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CINTRODUCTION

Nanoparticles with a size between a few hundred and a few thousand atoms are

among the most difficult to numerically model atomic systems. On the one hand,

the nanoparticle is too small: established methods for modeling macroscopic metals

are not applicable, because in a nanoparticle there is a very strong surface effect,

and its properties strongly depend on its size and geometric shape. But on the other

hand, the nanoparticle is too large: methods that are directly based on quantum

physics are not applicable, because with such a large number of atoms, the calcula-

tions become unbearably complex even for the most powerful supercomputers. For

this reason, the numerical modeling of nanoparticles remains an unsolved problem.

Various approaches exist for the acceptable modeling of nanoparticles, many

of which are based on semi-empirical approximations. A lot of work is being done

on this issue, but all available approaches are incomplete and have significant short-

comings. The present dissertation is not spared from these problems. It is simply

part of the gradual improvement of one of the many existing approaches.

The main tool employed in this dissertation is Monte Carlo simulation, with

the aim of finding stable atomic configurations. This is a rather natural approach,

because in a certain abstract sense it is also the way in which nature finds stable

configurations. Atoms move, try out a large number of configurations, and eventu-

ally the particle “freezes” in a shape in which it has low potential energy. We hope

that the proposed approach represents a good balance and makes it possible to

experiment widely, to investigate nanoparticles and to study some of their proper-

ties in a relatively short time, using computers with relatively modest capabilities.

The dissertation is structured into 6 chapters, as follows.

Chapter 1 provides an overview of existing methods for modeling and numer-

ical optimization of the atomic configurations of metallic and bimetallic nanostruc-

tures.

In Chapter 2, a two-stage Monte Carlo approach for optimization of

bimetallic nanostructures is proposed, including a mathematical model, three con-

stituent algorithms, and some essential features of their software implementation.

A two-stage method with five steps is defined, and the significance of the steps

is described.

In Chapter 3, the proposed two-stage method is numerically tested. It is

compared to the previous one-stage approach, verifying it achieves superior results.

Next, the optimal proportion for distributing computational resources between the
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two stages is investigated, and the chosen approach for tuning the parameters of

the method is experimentally justified.

In Chapter 4, the influence of the initial temperature—a key parameter— on

the performance of the wide-lattice Monte Carlo algorithm is investigated. A large

number of tests are performed for nanoparticles of two chemical elements (silver

and cobalt) with different sizes, on lattices of different geometries and sizes.

In Chapter 5, the two-stage method is applied to the study of the atomic

ordering and of surface segregation processes in gold–silver nanocages with 3000

atoms. Some aspects of the method are adapted to the specifics of working with

nanocages. A comparative analysis of the results for three AuAg ratios and two

lattices with different symmetries shows how the interaction of these factors deter-

mines the local order and affects the macroscopic properties of the bimetallic

nanocages.

Chapter 6 describes the software system developed as part of the work on

the dissertation. A software architecture is proposed for the implementation of the

two-stage method, which allows a high degree of optimizability for performance

of the computations and flexibility for concurrent execution and combination of

the constituent algorithms in different conditions. The developed software works

on Linux and Windows operating systems and uses the standard XYZ format for

input and output data for atomic configurations.

CCHAPTER 1. ANALYSIS OF METHODS FOR MODELING

AND NUMERICAL OPTIMIZATION OF ATOMIC CONFIGU-

RATIONS OF METALLIC AND BIMETALLIC NANOSTRUC-

TURES

The important theoretical and practical significance of studying the structural

characteristics and transformations of metal nanoparticles and nanoscale het-

erostructures is associated with the broad prospects for their application in various

fields. For example, they can serve as nanoelectrodes/nanoconductors, as sensors

or as catalysts. New possible applications are constantly being proposed and tested.

The success of these technologies and the speed of their development crucially

depends on a good understanding of the processes at the nanoscale, the behavior

of metal atoms in structures of such sizes and their specific properties and effects,

which sometimes greatly differ from the behavior of the same metals in classical

macro-configurations.
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1.1. The stability of metal nanostructures as an optimization

problem

The first important step when studying metal nanoclusters is to identify their stable

geometric structures. One of the most commonly used approaches in the numerical

search for stable nanostructures is to define the potential energy of the system

in some way as a function of the interatomic distances, and then use numerical

algorithms to find a global minimum of this function. The problem here is that no

matter how it is defined, the potential energy is inevitably a function with a huge

number of local minima, which makes finding a global minimum extremely difficult.

The appropriate potential function plays an important role for the computer

simulation of metallic structures. A large number of studies have been devoted to

the problem of defining metallic potentials [Cleri and Rosato, 1993; Guevara et al.,

1995]. Most often, the analytical form of the function is constructed in such a way

that it contains a certain set of independent parameters. Using these parameters,

the potentials are fitted to experimental data or to data from ab initio calculations.

A relatively simple way to express the atomic and electronic structure is the

Gupta potential [Gupta, 1981] and its variants—the so-called tight binding (TB)

potential [Cleri and Rosato, 1993]. Despite its simple analytical form, the TB model

describes elastic properties, defect characteristics and melting properties quite well

for a wide range of metals.

1.2. Methods for optimization of metallic nanostructures

There are many optimization approaches that aim to solve the problem of finding

a global minimum of the potential energy and to explore stable atomic configu-

rations. It is worth mentioning the molecular dynamics (MD) method [Liu et al.,

2017], basin-hopping [Wales and Doye, 1997], fast annealing evolutionary algo-

rithms (FAEA) [Cai and Shao, 2002], random tunneling algorithms (RTA) [Jiang

et al., 2002], genetic algorithms (GA) [Gregurick et al., 1996], simulated annealing

(SA) algorithms [Ma and Straub, 1994]. There are also promising algorithms based

on machine learning [Chen et al., 2020].

1.3. Methods for optimization of bimetallic nanostructures

Due to the specific difficulty of the problem in bimetallic nanostructures, targeted

algorithms are often used for their optimization. Here again, methods based on

basin hopping [Rossi and Ferrando, 2017], genetic algorithms [Paz-Borbón et al.,
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2007], as well as other types of Monte Carlo simulations [Giménez and Schmicker,

2011; Shao et al., 2017] are widely used, and in some more limited cases, density

functional theory (DFT) calculations can also be performed [Kovács et al., 2017].

1.4. Modeling of diffusion in bimetallic nanostructures

In the contact region of two dissimilar metals, a process of mutual diffusion occurs

and a transition region is formed, the so-called diffusion zone [Li et al., 2019]. As

a result, there is a diffusional movement of atoms, which ultimately leads to the

establishment of a phase composition in the entire volume of the sample, which is

determined by a phase diagram. However, in nanoscale systems, it is of particular

importance to take into account the effects of size, specifically at the interface

between the components.

Surface diffusion plays a crucial role in determining the shape and mor-

phology of growing nanoparticles and nanofilms. Understanding the mechanism of

this process helps to achieve desired properties of the materials and avoid undesir-

able ones.

1.5. Nanocages

Nanocages are nanoparticles that have a cavity in the middle. They are one of the

relatively new objects of study, possessing unique properties. Due to their specific

structure, the problem of thermal stability and the change in the properties of their

local structure are among the central considerations in the selection of temperature

conditions and particle sizes when using nanocages in medicine, catalysis and other

areas. Moreover, thermoinduced action on mono- and bimetallic nanocages leads to

differences in the identifiable temperature regions of healing of the cavities (pores)

on the surfaces and in the inner region (core) of the nanocage, as well as to the

structural collapse of the nanocage. For bimetallic nanocages, of interest is also the

study the patterns of surface segregation before and after the collapse.

