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Abstract

The paper is concerned with two special products of matrices which play a
key role in the study of polynomial and matrix stability and in some problems
arising in the theory of dynamical systems. The main results include a simple
and elegant relation with the well-known Kronecker product and equalities
involving traces of the product matrices.
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1. Introduction. The notion of bialternate product of two square matrices
is well known in matrix theory. Its original definition as “composition bialternée”
together with some of its basic spectral properties appear in ['] and a later study
with more contemporary results can be found in [?]. The major areas of appli-
cation of this specific matrix product include polynomial and matrix stability
analysis [>3] and problems in the theory of dynamical systems associated with
detecting and computing Hopf bifurcations in systems of ordinary differential
equations [+°]. In [6] another product of matrices is introduced and its properties
and application in stability problems are studied in parallel with the bialternate
product. The underlying idea in this reference is that both products of matrices
can be analogously constructed by applying a well known principle of deriving
a bilinear form from a given quadratic form. In the present paper, we re-define
the matrix product from [®] by using the permanent function and within this
framework, we present some new properties of the two matrix products.
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2. Notation and definitions. For any integer n > 2, let Q2 be the set of
all pairs (i, j) such that 4,5 € {1,2,...,n} and i < j, and let G2, be the set of all
pairs (i,7) such that i,5 € {1,2,...,n} and i < j. Clearly, Q2 has (}) elements
and Gy, consists of ("’2'”1) elements. We shall assume that the elements of both
Q2» and Gg 5, are ordered lexicographically.

Given a matrix A € My, »(C), the notions of the k-th compound matrix
Cr(A) of A and the k-th induced matrix Py(A) of A for k = 1,...,r, r =
min{m,n} are well known in matrix theory [7]. For our purposes, only the sec-
ond compound and the second induced matrices will be considered. We shall use
double indices ij to label the rows and double indices kl to label the columns of
these matrices where the pairs (4,7) and (k,l) are elements of given index sets.
In particular, for A = [a;;] € My, n(C), the entries of C2(A) are defined by

Ak - Qg
ajk ajl

(1) Co(A)ij ki = det [ } , (4,7) € Qam, (k1) € Qo

and the entries of P»(A) are defined by

1 ; ; ..
(2) PZ(A)ij,kl = W—l)per [ Z;I;: Z;_ll ] , (%J) € Gz,m, (k,l) € G2,m

where “per” denotes the permanent function and the value of u(-,-) is determined
as u(p,q) = 2if p = g and p(p, q) = 1if p # ¢. Thus, the size of Co(A) is () x (3)
and the size of Py(A) is (™3') x ("3'). Compound and induced matrices have
interesting spectral properties, e.g., see []. In particular, we recall that if );,
1 < i < n are the eigenvalues of A € M,(C) then the eigenvalues of Cy(A)
are \;Aj, where 1 < i < j < n and the eigenvalues of P,(A) are A\;\; where
117 <.

Next, we give definitions of the two matrix products which are considered in
the sequel. The first definition presents the well known bialternate pro-
duct [V 2.

Definition 1. The bialternate product of matrices A = [a;;] € Myp(C) and
B = [bij] € M,(C) is defined to be the matriz F' = A - B where the entries of F
are given by

bix by
ajk ajl

L aix ay
(3) fz],kl =3 (det[ bjk bjl + det

). i) € @ 1) € Gan

Using the permanent instead of determinant, we shall define another matrix
product which will be referred to as a permanental bialternate product. It should
be noted that our definition, although motivated by the work in [¢], does not
coincide with the definition given in this reference.
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Definition 2. The permanental bialternate product of matrices A = [a;;] €
M, (C) and B = [b;;] € M, (C) is defined to be the matriz G = A x B where the
entries of G are given by

1 ik Qi ] [ bix by ])
4 » < er ’ < + per )
(4) 9ijkl 9 /_—u(i,j)_,u(k, ) (p [ bjk bji 5 Ajk  ajl

(,5) € Gapn, (k1) € Gop.

According to these definitions F' € M(g)(C), G e M(n;q)(C) and it is seen
from (1) and (2) that

(5) A-A=Cy(A) and A x A = Py(A).

Some basic algebraic properties of the two matrix products together with the
main results of the paper are presented in the next section.

