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ABSTRACT. We prove an extension of Newton’s inequalities for self-adjoint families of complex
numbers in the half planBe z > 0. The connection of our results with some inequalities on
eigenvalues of nonnegative matrices is also discussed.
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1. INTRODUCTION

The well known inequalities of Newton represent quadratic relations among the elementary
symmetric functions of. real variables. One of the various consequences of these inequalities
is the arithmetic mean-geometric mean (AM-GM) inequality for real nonnegative numbers. The
classical book([2] contains different proofs and a detailed study of these results. In the more
recent literature, referende [5] offers new families of Newton-type inequalities and an extended
treatment of various related issues.

This paper presents an extension of Newton’s inequalities involving elementary symmetric
functions of complex variables. In particular, we considetuples of complex numbers which
are symmetric with respect to the real axis and obtain a complex variant of Newton’s inequalities
and the AM-GM inequality. Families of complex numbers which satisfy the inequalities of
Newton in their usual form are also studied and some relations with inequalities on matrix
eigenvalues are pointed out.

Let X be ann-tuple of real numbers,, ..., z,. Thei-th elementary symmetric function of
x1,..., 2z, Will be denoted by;(X), i =0,...,n, i.e.
e(X) =1, e;(X) = Z Ty Ly o Ty, T=1,...,m.

1<) <--<y;<n
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2 VLADIMIR V. MONOV

By E;(X) we shall denote the arithmetic mean of the products(i&’), i.e
(X
Ey(X) = % i=0,....n.

Newton’s inequalities are stated in the following theoreim [2, Ch. IV].
Theorem 1.1.1f X' is ann-tuple of real numbers,,...,x,, z; #0,7=1,...,nthen
unless all entries oft’ coincide.

The requirement that; # 0 actually is not a restriction. In general, forregl i =1,....n

EZZ(X)ZE’Lfl(X)EZJrl(X)? Zzlvun_l

and only characterizing all cases of equality is more complicated.

Inequalities [(I.11) originate from the problem of finding a lower bound for the number of
imaginary (nonreal) roots of an algebraic equation. Such alower bound is given by the Newton'’s
rule: Given an equation with real coefficients

apr" + a1z - +a, =0, ag#0
the number of its imaginary roots cannot be less than the number of sign changes that occur in

the sequence
2 2
ag <£> _ 2 4 <_an_1 ) _Gn Gn2 o2
@) G @ Gh)) o G Gl

According to this rule, if all roots are real, then all entries in the above sequence must be
nonnegative which yields Newton'’s inequalities.
A chain of inequalities, due to Maclaurin, can be derived frpm|(1.1), e.gl 5ee [2] and [5].

Theorem 1.2.If X" is ann-tuple of positive numbers, then
(1.2) E\(X)> EY*(X) > - > EY"(X)
unless all entries oft’ coincide.

The above theorem implies the well known AM-GM inequality(X') > E}/“(é\,’) for every
X with nonnegative entries.

Newton did not give a proof of his rule and subsequently inequalitie$ (1.1) arld (1.2) were
proved by Maclaurin. A proof of (1I}1) based on a lemma of Maclaurin is given in Ch. IV of [2]
and an inductive proof is presented in Ch. Illof [2]. In the same reference it is also shown that
the differenceF?(X) — E;_1(X) E;,1(X) can be represented as a sum of obviously nonnegative
terms formed by the entries é&f which again proveg (I.1). Yet another equality which implies
Newton’s inequalities is the following.

Let f(z) = > i, a;z""" be a monic polynomial with; € C,: = 1,...,n. For eachi =
1,...,n — 1 suchthau;,; # 0, we have
2 i+1 2
a; @i—1 iyl % —1)2
5) " Gy~ () B0

where),, k = 1,...,i+1 are zeros of thén — i — 1)-st derivativef "~ 1) ( ) off( ). Indeed,
letey, k=0,...,i + 1 denote the elementary symmetric functions\of. .., A\; ;1. Since

f(n—i—l)( ) = § (n —k)! i+1—k
Sy S TR
k=0
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we have G+ 1)l(n— &)
2+ 1)(n—k) B .
n'(@—l—l—k)' ag, k=0,...,1+1

Cp = (—1)

and hence

2 9 2
a; i1 Qi41 Cit1 € - €i—1
1.4 — | - . = — 1 —2(1+1
(4 (@) (7)) () i1y ( (i) = ))
which gives equality (1]3).

Now, if all zeros of f(z) are real, then by the Rolle theorem all zeros of each derivative of
f(z) are also real and thus Newton's inequalities follow frdm|(1.3).

2. COMPLEX NEWTON'S INEQUALITIES

In what follows, we shall considet-tuples of complex numbers, ..., z, denoted byZ.
As in the real case;;(Z) will be thei-th elementary symmetric function & and E;(2) =
ei(2) /(%) ,i=0,...,n. Inthe next theorem, it is assumed tiasatisfies the following two
conditions.

