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1 Introduction

Relevance and motivation of the topic
Optimization is a key topic in informatics, artificial intelligence, opera-

tional research, and related fields. The goal of combinatorial optimization
is to find an optimal object according to some criterion, from a finite set of
objects. It refers to those optimization problems for which the set of valid
solutions is discrete or reducible to discrete and the goal is to find the best
possible solution. Examples of combinatorial optimization problems are the
traveling salesman problem [114], vehicle routing [125], minimum spanning
tree [104], constraint satisfaction [86], the knapsack problem [29] and others.
These are NP (non-polynomial) problems, and in order to find near-optimal
solutions, metaheuristic methods are usually used. One of them is the Ant
Colony Optimization (ACO) [25]. It is well suited for solving discrete prob-
lems with tight constraints because it is a constructive method.

Purpose and tasks of the dissertation
The main goal of the dissertation is the development of algorithms, based

on the ACO, for solving problems from real life and industry.
To achieve this goal, the following five tasks have been formulated:

• Development of an algorithm for solving the knapsack problem;

• Development of GPS network inspection algorithm;

• Development of an algorithm for building a wireless sensor network
according to two criteria, minimum number of sensors and minimum
energy used;

• Development of an algorithm for workforce planing;

• Development of an algorithm for modeling passenger flow according to
two criteria, travel time and cost of travel.

Methodology
One of the most successful metaheuristic methods for solving combinato-

rial optimization problems is ACO. The idea for it comes from the behavior
of ants in nature. When foraging, ants in nature mark their path by leaving a
chemical substance called a pheromone. If isolated, an ant moves essentially
randomly. If there is a pre-set pheromone, the ant registers it and decides
to follow it with high probability and thus reinforces it with a new amount
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of pheromone. The repetition of the above mechanism by ants in nature re-
sults in the fact that the more ants have traveled a trail, the more desirable
it becomes for subsequent ants. On the other hand, the pheromone of the
less used paths gradually decreases due to evaporation. This is how nature
prevents ants from following old and unprofitable tracks.

Presentation of results
Algorithms were developed in accordance with the tasks, solving specific

classes of problems. A software implementation of each of the developed
algorithms was made. The programs are written in the C language. A study
was made for the values of the control parameters.

Publications
The author of the dissertation has more than 200 publications, most

of which are in the field of combinatorial optimization and application of
stochastic methods. The results of the dissertation have been published in
19 publications including: 1 monograph published in the prestigious scien-
tific publishing house Springer, 1 with an impact factor in a journal in the
top 10% of Q1, 11 with an impact rank, 5 referenced in the world referenc-
ing and indexing system and one published in an international journal. All
publications are after 2016, when the doctoral student acquired the title of
professor, and did not participate in previous procedures.

Citations
The author of the dissertation has over 1250 citations. The publications

on which this dissertation is based have been cited 51 times. The publications
and citations used are after obtaining previous degrees and titles and have
not been used in other procedures. The author’s Hirsch index, relative to
her known citations, is h=18.

2 Ant Colony Optimization

Ants, having limited individual capabilities, working as a collective are able
to find the shortest path between their nest and the food source. This is
called group intelligence. They work as follows:

• The first ant finds the food source, somehow, then returns to the nest,
leaving a pheromone trail along the way;
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• Ants follow possible paths by monitoring pheromone concentration and
thus make shorter paths more attractive.;

• Ants prefer shorter paths, thus much of the longer paths lose their
pheromone.

Marco Dorigo first applied ideas from ant behavior to solve combinatorial
optimization problems [21, 25, 27]. The first ant algorithm was introduced
in 1992 by him in his PhD thesis [24] which he defended at the Politecnico
di Milano, Italy.