3. Main results. We begin with simple properties which are consequences
of the definitions given by (3) and (4).

Proposition 1. Let A,B,C € M,(C). Then

(a) A-B=B-Aand Ax B=B x A;

(b) (¢A)-(BB) = aB(A-B) and (aA) x (BB) = aff(A x B), where o, 8 € C;

(c)A-(B+C)=A-B+A-Cand Ax(B+C)=AxB+AxC;

(d) (A-B)T = AT . BT and (A x B)T = AT x BT;

(e) (A-B)* = A*- B* and (A x B)* = A* x B*, where “*” denotes complex
conjugate transpose; '

(f) AB-AB = (A-A)(B-B) and AB x AB = (A x A)(B x B);

(8) (A-A)F = AF. Ak and (A x A)F = A* x A* fork=0,1,2,...;

(h) If A is nonsingular then A- A and A x A are nonsingular matrices with
(A-A)1=A"1.A1and (Ax A)1=A4"1x A1,

(i) If A and B are upper triangular (lower triangular, diagonal) matrices with
diagonal entries a;; and by, i = 1,...,n, respectively, then F = A- B and G =
A x B are upper triangular (lower triangular, diagonal) matrices with diagonal
entries

1 13
(6) fijii = 5(aibj; + biazj), (i,7) € Qan
2
and
1 )
(7) Gijij = §(aiibjj =+ bz'z‘ajj), (4,7) € Gan,
respectively.

Compt. rend. Acad. bulg. Sci., 63, No 9, 2010 1259




Proof. Conditions from (a) to (e) directly follow from (3) and (4). In view of
(5), condition (f) essentially represents a well known property of the compound
and induced matrices [*]. Condition (g) can be inductively obtained from (f) with
B = A and condition (h) follows from (f) with B = A~!. To prove condition (i),
we can first assume that A and B are upper triangular matrices. In this case,
(6) and (7) simply follow from (3) and (4) by noting that the entries of A and
B satisfy apg = bpyg =0 for 1 < g <n—1and p > q. To see that F' and G are
upper triangular matrices as well, we have to show that the entries of F' and G
satisfy fi;j i = 0 and g;j ki = O for all pairs (¢,5) and (k, 1) such that (7,7) > (k,1)
in the lexicographical order of the sets Q2 and Ga . Since (3,5) > (k, 1) if and
only if either 2 > k or ¢ = k and j > [, it is easily seen that equalities f;;x = 0
and g;jr1 = 0 are also obtained from (3) and (4) by taking into account the
upper triangular structure of matrices A and B. The cases of lower triangular
and diagonal matrices A and B follow in a similar way.

In what follows, we shall use the Kronecker product of matrices and some of
its basic properties. The necessary background theory can be found in [8].

As usual, the Kronecker product is denoted by ® and if X € My, ,(C),
Y € Mpy(C) then X ® Y € Mppnq(C). Let {e; : 1 < i < n} be the standard
basis of unit vectors in C". By using the Kronecker product, the standard basis
of unit vectors in C™* is given by {e; ® ¢ : 1 < ¢,j < n}. We shall denote by P
the n? x n? permutation matrix defined by equations

(8) Ple;®e;)—we; ®e; 1 L4 <n.

Matrix P has interesting properties and useful applications, e.g., see [4%9]. It
should be noted that P = PT = P71, P(z ® y) = y ® z for all z,y € C™ and
P(A®B) = (B®A)P for all A, B € M,(C). From (8), it is easily seen that P has
an eigenvalue equal to —1 with algebraic and geometric multiplicity %n(n— 1), an
eigenvalue equal to +1 with algebraic and geometric multiplicity %—n(n +1) and
the eigenspaces corresponding to these eigenvalues are respectively given by

9) E_) =span{e;®e; —e; ®e; : (4,5) € Qan}
and
(10) E1) =span{e; ®e; +e;®e; : (i,5) € Gan}-

Subspaces (9) and (10) are orthogonal with respect to the usual inner product in
c" . ie., (u,v) = u*v = 0 for every u € E(_;y and v € E(;y). Also (9) and (10) are
orthogopal complements in C"2, ie., E_1)NE) = {0} and E_y)+E(41) = c™,
where + denotes the direct sum of subspaces. The next result shows that the
pair of subspaces (E(_), E(41)) is a reducing pair for A ® B + B ® A where
A,B € M,(C).
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Theorem 1. Let A = [a;;] € My,(C) and B = [b;j] € M,,(C). There is an
orthogonal matriz U € M,2(R) such that

(11) UT(A®B+B®A)U=2[A'B| 4 J

0 |[AxB

Proof. Let V and W be matrices constructed as follows. The columns of V'
are given by

1 3 %
(12) E(ei ®ej —e;®ei), (4,5) € Qan,
the columns of W are given by

1| 552
(13) —‘m(ei ®ej+ej®ei), (4,5) € Gapm,

and the order of columns in V' and W corresponds to the lexicographical order of
the pairs (4,7) in Q2 and Ga,, respectively. It will be shown that the n? x n?
matrix U = [V|W] satisfies (11).