1.6. Conclusion

The geometric shape and structure of atomic clusters of metal nanoparticles of

a given size are crucial for determining their properties, and in bimetallic nanos-

tructures the atomic ordering is of utmost importance. Finding stable atomic

configurations is a basic research problem that can be formulated as a computa-

tional problem for global optimization. A configuration is stable when its potential

energy is minimal.
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After analyzing the various methods and approaches described in the lit-

erature, it can be concluded that the TB potential of Gupta gives good results

with high flexibility, which makes it popular. Its parameters will likely continue

to be updated and refined in the future with the advancement of the experimental

base and the possibilities for ab initio calculations. For this reason, the present

dissertation focuses on working with this potential.

Finding a global minimum is a difficult problem, especially for bimetallic

nanoalloys, therefore it is necessary to search for approximate solutions using effec-

tive optimization strategies (metaheuristics). There are many approaches for this,

a significant number of which based on Monte Carlo simulations. Due to the large

variety of possible nanostructures, of great importance is the search for new ways

for improving the results of such Monte Carlo simulations and for facilitating their

use under various conditions.

1.7. Purpose and objectives of the dissertation

Based on the analysis of existing methods for modeling and numerical optimization

of atomic configurations of metallic and bimetallic nanostructures, the purpose of

the present dissertation is formulated as follows: to develop a Monte Carlo approach

with simulated annealing (SA), using the tight-binding (TB) potential, for the

optimization of different types of bimetallic nanostructures, including nanoparti-

cles, nanowires and nanofilms. To achieve this goal, the following tasks need to be

completed:

• to propose a method for optimization of bimetallic nanostructures,

including nanoparticles, nanowires and nanofilms;

• to investigate the effectiveness of the proposed method;

• to propose an appropriate approach for choosing and adjusting the

parameters of the method;

• to determine which of the following factors most significantly affect the

optimal choice of initial temperature for simulated annealing: chemical

element, nanoparticle size, lattice type, lattice size;

• to propose a software architecture and to develop a software system

implementing the new method that allows a high degree of optimiz-

ability for performance of the computations, flexibility for varying the

algorithms and their parameters and good compatibility with external

applications for analysis and visualization of the results;
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• to conduct an investigation applying the proposed method to the study

of a specific class of gold–silver nanocages with 3000 atoms, which are of

interest for many applications, in order to establish how the differences

in the Au :Ag ratio and the symmetry of the lattice affect the atomic

ordering and the processes of surface segregation.

CCHAPTER 2. TWO-STAGE MONTE CARLO APPROACH

FOR OPTIMIZATION OF BIMETALLIC NANOSTRUCTURES

In the present dissertation, a two-stage lattice Monte Carlo approach is proposed

for the optimization of bimetallic nanoalloys [Mikhov et al., 2020; Mikhov et al.,

2022]. The two stages consist of simulated annealing on a larger lattice, followed

by simulated diffusion.

2.1. Mathematical model of the bimetallic nanostructure

The bimetallic nanoalloy is modeled as a collection of a certain number of atoms of

two metal elements. The atoms are arranged on a lattice consisting of empty nodes.

The first goal is to find a configuration of the atoms on this lattice so that the

resulting nanoparticle is stable. i.e., to minimize the potential energy of the system.

To calculate the interaction between atoms, the many-body strong-binding

(TB) potential of Cleri—Rosato [Cleri and Rosato, 1993] was used. The total

potential energy of the system has the following form:

E =
∑

i

∑

j� i

Eij,ab −
∑

i

∑

j� i

Bij,ab

√

(2.1)

Eij,ab =Aab exp

(

−pab

(

rij

r0,ab

− 1

))

(2.2)

Bij,ab = ξab
2 exp

(

−2 qab

(

rij

r0,ab

− 1

))

, (2.3)

where i lists all atoms in the system; j lists all atoms other than i but at a

distance from atom i not greater than the predefined global parameter Rcut; a and

b denote the chemical element of atoms i and j; Eij,ab and Bij,ab are, respectively,

the repulsive and attractive components of the potential energy generated by the

atomic pair (i, j); rij is the distance between the atoms; r0,ab, Aab, pab, ξab and qab

are constants specific to the chemical elements considered. The value of Rcut used

here corresponds to five coordination sphere distances, beyond which we assume

that the interaction between the atoms becomes zero.
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The modeled nanoalloy can have nano-dimensions along some of the coordi-

nate axes and macro-dimensions along the remaining axes. A distinction is made

between 3 cases (illustrated in Fig. 2.1): a nanoparticle, where all three axes

are nano-dimensions; a nanowire, where one of the axes is macro-dimensions; a

Fig. 2.1. Model of a nanoparticle, nanowire and nanofilm. The configura-

tions are obtained with the algorithms of 2.2.

nanofilm, where two of the axes are macro-dimensions.

When it comes to a nanowire or nanofilm, the model is analogous to that

for a nanoparticle, but periodic boundary conditions are used. This means that a

nano-sized lattice is used along all three axes, but a periodic window is introduced

along the axes where macro-sizes are modeled. The distance between atoms is

defined as follows:

rij = |∆xij |
2 + |∆yij |

2 + |∆zij |
2

√

(2.4)

|∆xij |=min {|xi − xj |, Lx − |xi − xj |}, (2.5)

where xi and xj are the x-coordinates of atoms i and j inside the periodic cell,

and Lx is the x-size of the periodic cell. If macro-sizes along the y and z axes are

modeled, then |∆yij | and |∆zij | are also calculated in a similar way. The non-

periodic case corresponds to Lx =∞.

The current model, as well as its algorithms, are suitable for optimization

of bimetallic nanoparticles with sizes between 100 and several tens of thousands of

atoms.

2.2. Constituent algorithms

2.2.1. The wide-lattice Monte Carlo algorithm

The first constituent Monte Carlo algorithm, which we will call the “wide-lattice”

algorithm, is based on simulated annealing and was developed in a series of papers

by a team with the author’s participation [Myasnichenko et al., 2019].
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The algorithm starts by generating a lattice with a specific geometric struc-

ture, such as face-centered cubic (fcc), icosahedral, decahedral, etc. Each lattice

consists of a certain number of nodes in space, given by their Cartesian coordinates

(x, y, z). For the purposes of this algorithm, a wide lattice is used, which contains

several times more nodes than the total number of atoms in the system.

Initially, atoms are placed at randomly selected nodes. Each node is defined

as either empty or containing an atom of one of the two chemical elements. Imme-

diately after the atoms are placed, a series of precomputations are performed and

stored in memory in order to remove as many computational operations as possible

from the main cycle of the algorithm. This step, described in 2.2.2, is crucial for

the speed of the algorithm.

The basic loop consists of a series of iterations. In each iteration, one atom

and one adjacent empty node are randomly selected and it is decided whether the

atom will jump to the empty node. If the potential energy of the system would

decrease, the jump is made unconditionally. Otherwise, the jump can still be made,

but with a probability determined by the following formula:

P = exp

(

−
∆E

k T

)

, (2.6)

where ∆E is the difference in the energies of the two configurations; T is the current

temperature of the system; k is the Boltzmann constant. In the case where there

are no empty nodes in the vicinity of the selected atom, the jump is not performed.

Each iteration ends either with a jump of one atom or without a jump.

The temperature is set high at the beginning and then gradually decreased.

A linear cooling formula is used:

T =max {1, T0 + s ∆T }, (2.7)

where T is the current temperature; T0 is the initial temperature; s is the iteration

number; ∆T is a negative constant. This temperature change occurs once every

few thousand iterations.

The algorithm ends when the system has reached equilibrium, the current

temperature has reached 1 K, or for a certain (pre-set) number of iterations the

energy has not decreased.

2.2.2. Implementation of the algorithm, guaranteeing its speed

In a simulation of this type, the ability to work with a huge number of iterations is

an important condition for achieving better results. This algorithm is purposefully

designed so that the main cycle is as simple as possible. The speed of the algorithm
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is guaranteed by the use of appropriate data structures and a series of preliminary

calculations.