Ant Colony Optimization (ACO) is part of the metaheuristic optimization
methods. A metaheuristic is a high-level procedure designed to find, con-
struct, or choosing a low-level procedure that can guarantee finding enough
a good solution to the optimization problem, especially when information
is incomplete or computer resources are limited. The method is iterative.
Briefly, the algorithm can be presented as follows:

• At each iteration, each ant starts building its solution from a random
vertex in the graph. The random start is a way to diversify the search
in the set of solutions;

• The ant chooses the next vertex to include in the solution using a
function called transition probability. This function is the product of
the amount of pheromone corresponding to the transition (of the arc
connecting the two vertices or of the selected vertex) and heuristic
information;

• The ant stops adding new vertices when the probability of adding a
new vertex becomes 0;

• At the end of each iteration, the pheromone is renewed;

• The algorithm stops when the termination condition is reached.

The ant moves from vertex i to vertex j of the task graph with probability:

pij =
ταijη

β
ij∑

all possible k τ
α
ikη

β
ik

(1)

Where:
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• τij is the amount of pheromone corresponding to the transition from
vertex i to vertex j;

• α is a parameter controlling the influence of τij;

• ηij is the heuristic information;

• β is a parameter controlled the influence of ηij

Before the first iteration, an initial pheromone τ0 is placed, which has a
small positive value. The rule for pheromone exchange is as follows:

τij = (1− ρ)τij + ∆τij, (2)

Where τij is the amount of pheromone corresponding to the transition
from vertex i to vertex j , ρ is the pheromone evaporation rate.

3 ACO for the knapsack task

The results of this chapter are published in the following articles : [45, 48,
51, 56, 61, 62].

The multidimensional knapsack problem (MKP) is a complex combinato-
rial optimization problem with wide application. Tasks from different areas
of industry can be presented as MKP including financial and other man-
agement. We can think of the knapsack problem as a resource allocation
problem. There are m resources (backpacks) and n objects, with object j
bringing profit pj. Each resource has its own budget ci (knapsack volume),
and object j consumes an amount rij of resource i . We are interested in
maximizing the total profit while staying within the limited budget. The
MKP can be formalized as follows:

max
∑n
j=1 pjxj

subject to
∑n
j=1 rijxj ≤ ci i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . , n.

(3)

xj is 1 if object j is selected and 0 otherwise. Let I = {1, . . . ,m} and
J = {1, . . . , n}, such that ci ≥ 0 for each i ∈ I. The well-defined MKP
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implies that pj > 0 and rij ≤ ci ≤
∑n
j=1 rij for all i ∈ I and j ∈ J . We note

that the matrix [rij]m×n and the vector [ci]m are non negative.

3.1 ACO algorithm for MKP

We define the graph corresponding to MKP as follows: vertices correspond
to objects and every two vertices are connected by edges. Fully connected
graph means that after object i object j can be selected if there is enough
resource and if object j is not yet selected. The algorithm is iterative. At
each iteration, each ant constructs a solution. The starting object (vertex in
the graph) is chosen randomly. New objects are then added without violating
resource constraints. After all ants have built their solutions, the pheromone
values are updated.

Using Intuitionistic Fuzzy Pheromone
In this section, we will apply intuitionistic fuzziness to pheromone re-

newal. At the beginning, the same pheromone is placed on all edges, which
has a small positive value τ0, τ0 ∈ (0, 1). At the end of each iteration, the
pheromone is updated according to the solutions built by the ants. Let ρ be
the evaporation rate. The pheromone renewal rule is:

τlj ← (1− ρ)τlj + ∆τlj. (4)

In most applications of ACO to MKP, ∆τlj = ρF , where F is the value of
the objective function for the corresponding solution [32]. In the traditional
ACO, the evaporation parameter ρ is an input parameter and remains un-
changed until the end of the algorithm execution. [61] proposed the use of
intuitionistic fuzzy pheromone. In the case of intuitionistic fuzzy pheromone,
we have proposed the following pheromone update formula [61]:

τlj ← (1− ρ)τlj + αF, (5)

where (1− ρ) + α ≤ 1, α ∈ (0, 1).
In the intuitionistic fuzzy pheromone case, we generate the parameter ρ

as a random number in the interval (0, 1); then the parameter α is generated
as a random number in the interval (0, ρ). We have proposed two variants
of the implementation of intuitionistic fuzzy pheromone updating. In the
first variant, the parameters ρ and α are generated at the beginning of the
execution of the algorithm even before the first iteration. Thus, they remain
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unchanged until the end of the algorithm execution, but are different for
different algorithm executions. In the second variant, the parameters ρ and
α are generated at the beginning of each iteration. Thus, their values are
different for each iteration of one execution of the algorithm.