(C1) Rez; >0,i=1,...,nwhereRez; = 0only if z; = 0;
(C2) Zis self-conjugate, i.e. the non-real entries Bfappear in complex conjugate pairs.

Note thatZ satisfies[(CR) if and only if all elementary symmetric functionsZoére real.
Conditions[(CL) and (G2) together imply thatZ) > 0,i =0,...,n.

Theorem 2.1. Let Z be ann-tuple of complex numbers, ..., z, satisfying conditiong (G1)
and [C2) and let-¢ < argz; < p,i=1,...,nwhere0 < ¢ < 7/2. Then

(2.1) CEX2)> B (2)Ein(2), i=1,....n—1
and
(2.2) "IE(Z) > c"*ZEQI/Q(Z) > ... > CE,I/,(?_I)(Z) > Ei/n(z)

wherec = (1 + tan? ¢)'/2,

Proof. Let W,, be defined by
W,={2€C:—p <argz < ¢}

and consider the polynomial

(2.3) f(z) = H(z —z) = Zaiz"’i

with coefficients - o

(2.4) a; = (-1)%‘(?)@(3), i=0,...,n

If forsomei = 1,...,n—1, E;;1(Z) = 0 then the corresponding inequality n (2.1) is obviously
satisfied. Foreach=1,...,n — 1 such thatt;,(Z) # 0 let Ay, ..., ;11 denote the zeros of

f==D(2). Asin (1.4), it is easily seen that
(2.5) PE(Z) — Ei1(2)Eina(2)
1 i+1 2 i+1 2
=T Te (H /\k) i(1 + tan? @) (Z A,;1> —2(i+1) Z AN
k=1

i<k
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Leta, = Re)\ andg, = Im /\kl, k=1,...,i+ 1. Since the zeros of (z) lie in the convex
areall/,,, by the Gauss-Lucas theorem,, and hencé\,jl, k=1,...,i+1also lie inW, which
implies that
(2.6) > 5 k=1,...,i+1

tan o’

Using (2.6) and the inequaliffe A; " A" < ajax + [3;] [8¢] in (2.5), it is obtained

B} (Z) - Eia(2)Ein(2) > ;2 (H Ak) > (o — ) + (1851 = 18])?)

B Z(Z - 1> k=1 j<k
which proves|(2]1).
Inequalities[(2.R) can be obtained from (2.1) similarly as in the real case. Frgm (2.1) we have
CEEy - P EY > EyEy(E1Fs) -+ (B 1Fiyy)*
which givesc! Y Eit > B¢ or equivalently
cEy > EY? cEY? > EV?, . cEYUTY > Rl

Multiplying each inequality-E/* > E/{/\"" by ¢=i=! fori = 1,. — 2, we obtain ).
]

Inequalities[(2.R) yield a complex version of the AM-GM inequality, i.e.
(2.7) E(Z2) > BYMN(Z)

for every Z satisfying conditiong (31) an@l (C2). It is easily seen that a case of equality occurs
in 2.1), (2.2) and[(2]7) il = 2 and Z consists of a pair of complex conjugate numbers
21 = a+ifandzy, = o — i with tan = 3/«. Another simple observation is that under
the conditions of Theoren 2.1, inequalities {2.1) also holdf&r given by—z,, ..., —z,. This
follows immediately since&;(—Z) = (—1)'E;(Z2),i=0,...,n

The next theorem indicates that#f satisfies an additional condition then one can find
tuples of complex numbers satisfying a complete analog of Newton’s inequalities.

Theorem 2.2.Let Z be ann-tuple of complex numbets, . . ., z, satisfying condition (J2) and
let

(2.8) EX(Z) — Ey(Z) > 0.
Then there is a reat > 0 such that the shifted-tuple Z,

(2.9) 21— 2y — Q. 2y —
satisfies
(210) E?(Za> > Eifl(Za)Ei+1(Za)7 1=1,...,n— 1

for all real a with || > r.

Proof. The complex number§ (2.9) are zeros of the polynomial
f() , f" V()
n! a2t (n—1)! ‘
wheref(z) is given by [2.B) and (2]4). Thus
(-1 (@)
(’Z) (n—1)!"’

fl+a) = + -+ fla),

Ei<Za) =

1=0,...,n.
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By writing f™~9(«) in the form
P ==Y (0 et =

n—1
k=0

and taking into accouni (3.4), it is obtained

(2.11) Ei(2,) = (-1)'> (1) (;) Ey(Z)a"™ i=0,...,n

Now, using [(2.1]1) one can easily find that
(2.12) E?(2.) — Ei_1(Z,)Ei11(Z,)
=0-a"+0-a* "+ (E{(2) — F2(2) oa* 7 + -+ E}Z) — Ei1(2)Ei1(2).