The nodes are stored in two arrays N and A, where N gives the index of a

given node in A, and A gives the index of a given node in N. The arrays are sorted

in a way that allows for constant time to search for information about nodes and

atoms, to select atoms randomly, to add, remove, and move atoms.

Before the main loop begins, lists of its neighbors and neighborhoods are

computed and stored for each node. In addition, for each node i, each node j

(within a distance ≤ Rcut) and each possible combination of chemical elements

a and b, Eij,ab and Bij,ab are calculated using (2.2)–(2.3) and stored. From this

point on, the algorithm forgets about the Cartesian coordinates of the nodes and

starts working only with the node indices, together with the values of the energy

components calculated here.

For each atom i the sum under the radical in (2.1) is calculated and stored.

This value is updated in due time during the main cycle of the algorithm when

atoms are moved. This allows to avoid enumerating the Rcut-neighborhoods of

Rcut-neighborhoods of nodes during the main cycle, which would otherwise be

necessary and would increase the number of nodes enumerated per square.

As a result, the algorithm can run billions of iterations in minutes on a

standard personal computer. The algorithm is not parallelized, since it is a Monte

Carlo simulation using random numbers and it is assumed that in order to find

stable results, it will be run multiple times under the same initial conditions. These

runs can run in parallel.

2.2.3. The diffusion Monte Carlo algorithm

The second constituent Monte Carlo algorithm, which we will call the diffusion

algorithm, is described in [Myasnichenko et al., 2022] by a team including the

author. The main purpose of this algorithm is simulation of diffusion processes

in bimetallic nanostructures, but in the present dissertation work we use it as the

second stage of a combined approach for optimization of bimetallic nanostructures.

The algorithm starts with a lattice pre-filled with atoms of the two different

chemical elements, plus a small number of empty nodes (∼4 for a structure of

200 atoms). Preliminary calculations are performed, analogous to those in 2.2.2,

in order to significantly speed up the algorithm. The main cycle is again a series

of iterations, but here at each iteration an empty node is chosen at random and
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the iteration always ends with a jump of a neighboring atom at this empty node.

Which atom will jump is again determined by (2.6), but here this value is calculated

separately for each candidate atom and is used as a relative probability in choosing

one of these candidates.

Another important difference is in the definition of the neighborhood. In

the wide-lattice algorithm, the neighborhood is understood as the radius of one

coordination sphere, while here the neighborhood is taken as an atom within a

radius of three coordination spheres. This difference is due to the small amount of

empty nodes in the diffusion process.

The temperature is controlled analogously to the wide-lattice Monte Carlo

algorithm, according to a linear formula (2.7).

2.2.4. Relaxation with molecular dynamics

It is existing practice [Myasnichenko et al., 2020] to perform another relaxation

step using molecular dynamics (MD) after the Monte Carlo simulation is complete

to further improve the energy of the system. In the MD simulation, the time

trajectories of all atoms in the system are followed in space by integrating the

Newtonian equations of motion. The forces are extracted as the negative gradient

of the interatomic potential.

For the purposes of this dissertation, the so-called modified Verlet velocity

algorithm was chosen, where the positions, velocities and accelerations at iteration

t + ∆t are calculated as follows:

rS (t + ∆t) = rS (t)+ vS (t) ∆t +
1

2
aS (t) (∆t)2 (2.8)

vS (t +
1

2
∆t)= vS (t)+

1

2
aS (t) ∆t (2.9)

aS (t)=−
gradU(rS (t))

m
, (2.10)

where U(rS (t)) is the potential energy and m is the mass. An advantage of this

method is that it is self-starting, i.e. it does not require special treatment of the

numerical integration scheme around t= 0.

2.3. The two-stage method, combining the constituent algorithms

The starting point of this research is the observation that combining the two Monte

Carlo algorithms above can lead to better results than following a single-stage

approach.
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In this regard, a combined method is proposed, which includes the following

steps:

STAGE

I

STAGE

II

Step 1. Parameter tuning.

The wide-lattice Monte Carlo algorithm is run repeatedly from random

initial configurations, for N1 (∼40×106) iterations in each trial, to

determine the optimal initial temperature T2 and scaling factors (along

each of the x, y, and z axes) for the lattice. Because of the smaller

number of iterations, each trial completes quickly, saving time for the

more important subsequent steps.

Step 2. Shape fixing.

The wide-lattice Monte Carlo algorithm is run again, repeatedly from

random initial configurations, but this time for N2 (∼1×109) iterations

in each trial, using the best values from Step 1 for the initial temper-

ature T2 and for the scaling factors. The cooling here is much slower

than in Step 1: since a linear cooling schedule is used, the cooling rate

is (in short) the initial temperature divided by the number of iterations.

Step 3. Parameter tuning for diffusion.

The diffusion Monte Carlo algorithm is run repeatedly on the results

of Step 2, for N3 (∼10×106) iterations in each trial, to determine the

optimal initial temperature T4 for diffusion. Because of the smaller

number of iterations, each trial completes quickly, saving time for the

more important subsequent steps.

Step 4. Diffusion.

The diffusion Monte Carlo algorithm is run again, once on each

resulting configuration of Step 2, for N4 (∼100×106) iterations in each

trial, using the best value from Step 3 for the initial temperature T4.

Step 5. Relaxation.

The molecular dynamics algorithm is run once on each resulting con-

figuration of Step 4, to further improve the energy of the system. The

MD simulations are carried out in the canonical ensemble at 0.1 K,

with a time step of 0.5 fs. As the final result, the configuration with

the lowest energy among those observed is selected.

For Step 2, the number of atoms initially placed is β (∼4) more than

the desired number of atoms in the final result (these β atoms are distributed

proportionally to each chemical element). After Step 2 is completed, all empty

nodes are deleted, then β atoms are converted into empty nodes, which will be used
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as vacancies during diffusion (these β atoms are chosen randomly, but in such a

way as to preserve the proportion between the chemical elements).

Since the proposed method is not deterministic, each step involves running

several parallel trials to ensure stable behavior. Ultimately, one configuration is

selected, but more than one can be visualized and analyzed, depending on what

aspects of the configurations are of interest for the purposes of a given study.

2.3.1. Purpose of the steps of the proposed method

The main work of the method is concentrated in Step 2 and Step 4.

The goal of Step 2 is to obtain energetically favorable geometric shapes

suitable for the nanoparticle, nanofilm or nanowire of interest on the given lattice.

Therefore, a wide lattice is used and the atoms are allowed to move freely along it.

The configurations obtained from Step 2 also have to some extent a low-energy

atomic ordering of the two metal elements, which is the main step of the previous

one-stage approach, which the present dissertation aims to improve by adding

Step 4.

In Step 4, the geometric shape is fixed and does not change any more.

The movement here is carried out exclusively by diffusion, with the number of

empty nodes β is very small (∼4). The goal is to achieve an energetically favor-

able ordering of the atoms of the two chemical elements within the already fixed

geometric shape. The influence of adding Step 4 on the quality of the results is

studied in detail in Chapter 3, from which it is clearly seen that distributing the

computational resources in a certain proportion between Step 2 and Step 4 leads

to significantly better results than using the same amount of resources only on

Step 2.

Step 1 and Step 3 aim to determine the appropriate starting temperature

for the respective algorithm used under the specific conditions of the nanoparticle

under study. Since the cooling rate is (approximately) the starting temperature

divided by the number of iterations, if we use the number of iterations as a measure

of the amount of computational resources used, then the starting temperature is

the main parameter regulating how efficiently these resources are used. The results

in Chapter 3 and Chapter 4 show that determining this parameter in Step 1 and

Step 3 is useful and important.

The purpose of Step 5 is to achieve relaxation of the atoms in the system.

