A s a nonnegative matriy, it is easily seen that

(10) [A¥); > e, i=1,...n k=01,...

192 V. Monov



We recall that [A¥]; in inequality (10) denotes the diagonal element at position
(,7) of the k-th power of A. By applying this inequality to the right-hand side
of (7), it is obtained

(11) Prym(A) 2 pem(diag(A)) = > AklGigiy, -+ Cimim)-
1eQmn

Now, inequality (8) follows by taking into account the definition of sg ,,(A) in (6),
equality (8) in Theorem 1 and inequality (11).

Two special cases of Theorem 2 can be pointed out. In the simplest special
case m = 1, the following well known inequalities are obtained from (9):

(12) Angaﬁ., k=0,1,2,....

ki n
=1 i=1

Since s = Y 1y /\{-‘ and a; > 0,7 = 1,...,n, (12) obviously implies the power
sum inequalities (2). The other special case provides a relation between the
complete homogeneous syminetric polynomials of the eigenvalues and diagonal
entries of a nonnegative matrix. In particular, the case m = n in (9) yields the
following inequalities:

(lq) hk()\l,....)nn)zhk(ﬂ.u,...,ﬂnn), k=0,1,....

By considering Aj,..., A, as independent variables, polynomials s ,(A) de-
fined by (6) can be viewed as elements of the ring A,, z of all symmetric poly-
nomials of n variables with integer coefficients. It is well known that the power
SUmS Sp = ) 14 )\f, k =0,1,..., provide a basis in A, z, so that any element
in the ring A, z can be uniquely written as a polynomial of the power sums of
Aly- .., An. However, finding the explicit form in which a polynomial of Ay,..., A\,
in A, z is written as a linear combination of the elements of a given basis is not
always straightforward and the study of relationships among the different bases
in Apz is an important subject in the theory of symmetric functions [}]. In
what follows, we consider the case m = 2 in (6) and state an explicit formula for
sk,2(A) as a polynomial of the power sums sg,...,sg for k=0,1,.... This result
is formulated in the next proposition.

Proposition 1. Let A = (A1,..., ), ska(A) be given by (6) with m = 2
and sy, denote the power sums (1). Then

(14) sl B} =% S spsg—(k+ D)k |, k=0,1,...
pt+g=k
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Proof. By expanding the right-hand side of (14), it is obtained

(18) > spsg— (k+1)sk
prg=k
= 30 (e XA e £ 22) = (kDO -+ M)
pra=k

- Z Z /\flA?Z = (k £ 1)(’\1" ey )‘ﬁ)
iy,i2=1 ?‘i"q:k

=2 z Z AfiAg:;:Q Z hk(’\iu)‘iz)-

1<iy<io<n p+gq=k i€Q2,n

Now, (14) follows immediately from equalities (15) and the definition of s 2(A)
in (6).

The above proposition is taken from [!] and the proof in this reference is
based on the expansion of two power series and comparison of their coefficients of
the equal powers. Obviously, the proof given here is shorter and straightforward.
Equality (14) enables us to obtain the following result.

Theorem 3. Let A = [a;] € Mp(R), A = (A1,..., ) and A> 0. For each
k=0,1,..., the folloutng inequality holds

(16)

AR

Z Sr}sq“(k+1)5k 2> Z hk(aslipﬂigig)-

p+q=k 1€Q2n

It is easily seen that (1,% follows from inequality (9) with m = 2, the defi-
nition of s 2(A) in (6) and equality (14). Thus, in the special case m = 2, the
above theorem gives an equivalent form of (9) expressed in terms of the pqwer
sums sg,...,8;. Since A is a nonnegative matrix, the right-hand side of (l])’ is
nonnegative and Theorem 3 yields a family of power sum inequalities in the form

) spsg—(k+1)sk | 20, k=0,1,....
ptg=k

3. Conclusion. The main result of the paper is formulated in Theorem 2
and it represents a family of inequalities involving symmetric polynomials of the
eigenvalues and diagonal entries of a nonnegative matrix. This result reveals
specific properties of the class of nonnegative matrices and it also provides a
generalization of some well known and widely used inequalities. In Proposition 1,
we have obtained an explicit formula for s o(A) as a polynomial of the power
sums g, ...,k and we have used this result in Theorem 3 in order to give an
equivalent form of inequalities (9) in the case m = 2. An interesting question
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arising from the regult in Theorem 2 is the lollowing, It woaldd be ngefud to find a
complete characterization of the ¢lass of all symmetiic polynomials in n variables
which satisfy inequalities (9) for a nonnegative matrix with eigenvalues Ay, ..., A,
and disgonal entries a1, -, Gnn. Dertainly, the power sums (1} and the complete
homogeneous symmetric polynomials (5) belong to this class.

Some areas of possible application of the results can be pointed out as fol-
lows. The theory of nonnegative matrices [%] is an area of coutinuovs juterest and
active research and here, our elgenvalue inegualities may be useltl in characteris-
ing certain properties of this important maetrix class as well a8 o studving sane
other pelated classes of matvices such as Mematrices, The obtained results wmay
also be relevant to some variants of the inverse eigenvalue problem for nonneg-
ative matrices [7]. In particular, it is clear that inequalities (9) give a necessary
condition for an n-tuple of compley numbers Aq,. .., b to bethespectrumol a
nonnegative matrix with diagonal entries a1y, ..., Gnn. Another ares.of spplice
tion is the theory of positive dyvmamical systems [9‘> 9 where u linear homogeneous
discrete-time system is described by the state space representation

(17) z(k+1) = Ax(k),

where z is the n-dimensional vector of state variasbles, A € M,(Ji) is the stite
matrix and k denotes the discrete time. System (17} Is said to be positive if
for any positive initial state vector the trajectory of the systesmn remains positive
for all values of k. An immediate consequence of this definition is that (17) is
a positive system if and only if the state matrix A has positive elements. in
this area of systems research, theoretical results characterizing the properties of
a positive matrix A, and espeecially the properties of ity gigenvalues, provide an
important tool in the analysis and control of this type ol systems.
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