From (2.8) and[(2.12), it is seen that for eack 1,...,n — 1 there isr; > 0 such that the
right-hand side of[(2.12) is greater than zero for|all > r;. Hence, inequalitie§ (2.10) are

satisfied for allo| > r, wherer = max{r;: i =1,...,n —1}. O
If « in the above proposition is chosen such tRatz;, — «) > 0,7 = 1,...,n then all the

elementary symmetric functions &f, are positive and inequalities (2]10) yield

(2.13) E\(24) > By (24) > - > E)/"(Za).

In this case, the AM-GM inequality fog, follows from (2.13).

3. NEWTON’SINEQUALITIES ON MATRIX EIGENVALUES

In a recent workl[3] the inequalities of Newton are studied in relation with the eigenvalues of
a special class of matrices, namely M-matrices.nAr n real matrixA is an M-matrix iff [1]

(3.1) A=al - P,

whereP is a matrix with nonnegative entries and> p(P), wherep(P) is the spectral radius
(Perron root) ofP. Let Z and Z, denote thex—tupleszy, ..., z, anda — z,...,a — z, of the
eigenvalues of” and A, respectively. In terms of this notation, it is proved|in [3] that

(32) EZQ(Za) Z Ei—l(Za)Ei+l(Za)7 1= 17 s, = 1

for all « > p(P), i.e. the eigenvalues ol satisfy Newton’s inequalities. The proof is based
on inequalities involving principal minors of and nonnegativity of a quadratic form. As
a consequence df (3.2) and the property of M-matrices fha€,) > 0, = 1,...,n, the
eigenvalues ofl satisfy the AM-GM inequality, a fact which can be directly seen from

n 1 n n
det A < a; < | — Qi ,
fleos (350
wherea;; > 0,7 = 1,...,n are the diagonal entries df, the first inequality is the Hadamard
inequality for M-matrices and the second inequality is the usual AM-GM inequality.

In view of Theorenj 22 above, itis easily seen that one can find other matrix classes described
in the form [3.1) and satisfying Newton’s inequalities. In particulag iflenotes the:—tuple
of the eigenvalues of a real matrix = [b;;], ¢, j = 1, ..., n then the left hand side .8) can
be written as

(3.3) E}Z)— Ey(Z2) = % (Z bm’) — ﬁ Z(biibjj — bijbjq).

i=1 i<j
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By the first inequality of Newton applied t@, . .., b,,, it follows from (3.3) that condition
(2.9) is satisfied if

with at least one strict inequality. According to Theorem 2.2, in this case there-i® such
that the eigenvalues of = o/ — B satisfy [2.10) foja| > r. It should be noted that matrices
satisfying [3.4) include the class of weakly sign symmetric matrices.

Next, we consider the inequalities of Loewy, London and Johrison [1] (LLJ inequalities) on
the eigenvalues of nonnegative matrices and point out a close relation with Newton'’s inequali-
ties.

Let A > 0 denote an entry-wise nonnegative matfix= [a;;], 7,7 = 1,...,n, tr A be the
trace ofA, i.e. trA = > "  a; and letS, denote thek—th power sum of the eigenvalues
21, ..., 2p OF A

n

Sp=> k=12

=1
Due to the nonnegativity ofl, we have

(3.5 tr(A*) > Xn:afi

and sinceS;, = tr(A¥), it follows that S, > 0 for eachk = 1,2,.... The LLJ inequalities
actually show something more, i.e.

(36) nm_lSkm > (Sk)m, k, m = 1, 2, Ce
or equivalently,
(3.7) n™ r ((AM)™) > (tr(Ak))m , km=1,2....

Equalities hold in[(3)6) and (3.7) i is a scalar matrixA = «/. Obviously, in order to prove
(3.7) it suffices to show that

(3.8) n™tr(A™) > (tr A", m=1,2,...
for everyA > 0. The key to the proof of (3]8) are inequalities

(3.9) nmlia,’;"— (ix,) >0, m=12...
i=1 i=1

which hold for nonnegative,, ..., z,, and can be deduced from Hdolder’s inequalities, e.g. see

[1], [4]. Since A > 0, (3.9) together with[ (3]5) imply (3]8).
From the point of view of Newton’s inequalities, it can be easily seen that thencase in
(3.9) follows from
1

E2(X) — Ey(X) = T ((n—1)ef(X) — 2nex(X))

i (5
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Thus, [3.9) holds forn = 1 (trivially), m = 2 and the rest of the inequalities can be obtained
by induction onm. Also, following this approach, the inequalities |n (3.6) far = 2 and
k=1,2,... can be obtained directly from

n

S (5] i i
=(n—-1) (i af) —2n Z ( [k [k] Eﬁ]aﬁ])

=1 1<J

2 ) (k) o St

=1 1<J

_Z< [k] a[k> >0
73

1<J
where Z* is the n—tuple z¥, ... z* of the eigenvalues oft* anda denotes thdi, j)—t
elementofd® i,j=1,... n, k; = 1 2,....Clearly, equalities hold |f and only it* is a scalar
matrix.
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