The lattice is removed and the atoms, which until now have been confined in a lat-

tice, are freed to roam in their surroundings according to a numerical integration of
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Newton’s equations of motion, in order to fall to the bottom of their local minimum.

A very low temperature is used so as not to disturb the already achieved atomic

configuration, which is globally energetically favorable. Step 5 is considered an

additional step in this method, because the atomic configuration, which is decisive

for the properties of the particle, practically does not change. The only thing that

matters is that the numerical value of the potential energy is changed, which allows

for correct comparison of results between lattices with different structures or results

achieved by other methods.

2.4. Conclusion

This chapter describes the chosen mathematical model, the used constituent algo-

rithms and the proposed two-stage method for searching for stable configurations

of bimetallic nanostructures. The description gives exemplary values of some of the

parameters, except for the initial temperature. The following chapters investigate

the behavior of this method under different conditions, which justifies the specific

formulation in 5 steps, the appropriate distribution of computational resources

between the steps, as well as the influence of various factors on the appropriate

initial temperature.

CCHAPTER 3. NUMERICAL TESTING OF THE TWO-STAGE

METHOD FOR OPTIMIZATION OF BIMETALLIC NANOS-

TRUCTURES

This chapter describes the results of numerical experiments with the proposed in

2.3 two-stage method for optimization of bimetallic nanostructures.

3.1. Testing conditions

Unless otherwise stated, all experiments were performed on an Au100Ag100

nanoparticle (total 200 atoms; gold and silver in a ratio of 1 : 1), on a double

bi-pyramid lattice consisting of 309 nodes. An exemplary configuration of this

particle is illustrated in Fig. 3.1.

Since all tests are performed on the same lattice to simplify the workflow,

instead of relaxation with MD (Step 5), all comparisons of final solutions in this

chapter are made after applying additional lattice scaling (with separate coefficients

for each coordinate axis x, y and z).

It is expected that for other chemical compositions and other lattices these

results will remain valid, although not with the same specific temperature values.
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Fig. 3.1. An example configuration of an Au100Ag100 nanoparticle. Left

image: blue – fcc-atoms, green – hcp-atoms, gray – unspecified atoms. Right

image: yellow – Au atoms, red – Ag atoms.

This was observed in the preliminary tests carried out in the process of planning

the parameters of this study, which is why it was preferred to carry out the main

part of the experiments in this chapter on one lattice. However, in 3.5 one of the

experiments was repeated on another lattice, for additional confirmation.

3.2. Comparing the two-stage method to only using the wide-

lattice algorithm

The first task is to make a correct comparison between the proposed method and

the previous approach using only the wide-lattice algorithm.

The results are presented in Fig. 3.2. The points on the left are achieved

potential energy values from runs of the combined method (Steps 1–4). The points

on the right are runs only at the first stage of the method (Steps 1–2), but for

a larger number of iterations and at β = 0. The number of iterations is chosen so

that the average duration of one trial (detected by an independent clock) in both

cases is approximately the same.

It can be seen that the two-stage approach leads to a significant improve-

ment. There is some overlap, where the more successful runs of the one-stage

method give similar results to the less successful runs of the two-stage method, but

it is not large. Both the average and the lowest values are better with the two-stage

method, and 30 runs are more than enough to guarantee finding a lower minimum

with the two-stage method.

3.3. Finding the optimal proportion for distributing computational

resources between the two stages

If we assume that Step 1 and Step 3 take only a small but constant amount of
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time, then the problem of allocating computational resources between the two

stages reduces to determining the optimal proportion between the number of iter-

ations N2 for Step 2 and N4 for Step 4.

(black) dots on the left side: (blue) dots on the right side:
the combined method only the wide-lattice algorithm
30 trials 30 trials

Step 1: Step 1:
N1 = 40× 106 N1 = 40× 106

Step 2: Step 2:
N2 = 1226× 106; T2 = 2500K; β = 4 N2 = 4× 109; T2 = 2500 K; β =0

Step 3:

N3 = 17× 106
(

so that the total duration is
is the same as on the left side

)

Step 4:
N4 = 128× 106; T4 = 1400 K

Fig. 3.2. Comparison of the two-stage method (Steps 1–4) with the use

of only the wide-lattice algorithm (Steps 1–2).

Fig. 3.3 shows the results of tests with different values of N2 and N4. To

make the comparison correct, the values were chosen so that the total execution

time for each attempt was approximately the same. The figure shows the actual

values of the time spent (measured by an independent clock), presented in the

form of a proportion: the time t2 spent in Step 2 divided by the time t2+4 spent

in Steps 2+4.

The average total time spent t2+4 was indeed approximately the same for the

different data columns, within ±5%, with the third (black) column actually taking

less time (−2%), although it clearly produced the best solutions. This gives further

reason to assume that under the tested conditions the values N2 = 1226× 106 and
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1st (red), 2nd (green), 3rd (black), 4th (pink) columns of dots:
the combined method
30 trials in each column

Step 1:
N1 = 40× 106

Step 2:
N2 = 125× 106, 400× 106, 1226× 106, 2052× 106; T2 = 2500K; β = 4

Step 3:
N3 = 17× 106

Step 4:
N4 = 184× 106, 170× 106, 128× 106, 86× 106; T4 = 1400K

rightmost (blue) column of points:
only the wide-lattice algorithm
30 trials

(same as in Fig. 3.2, shown here for comparison)

Fig. 3.3. Comparison of different time distributions between the two stages,

i.e. different proportions of time spent in Step 2 relative to the total time

spent in Steps 2+4 for one trial.

N4 = 128× 106 (corresponding to t2/t2+4 = 30%) were the most successful.

The figure clearly shows that the overlap between the second, third, and

fourth columns is large. This means that there is no acute shortage of computa-

tional resources in one of the two algorithms (as there is, say, in the leftmost and

rightmost columns). Moreover, it seems that the chosen total time t2+4 is sufficient

for both algorithms to reach a kind of saturation, where investing more computa-

tional resources in a single attempt does not lead to a significant improvement in

the results.
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In conclusion, it can be said that in general it is a good strategy to allocate

30% of the computing resources to Step 2 and 70% to Step 4.

3.4. Testing the approach for determining the initial temperature

This numerical experiment aims to verify whether the approach to setting the

initial temperature in Step 1 and Step 3 is correct. In these preliminary steps,

the values of T2 and T4 are determined at high cooling rates to be used later in

Step 2 and Step 4 at much lower cooling rates. This is correct only if the optimal

initial temperatures at high rates continue to be optimal at low rates.

Fig. 3.4 and Fig. 3.5 show the results of the operation of the wide-lattice

algorithm and the diffusion algorithm, respectively, at different initial temperatures

and at different cooling rates. In the figures, the points and hicks correspond to

the same temperatures, but for better visibility, they are shifted slightly to the left

and slightly to the right, respectively.

It can be seen that the initial temperatures giving the best results are T2 =

2500K and T4=1400K. What is important here is not so much these specific values

as the fact that these temperatures are optimal despite the large difference in the

speed of cooling.

3.5. Testing on an alternative lattice

To further confirm the effect of the proposed method, the experiment from 3.2

was repeated on an alternative lattice: an icosahedral lattice with 309 nodes. The

chemical composition Au100Ag100 remains the same.

The results are shown in Fig. 3.6. Similar to the previous experiments, there

is some overlap between the more successful runs of the one-stage method and the

less successful runs of the two-stage method, but the advantage of the two-stage

method for finding the minimum is clearly expressed.