It is easily seen that the columns of V and W provide orthogonal bases of
E_y) and E(41), respectively, so that UTU = I. Next, ifz € E(_y) then Pz = —z
and since P(A ® B) = (B ® A)P, it follows that

(14) P(A® B+ B® A)z=—-(A® B+ B® A)z.
Similarly, if z € E(41) then Pz = z and it is obtained
(15) P(A B+B® A)z=(A®B+B® A)z.

Equalities (14) and (15) imply that E(_;y and E(,1) are invariant subspaces of
(A® B+ B® A) and, since VIW =0 and WTV = 0, we have

(16) VI(A®B+B® A)W =0and WI'(A® B+ B® A)V = 0.
Now, in order to prove (11) it remains to show that
(17) VI(A® B+B®A)V =24-B and WI(A® B+ B® A)W =24 x B.

For (i,7) € Q2 and (k,1) € Qa,pn, the entry of VI(A® B+ B ® A)V in row ij
and column kl is given by

VI(A® B+ B® A)Viju =
1
= 5(6i®€j —e;®e) (A B+ B® A)(er Qe — e ®ex)
1
= §(ei ®ej—e; ® e,-)T(Ae;c ® Be; — Ae; ® Bey, + Be, @ Ae; — Be; @ Aey,)

(18) = aikbji — aubjk, + bikaji — byaj.
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In (18), we have used the mixed-product property of the Kronecker product and
the fact that (X®Y)T = XT®Y7T. Analogously, for (i,j) € G2, and (k,1) € Gap,
the entry of WT(A® B + B ® A)W in row ij and column kl is given by

WT(A® B+ B® AW;ju=
1
2y/ (i, 5)pu(k, 1)
1
19) = —————=(aib;i + aubjr + bixaj + bya;).
( ) ,u(z,]),u(k,l)( kY5l iUk kQjl il ]k)
By comparing (18) with (3) and (19) with (4), it follows that equalities (17) hold
which completes the proof.
Theorem 1 shows that there is a simple and elegant relation between the
matrix products defined by (3) and (4) and the Kronecker product of matrices.
Our next result gives a characterization of the traces of matrices A - B and
A x B. In particular, it is shown that the traces of A- B and A x B can be
expressed in terms of the traces of A, B and AB.
Theorem 2. Let A = [ai;j] € Myp(C) and B = [b;] € Myp(C). Then

(eiQej+e;®e)(AQB+B®A)(er ®e+ e ® ex)
J

(20) 2tr (A-B) =trAtr B —tr(AB)
and
(21) 2tr (A x B) =tr Atr B+ tr (AB).

Proof. It follows from (3) that
2tr(A-B) = Y fi
(i,j)EQ2,n
= ) (aabjj + biajj — aybjs — bijaz)
1<i<j<n
(22) = )Y (aubs; — aisbji):
i=1 j=1
Similarly, it is obtained from (4) that
2tr(Ax B) = Z Gij,ij

(iaj)€G2,n

1
w Z m(aiibjj + biiajj + aijbji + bijaj:)
1<i<j<n TN

(23) = Z Z(aiibjj + aijbji).

i=1 j=1
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By writing the right-hand sides of (22) and (23) in terms of the trace function,
we obtain (20) and (21), respectively.
As immediate special cases of (20) and (21), we obtain

(24) 2tr(A-I)=(n—1)tr A and 2tr (A x I) = (n+ 1)tr 4,

(25) 2tr Cy(A) = tr2A — tr A? and 2tr Py(A) = tr2A + tr A%
Also, Theorem 2 together with Theorem 1 yield the trace equalities
(26) 2trA-B+trAx B)=trAtrB=tr(A® B),

where the second equality represents a well known property of the Kronecker
product of matrices, e.g., see [8].

4. Conclusion. The results in the previous section present specific prop-
erties of the bialternate and the permanental bialternate products of matrices.
In particular, Theorem 1 establishes a relation of the two matrix products with
the well known Kronecker product and Theorem 2 gives equalities expressing the
traces of matrices A-B and A x B in terms of the traces of A, B and AB. In study-
ing the properties of these products, it would be useful to find characterizations
of other scalar-valued functions of A- B and A x B, for example the determinant
and permanent of these matrices. In this context, we notice the relation

(27) 9" det(A - B)det(A x B) = det(A® B+ B® A)

following from Theorem 1. Also, it would be of certain interest to extend the
results in [!°] for matrices A - B and A x B, where A and B are assumed to be
nonnegative matrices. Obviously, A x B is nonnegative in this case while A-B may
have negative elements. Finally, we note that an examination of the structure and
canonical forms of matrices A-B and A x B represents another topic of particular
interest. Some results in this direction are obtained in [4].
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