3.6. Conclusion

As a result of the experiments, it can be argued that the proposed two-stage method

for optimization of bimetallic nanostructures represents a significant improvement

over following a single-stage approach, and its specific formulation in 5 steps on

page 13 is appropriate and leads to successful parameter adjustment. The most

appropriate proportion for distributing computational resources between the two

stages is 30% for the wide-lattice algorithm and 70% for the diffusion algorithm.
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The wide-lattice algorithm. For each initial temperature:

(black) dots on the left side: (pink) hicks on the right side:
rapid cooling (40× 106 iterations) slow cooling (400× 106 iterations)
30 trials 30 trials

Fig. 3.4. Comparison of the optimal initial temperature for the wide-lattice

algorithm under fast cooling and under slow cooling.

The diffusion algorithm. For each initial temperature:
(black) dots on the left side: (pink) hicks on the right side:

rapid cooling (17× 106 iterations) slow cooling (170× 106 iterations)
30 trials 30 trials

Fig. 3.5. Comparison of the optimal starting temperature for the diffusion

algorithm under rapid cooling and under slow cooling.
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(black) dots on the left side: (blue) dots on the right side:
the combined method only the wide-lattice algorithm
30 trials 30 trials

Step 1: Step 1:
N1 = 40× 106 N1 = 40× 106

Step 2: Step 2:
N2 = 1200× 106; T2 = 2500K; β = 4 N2 = 4× 109; T2 = 2500 K; β =0

Step 3:

N3 = 13× 106
(

so that the total duration is
is the same as on the left side

)

Step 4:
N4 = 130× 106; T4 = 1400 K

Fig. 3.6. Results for an icosahedral lattice: comparison of the two-stage

method (Steps 1–4) with using only the wide-lattice algorithm (Steps 1–

2).

CCHAPTER 4. INFLUENCE OF THE INITIAL TEMPERA-

TURE ON THE WIDE-LATTICE SIMULATED ANNEALING

ALGORITHM

This chapter pays special attention to the initial temperature of the wide-lattice

algorithm described in 2.2.1. In simulated annealing algorithms, one of the most

important parameters is the value of the initial temperature. On the one hand, it

must be high enough to allow the system to explore different global configurations

without falling into a local minimum too early. But on the other hand, setting the

temperature too high is a waste of resources: a lower initial temperature allows

finding a solution with fewer iterations.

An important factor is the cooling rate. Furthermore, the algorithm is not

deterministic and is expected to be run multiple times with different sequences
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of random numbers so that the system can explore different transition paths and

finally choose the best solution. This means that a trade-off is needed: with the

same number of computational resources, whether to use them to set a higher initial

temperature, to set a slower cooling rate, or to run more trials.

A certain fixed initial temperature value may be high for some input data,

but not high enough for others. In nanoparticle optimization, factors that can have

an impact are the type and size of the particle, as well as the type and size of the

lattice.

The results of this chapter are the basis for the decision to formulate the

two-stage method proposed in 2.3 specifically in the given manner in 5 steps. They

also provide a guideline for the range of temperatures suitable for starting Step 1.

Furthermore, they have an application separate from the two-stage method, as they

can be used in studies related to the optimization of monometallic nanostructures.

The results of this chapter are published in [Mikhov et al., 2021].

4.1. Selection of chemical elements

This dissertation does not aim to focus on specific metals, but rather seeks to

achieve results applicable to a variety of conditions. For this reason, silver and

cobalt—chemical elements with very different characteristics—were chosen for

testing.

4.2. Testing conditions

Three types of lattices were selected (icosahedral, bi-cuboctahedral and decahe-

dral), each with two variants of different sizes (a “small” variant with 1415 nodes

and a “large” variant with 10179 or 17885 nodes). Silver and cobalt nanoparticles

were placed separately on each of these six lattices, varying the number of atoms

from Ag150 to Ag310 and from Co150 to Co200 with a step of 10. In addition, 10

larger Ag particles (from Ag620 to Ag3000) were tested on the three large lattices.

The initial temperature (T0) was tested in the range 1000–5000K for the smaller

lattices and 2000–5000K for the larger ones. For each variant, 30 runs of the wide-

lattice Monte Carlo algorithm were made and the average of the potential energies

of the obtained final configurations was accepted as the result of the given variant.

The total number of runs amounted to 24,300.

4.3. Results

Some of the solutions obtained are shown in Fig. 4.1, where the red spheres rep-

resent Ag atoms and the blue dots are empty nodes. The results for the potential
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a) Ag310 on the small icosahedral, bi-cuboctahedral and decahedral lattices

b) Ag310 on the icosahedral lattice with 10179 nodes

c) Ag1100 on the bi-cuboctahedral lattice with 10179 nodes, viewed from two different

angles

d) Ag3000 on the decahedral lattice with 17885 nodes, viewed from two different angles

Fig. 4.1. Some of the solutions obtained.
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energy at different initial temperatures are shown for the different nanoparticles

and lattices in Fig. 4.2–4.3.

For small Ag nanoparticles on small lattices (Fig. 4.2 a) the results for T0 =

5000K, 4000K and 3000K completely overlap with those for 2000K. The difference

between 2000K and 1500K is quite small, and between 1500K and 1000K there is

already a large difference. This means that the optimal starting temperature here

is either 2000K or 1500K.

Is the difference between 2000 K and 1500 K significant? Note that each

point in Fig. 4.2 represents the average energy value of 30 trials. In actual use of

the algorithm, it is expected to be run multiple times to find the minimum solution,

and then the more successful runs are of interest, not the average itself. In the

present experiment the average values at T0 = 2000K and 1500K are quite close,

but T0=2000K consistently finds better minima than T0=1500K. This is partially

illustrated in Fig. 4.4, where all the starts are plotted. Therefore, here the most

appropriate starting temperature is 2000K.

Similar reasoning applies to all other combinations of chemical elements,

sizes, and lattices.

When comparing the best values of T0 under different conditions, the data

show that the most important factor considered is the lattice size. For small

nanoparticles on small lattices (Fig. 4.2 a, c), the optimal temperature is around

2000–3000K, with cobalt requiring higher temperatures than silver. For the same

nanoparticles on larger lattices, however, 4000 K or even 5000 K become neces-

sary (Fig. 4.2 b, d). The highest temperature is required for the largest lattice

tested, the decahedral lattice with 17885 nodes.

It is important to note that the lattice size factor here is relative to the size

of the nanoparticle. As the size of the nanoparticle increases, it begins to occupy

a significant part of the lattice and then a high initial temperature is no longer

needed (Fig. 4.3). It becomes easier to find a minimum because the possible atomic

configurations are fewer.

4.4. Conclusion

As a result of the experiments, it was found that the most important factor in

determining the appropriate initial temperature is the size of the lattice, and the

temperature should be especially high when placing a small particle on a large
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a) Ag on the small icosahedral, bi-cuboctahedral and decahedral lattices

b) Ag on the large icosahedral, bi-cuboctahedral and decahedral lattices

c) Co on the small icosahedral, bi-cuboctahedral and decahedral lattices

d) Co on the large icosahedral, bi-cuboctahedral and decahedral lattices

Fig. 4.2. Effect of initial temperature on the quality of the solution for

small sizes of silver and cobalt.
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a) icosahedral lattice b) bi-cuboctahedral lattice

c) decahedral lattice

Fig. 4.3. Influence of initial temperature on the quality of the solution for

large-sized silver.

a) Ag on small lattices b) Co on small lattices

c) Ag on large lattices

Fig. 4.4. All the data points from the experiment in this chapter. The

energy of the final configuration versus the energy of the initial configura-

tion.
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Table 4.1. Suitable starting temperature for the tested particles.

Ag150–Ag310 Ag620–Ag1740 Ag2060–Ag3000 Co150–Co200
lattices with 1415 nodes 2000K — — 3000 K

lattices with 10149 nodes 4000K 4000K 3000 K 5000 K
lattices with 17885 nodes 5000K 5000K 4000 K 5000 K

lattice. The type of chemical element also has some importance. The type of lattice

does not have a significant effect. The optimal initial temperature for the studied

variants is summarized in Table 4.1.

CCHAPTER 5. APPLICATION OF THE METHOD TO THE

OPTIMIZATION OF GOLD–SILVER NANOCAGES

In this chapter, the proposed two-stage method is applied to study the atomic

ordering and the processes of surface segregation and cavity healing in gold–silver

nanocages of 3000 atoms [Myasnichenko et al., 2025]. The method is adapted for

nanocages, using a new approach for generating lattices with variable levels of node

compression. For the analysis of the results, a modification of the Warren–Cowley

short-range order (SRO) parameter is proposed, in which the atomic concentrations

are calculated locally, taking into account the coordination numbers of the atoms.

This makes the parameter applicable to nanoparticles with pronounced surface

segregation.

5.1. Selection of lattice geometry and alloy composition

In this chapter, gold–silver nanocages of 3000 atoms at ratios of Au :Ag=1:1, 1:3

and 3:1 on fcc and icosahedral lattices are studied.

5.2. Lattice generation

To simulate an environment in which it is energetically advantageous for atoms to

avoid the central zone of the lattice, we propose to use a compressed lattice with

a compression coefficient that varies with the distance to the center of gravity of

the system.

Specifically, two lattices (fcc and icosahedral) were generated for the present

study, each containing 4500 empty nodes. In these, for a core of 1000 nodes at the

center of the lattice, a compression of 9% was applied to the basis length of the

coordinate vector of each node. At the boundary of the core, the compression is
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8%. From there outward, the compression coefficient decreases linearly with radius

until it reaches a 0.1% expansion at the outer boundary of the lattice. The exact

formula is as follows:

κshell(r)= 0, 92+(1, 001− 0, 92)
r − rcore

rout− rcore
, (5.1)

where κshell(r) is the local scaling factor at radius r (rcore ≤ r ≤ rout); rcore is the

radius of the core; rout is the outer radius of the lattice.

5.3. Parameters of the two-stage method

For optimization of the nanocages, the two-stage method from Chapter 2 was used,

with the following adaptations. In both stages of the method, the main cycle ends

after a predetermined number of iterations N . Cooling is performed once every

10,000 iterations, with the cooling rate depending on N as follows:

T = T0− (T0− 1)
s

N − 10 000
, (5.2)

where T is the current temperature; T0 is the initial temperature; s is the current

iteration number. This is a linear cooling schedule scaled so that the last 10,000

iterations are performed at 1K.

5.3.1. Plan of the numerical experiments

For the numerical experiments, the two lattices generated in 5.2 (fcc and icosahe-

dral, 4500 nodes each) were used. Nanocages of 3000 atoms in three compositions

were tested on them: Au :Ag=1:1, 1:3, 3:1.

In Step 1, for each of the two lattices and each of the three compositions,

several initial temperatures T1 were selected, for each of which 30 independent

trials of the wide-lattice Monte Carlo algorithm were performed. Each trial started

from a new random initial arrangement of 3000 atoms and was performed for

N1 = 40 × 106 iterations. The lowest energy achieved in each trial was recorded.

The initial temperature for which this value (averaged over the 30 trials) was the

lowest was chosen as the best initial temperature T2. No scaling was performed in

this step along the x, y, z axes.

In Step 2, 30 independent trials of the wide-lattice Monte Carlo algorithm

were performed for each lattice/composition. Each trial started from a new random

initial arrangement of 3004 atoms (β = 4) and was run for N2 = 1× 109 iterations.

At the end of this step, but before the additional β =4 atoms are deleted, a global
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rescaling of the atomic coordinates (separately along the x, y, z axes) is performed

in order to further minimize the energy function. This fixes the geometric shape

of the nanocage and from now on, basically only the arrangement of the atoms

changes.

In Step 3, for each lattice/composition, several initial temperatures T3 are

selected, for each of which 30 trials of the diffusion Monte Carlo algorithm are

performed. Each trial starts from the result of the correspondingly numbered trial

from Step 2 and is performed for N3 = 8 × 106 iterations. The lowest energy

achieved in each trial is recorded. The initial temperature for which this value

(averaged over the 30 trials) is the lowest is chosen as the best initial temperature

T4. No scaling was performed in this step along the x, y, z axes.

In Step 4, 30 trials of the diffusion Monte Carlo algorithm were performed

for each lattice/composition. Each trial started from the result of the correspond-

ingly numbered trial from Step 2 and was run for N4 =80×106 iterations. At the

end of this step, a final global rescaling of the atomic coordinates (separately along

the x, y, z axes) was performed in order to further minimize the energy function.

The configuration that achieves the lowest energy here was selected as the final

result for each lattice/composition.

The final configurations achieved are shown in Fig. 5.1.

Au :Ag 1:3 1:1 3:1

fcc lattice

icosahedral

lattice

Fig. 5.1. Cross-sections of the resulting optimized nanocages with 3000

atoms. Yellow – Au atoms; gray – Ag atoms.
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Step 5 is not performed because in this chapter the goal is to model

nanocages without relaxation. Removing the lattice, depending on the conditions,

would lead to the collapse of the nanocage.

5.4. Adaptation of the short-range order parameter

To quantitatively assess the local chemical ordering in the resulting nanocages, it

is appropriate to perform a short-range order (SRO) analysis. In this chapter, we

use the Warren–Cowley SRO parameter [Polgreen, 1985] as a basis, noting that the

different SRO parameters are correlated with each other [Gahn and Pitsch, 1989].

According to the classical definition, the value of SRO αi for the i-th coor-

dination sphere around a given atom of type a is calculated as follows:

αi = 1−
Pab(i)

xb

, (5.3)

where Pab(i) is the proportion of neighbors (in the i-th sphere) of type b around the

atom of type a, and xb is the global proportion of atoms of type b in the system.

This value αi is averaged over all atoms in the system, regardless of their type.

When αi = 0, this is an indicator of random mixing of chemical elements; αi < 0

indicates a preference for bonds between atoms of different elements; αi >0 signals

a preference for clustering of atoms of the same type.

The Warren–Cowley SRO parameter thus defined is appropriate for quan-

titatively assessing chemical ordering in macroscopic crystals, but fails to describe

surface segregation in nanoparticles, as these are different phenomena governed by

different energetic effects (e.g. bond tension versus surface energy minimization).

To address this issue, SRO should be calculated separately for different zones (inte-

rior/subsurface/surface) and local concentrations xb should be used, separating the

internal ordering from segregation artifacts.

For this purpose, we modify the above definition as follows. For each atom

of type a, we calculate xab
local – the local (within three coordination spheres) pro-

portion of atoms of type b around the given atom of type a. Then, the atoms are

classified into 3 zones: internal atoms, subsurface atoms, and surface atoms. The

formula for SRO (5.3) is retained, but instead of xb, an average value of xab
local is

used, averaging over all atoms of type a in the same zone as the given one. Only

α1 is considered, and the average value of α1 for the entire nanoparticle is not

considered, but only the average value for each zone separately.
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When it comes to a nanocage, due to the presence of a central cavity, we

have two surfaces (external and internal), respectively two subsurfaces. This further

subdivides the 3 zones into 5 subzones, which we will call “layer groups”. In this

case, xb is calculated for each of the 3 zones, as explained above, but an average

value of α1 is considered for each of the 5 layer groups separately.

5.4.1. Classification of atoms by zones and layer groups

For the classification of atoms by zones, we consider the number of neighboring

positions within three coordination spheres. In a macroscopic fcc lattice, each

atom would have 12 neighbors in the first sphere, 6 in the second, and 24 in the

third (a total of 42). If the atom is in the subsurface of a nanoparticle, some of

the neighboring positions in the third sphere would remain empty. On the surface,

even neighboring positions in the first sphere remain empty. In the interior, most

neighboring positions would be occupied, but not completely; for particularly small

nanoparticles (such as the thin-walled nanocages discussed in this chapter), it is

possible that there may not even be an atom with a completely filled third sphere.

Therefore, for the classification by zones, we will use the following rule:

38≤n3≤ 42 � interior
30≤n3≤ 37 � subsurface

n3≤ 29 � surface,
(5.4)

where n3 is the total number of occupied adjacent positions within three coordina-

tion spheres.

The subdivision of the surface group of atoms into an outer and inner surface

(and especially the subdivision of the subsurface group of atoms into an outer and

inner subsurface) requires the use of a geometric approach. In our case, for each

atom we measure the distance to the center of gravity of the nanocage. If it is

below a certain value, we classify the atom as belonging to the inner (sub)surface

layer group, otherwise to the outer one.

5.5. Results

The atomic configurations obtained after optimization (Fig. 5.1) were analyzed for

radial composition profiles, surface segregation indices, and pore-healing metrics

(average cavity size).
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5.5.1. Structural outcomes

Fig. 5.2 shows the coordination numbers and the classification by layer groups of

the atoms in one of the optimized configurations for each lattice.

From the cross-sections of the optimized cages (Fig. 5.1–5.2), it is seen

that the three fcc nanocages have thinner walls and the cavity radius is larger. In

addition, there are more low-coordinated atoms (Fig. 5.2, top left) compared to the

icosahedral cages. A significant number of atoms with coordination numbers 6 and

8 are observed on the surface, both on the outer and inner surfaces. The number

of atoms in the layer group of the interior (Fig. 5.2, top right) is very small.

In the icosahedral lattice, atoms occupy more layers, including more com-

pressed layers located closer to the center of the lattice (Fig. 5.2, bottom left).

On the inner surface there are also single atoms with a coordination number less

than 7. Both surfaces are formed by (111) facets and therefore the predominant

coordination number on the surface is 9. In the icosahedral lattice, the layer group

of the interior (Fig. 5.2, bottom right) contains a sufficiently large number of atoms.

Au :Ag= 1:1 by coordination number by layer groups

fcc lattice

icosahedral

lattice

Fig. 5.2. Cross-sections of the resulting optimized nanocages in the compo-

sition Au :Ag=1:1. Left: colored by coordination number. Right: colored by

layer groups (red – outer surface; yellow – outer subsurface; green – interior;

light blue – inner subsurface; blue – inner surface).
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5.5.2. Local concentration of the metals and short-range order

Fig. 5.3 shows the local Au :Ag ratios at different radii in the nanocages. It can be

seen that Au preferentially occupies subsurface positions, while Ag dominates in the

surface layers. This is consistent with the lower surface energy of Ag [Vollath et al.,

2018]. There is a pronounced surface segregation of Ag and since the total surface

area (external plus internal) of the nanocages is large, most of the silver atoms end

up on the surface. In the Au-enriched (3:1) composition, there are almost no silver

atoms in the internal layers.

Fig. 5.4 shows the SRO values for the different layer groups in the nanocages.

The influence of the composition on the SRO is more pronounced for the fcc cages

due to their thinner walls.

Fig. 5.3. Local Ag concentration at different radii in the nanocages. The

light gray background shows the areas with a large number of subsurface

atoms, according to the classification of 5.4.1.

Fig. 5.4. SRO values for different layer groups in nanocages.
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The icosahedral cages show more uniform mixing on the facets, but a

stronger accumulation of Ag on the fivefold vertices. The Au-enriched (3:1) com-

position contains the highest number of mixed Au–Ag bonds on both lattices,

due to the sufficient number of Ag atoms in the inner layers. The Au-enriched

systems form almost close-packed shells of Au, with the Ag atoms filling the inner

cavities, a situation that can improve mechanical stability.

5.5.3. Energetic outcomes

The total potential energy for the systems is summarized in Table 5.1, where Eopt

Table 5.1. Energy results (eV/atom).

fcc lattice icosahedral lattice

Au :Ag 1:3 1:1 3:1 1:3 1:1 3:1

Eopt 22.984 23.194 23.392 23.024 23.231 23.426
Erand2Eopt 0.011 0.015 0.013 0.005 0.006 0.004

is the energy of the resulting optimized configuration, and Erand is the energy of

a random alloy with the same geometry and composition. Erand is obtained by

randomly shuffling the atoms in the corresponding optimized configuration 30 times

and taking the arithmetic mean of the energy. It is confirmed that the ordered

configurations are more stable by 5–10 meV/atom compared to random alloys.

These energy differences, although modest, can dictate thermal activation barriers

in catalysis or affect melting point depressions in nanoscale materials.

5.6. Implications for applications

The results show that by appropriately selecting the Au : Ag ratio and lattice

geometry, the properties of the nanocage can be regulated and tailored to specific

applications:

− Catalysis: silver-rich equiatomic cages with a distinct A–B ordering

can provide synergistic active centers for selective oxidation reactions.

− Plasmonics and sensing technologies: gold-rich fcc-based nanocages

with surface silver can support hybridized plasmon modes and

enhanced electromagnetic “hot spots”.

− Drug delivery and photothermal therapy: icosahedral gold-rich cages

combine high stability with tunable pore sizes for drug cargo encapsu-

lation and efficient light-to-heat conversion.
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5.7. Limitations of the study and directions for future work

Although the current two-stage lattice Monte Carlo approach captures key phe-

nomena in structural ordering and pore healing, it cannot account for vibrational

entropy and dynamic effects. In the future, kinetic Monte Carlo on the lattice or

MD sampling with machine-learned potentials could be integrated to investigate

temperature-dependent diffusion processes and nanocage collapse mechanisms.

5.8. Conclusion

In this chapter, the two-stage method is applied to study the atomic ordering

and related phenomena in gold–silver nanocages. Some aspects of the method are

adapted to the specifics of working with nanocages. A new approach for generating

lattices with variable levels of node compression is proposed, which allows mod-

eling cavities in nanocages. A modified version of the Warren–Cowley near-order

parameter is defined, which is applicable even for nanoparticles with pronounced

surface segregation.

Using this approach, 3000-atom nanocages in three compositions (Au :Ag=

1:1,1:3,3:1) on two lattices (fcc and icosahedral) have been studied. The following

conclusions can be drawn from the results for this class of nanocages:

• In fcc systems, the nanocage walls are thinner and the cavity radius is

larger. There are noticeably more atoms with low coordination num-

bers (CN = 6–8) on the surfaces. Icosahedral structures form denser

atomic layers (both inner and outer), and atoms with CN=9 predom-

inate on the surface.

• In the diffusion process, Ag atoms preferentially migrate to both sur-

faces of the nanocage, reflecting the strong surface segregation of silver.

• In Au-rich alloys (Au :Ag=3:1) the inner layers are practically devoid

of Ag, with Au–Au bonds dominating. Ag-rich alloys (Au :Ag = 3:1)

have the maximum number of mixed Ag–Au bonds and a more uniform

local order in both crystal lattices. The effect of composition on SRO

is most noticeable in fcc-nanocages due to their thinner walls.

These effects clearly demonstrate how the interaction between the lattice

symmetry and the alloy element ratio determines the local order and influences the

macroscopic properties of bimetallic nanocages. The proposed two-stage Monte

Carlo approach is efficient for such studies and can be easily adapted for other alloy

systems, multicomponent combinations, and alternative potentials.
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CCHAPTER 6. SOFTWARE ARCHITECTURE AND SYSTEM

FOR THE IMPLEMENTATION OF THE TWO-STAGE

METHOD FOR OPTIMIZATION OF BIMETALLIC NANOS-

TRUCTURES

This chapter describes the requirements for the software system for the imple-

mentation of the two-stage method for optimization of bimetallic nanostructures.

A software architecture is proposed and the various components of the developed

system are described.

6.1. Requirements for the software system

The following requirements for the system are formulated:

• to be optimized for processors with x86-64 architecture, achieving

performance that permits the execution of billions of Monte Carlo iter-

ations within minutes, enabling the optimization of nanoparticles with

size between several hundred and several thousand atoms on stan-

dard and widely-available hardware;

• to use the standard XYZ format for input and output data of atomic

configurations, compatible with a large number of existing software

packages, such as for 3D visualization, analysis of the results, etc.;

• to be compatible with Linux and Windows operating systems;

• to enable the formulation of complex plans for numerical experiments,

which combine several processing steps with different combinations of

algorithms, variation of parameters, saving of intermediate data for

animated 3D visualization of the behavior of the methods, performance

statistics, etc.;

• to synchronize the execution of a plan for numerical experiments con-

currently using several processor cores of one computer or several

computers with different operating systems, with the ability to resume

normally even after unexpected interruptions such as power failures,

restarting of the operating system, etc.;
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• to enable a high degree of flexibility, for example the ability to modify

a plan for numerical experiments while in the process of performing

those experiments, where all results obtained up to that point are not

lost and can be used in the execution of the modified plan.

6.2. Software architecture

The software architecture of the system contains 3 components: computational

core; template for the master plan for numerical experiments; supplementary func-

tionalities for analysis of the results, testing and visualization.

6.2.1. Computational core

The computational core is concentrated in one executable command, developed

in the C programming language. The algorithms of Chapter 2 are implemented

here, as well as some variations. Each execution of this command constitutes one

execution of one of the steps of the proposed two-stage method.

6.2.2. Master plan for numerical experiments

The master plan for numerical experiments describes what nanoparticles will be

studied, what trials will be performed, what combination of algorithms will be

employed, whether parameters will be varied, what results will be collected, where

they will be saved and how they will be combined and summarized for visualization.

Essentially, the master plan is implemented as one Makefile with a specific struc-

ture. However, we don’t just use a standard Make utility: we combine several of the

less well-known modern functionalities of GNU Make with new extensions, written

specifically for the present software system. In this way, Make is transformed from

a clumsy instrument to an expressive domain-specific language, especially suitable

for the fulfillment of the requirements of Section 6.1.

6.2.3. Supplementary functionalities for analysis of the results and

testing

The supplementary functionalities are a library of GNU Make functions, imple-

mented with the help of Perl scripts, which provide the necessary instruments for

expressing the master plan for numerical experiments. In addition, a system for

automated regression testing for the implementation of the algorithms is included.
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6.3. Conclusion

A software architecture is proposed for the implementation of the two-stage method

for optimization of bimetallic nanostructures, and a corresponding software system

is developed. The architecture contains a computational core, a template for

the master plan for numerical experiments, and supplementary functionalities for

analysis of the results, testing and visualization. The developed software works

on Linux and Windows operating systems and uses the standard XYZ format

for input and output data for atomic configurations.

CCONCLUSION – SUMMARY OF THE RESULTS

The present dissertation proposes a two-stage lattice Monte Carlo approach for the

optimization of bimetallic nanoalloys, combining two main algorithms: simulated

annealing on a wide lattice and simulated diffusion. Numerical experiments show

convincingly that the proposed combined method achieves better results compared

to the use of a single-stage approach. Experimentally is established that the specific

formulation of the method in 5 steps is sound and leads to successful tuning of the

parameters. The most appropriate proportion for distributing the computational

resources between the two stages is 30% for the wide-lattice algorithm and 70% for

the diffusion algorithm.

A more thorough investigation of the influence of the initial temperature

on the performance of the wide-lattice algorithm for simulated annealing has been

performed. A large number of nanoparticles of silver and cobalt have been tested

on lattices with different shapes and sizes, with a total of 810 different combinations

of conditions. The results show that the most important factor for determining

the appropriate initial temperature is the size of the lattice, with especially high

temperatures required when a small particle is placed on a large lattice.

In order to demonstrate the applicability of the proposed two-stage

approach, the method has been adapted for nanocages and has been used for

studying the atomic ordering and the processes of surface segregation in gold–silver

nanocages with 3000 atoms. A new approach is proposed for lattice generation,

with varying levels of compression of the nodes, which allows modeling of cavities

in the nanocages. A modified version of the Warren–Cowley short-range order para-

meter is defined, which is applicable even for nanoparticles with pronounced surface
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segregation. A comparative analysis has been performed on the results for three

compositions (Au :Ag=1:1, 1:3, 3:1) and two lattices (fcc and icosahedral), which

shows that fcc nanocages have thinner walls, cavities with larger radii and more low-

coordinated atoms on the surface compared to icosahedral cages. In the process of

diffusion, Ag atoms show a tendency to migrate to the two surfaces of the nanocage,

as a result of which the interior layers of the Au-enriched alloys are practically

devoid of Ag, making Au–Au bonds dominant. Ag-enriched alloys have a maximum

number of mixed Ag–Au bonds and a more uniform local order on both lattices.

The two-stage method and its variations have been implemented in a soft-

ware system. A software architecture is proposed, which allows a high degree of

optimizability for performance of the computations, flexibility for concurrent exe-

cution and combination of the constituent algorithms in different conditions, and

good compatibility with external applications for analysis and visualization of the

results. The developed software works on Linux and Windows operating systems

and uses the standard XYZ format for input and output data for atomic configu-

rations.

As a future development of this research, it is planned to recalibrate the

constants of the TB potential function based on newly available results from

DFT calculations of specific particles, so that the two-stage method reproduces

important aspects of their configurations and allows experimentation with sim-

ilar particles with explicit confidence level data.

CCONTRIBUTIONS

The main results presented in this dissertation can be summarized as follows:

1. A two-stage lattice Monte Carlo method is proposed for optimization

of bimetallic nanostructures, including nanoparticles, nanowires and

nanofilms. The first stage is simulated annealing on a wide lattice and the

second stage is simulated diffusion. The method is implemented with the

help of data structures and a preprocessing strategy, which significantly

increase its efficiency, and allow the optimization of nanostructures from

several hundred to several thousand atoms on a standard personal computer.

2. Experimentally is established that an effective strategy for distributing com-

putational resources between the two stages of the method is to use 30% of

the time on the first stage and 70% of the time on the second stage.
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3. Experimentally is established that the specific way in which the method is

formulated in 5 steps is sound and leads to successful tuning of the parame-

ters.

4. The influence of the initial temperature on the performance of the wide-lat-

tice Monte Carlo algorithm is investigated for different lattices and chemical

elements. Experimentally is established that the most important factor for

choosing appropriate initial temperature is the lattice size, with the highest

temperatures being required when placing a small particle on a large lattice.

The type of chemical element is also of certain importance, while the type

of lattice does not have a significant effect.

5. An adaptation of the two-stage method is made for nanocages. It is used

for studying the atomic ordering and the processes of surface segregation

in gold–silver nanocages with 3000 atoms. A comparative analysis of the

results for three compositions (Au :Ag= 1:1, 1:3, 3:1) and two lattices (fcc

and icosahedral) shows that fcc nanocages have thinner walls, cavity with a

larger radius, and more low-coordinated atoms on the surface in comparison

to icosahedral cages. Ag atoms show a tendency to migrate to the two

surfaces of the nanocage, as a result of which the interior layers of the Au-

enriched alloys are practically devoid of Ag and Au–Au bonds dominate.

Ag-enriched alloys have a maximum number of mixed Ag–Au bonds and a

more uniform local order on both lattices.

6. A software architecture is proposed for the implementation of the two-stage

method, which allows a high degree of optimizability for performance of the

computations, flexibility for concurrent execution and combination of the

constituent algorithms in different conditions, and good compatibility with

external applications for analysis and visualization of the results.
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