The two proposed pheromone renewal options were tested on 10 MKR test
samples from Operational Research Library OR-Library , http://people.brunel.ac.uk/ mas-
tjjb/jeb/orlib/mknapinfo.html (21 Jun 2021).

Each test case consists of 100 objects and 10 knapsacks/constraints. For
all tests, the ACO algorithm has the same parameters. The parameters
are fixed experimentally. The algorithm was run 30 times with each of the
variants for each of the test examples. An ANOVA test was applied to
ensure the statistical difference between the averaged results obtained. We
can conclude that intuitionistically the fuzzy pheromone update improves
the performance of the algorithm and the results achieved by increasing the
search diversity and hence the probability of finding a good solution. This
diversification is more balanced when the coefficients are calculated once at
the beginning of the algorithm than at each iteration.

3.2 Hybrid ACO

Sometimes the algorithm used is not enough to achieve good solutions. Then
a combination of several methodologies is made so that their good qualities
can be combined. Most often, one basic method is used and the solutions
found by it are improved by applying local optimization (local search). MKP
solutions are represented as a binary string, with 1 corresponding to selected
objects and 0 to those not selected. In our local search procedure, we ran-
domly select two positions in the solution constructed by the ant. If one of
the selected items has a value of 0, we replace it with 1, and if their value is 1,
we replace it with 0. We check whether the newly obtained solution is valid.
If the solution is valid, we compare it with the current (initial) solution. If
the newly generated solution is better than the current one, we replace it with
it. We can conclude that the proposed local search procedure is effective and
efficient. The performance of the algorithm has been improved without sig-
nificantly increasing the time for its execution. Four variants of intercriteria
analysis were applied to compare the two algorithms. The conclusion that
the hybrid ACO algorithm performs better is unequivocally confirmed by the
four different intercriteria analysis algorithms.
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3.3 Startup Strategies

To better manage the solution building process, we have included a semi-
random start of the ants. Our goal is to use the ants’ experience and make
the algorithm more efficient. We divide the set of vertices of the task graph
into several subsets. We introduce an estimate of how good and how bad it
is for the ant to start building a solution from a vertex belonging to a given
set, according to the number of good and bad solutions started from vertices
belonging to the corresponding set [45, 51].

Several starting strategies and combinations of them are proposed. For
each set j , Dj(i) is the estimate of how good the starting vertex of the
solution is from this set, and the estimate Ej(i) indicates how bad the initial
vertex of the solution is from this set , where i is the current iteration number.
We define a bound D for whether the estimate is good and a bound E below
which the estimate is bad. The following [39] startup strategies are suggested:

1) If Ej(i)

Dj(i)
> E then for the current iteration subset j is forbidden. The

starting vertex is chosen randomly from {j |j is not forbidden};

2) If Ej(i)

Dj(i)
> E then by the end of the algorithm subset j is forbidden. The

starting vertex is randomly selected from a set {j |j is not forbidden};

3) If Ej(i)

Dj(i)
> E then for K1 consecutive iterations subset j is forbidden.

The starting vertex is chosen randomly from {j |j is not forbidden};

4) Let r1 ∈
[
1
2
, 1
)

and r2 ∈ [0, 1] be random numbers. If r2 > r1 we

randomly select a vertex from a subset {j |Dj(i) > D}, otherwise a
vertex from a non-forbidden subset is selected. r1 is selected and fixed
at the beginning of the algorithm.

5) Let r1 ∈
[
1
2
, 1
)

and r2 ∈ [0, 1] be random numbers. If r2 > r1 we choose

a random vertex from a subset {j |Dj(i) > D}, otherwise a vertex from
a non-forbidden subset is selected. r1 is chosen at the beginning of the
algorithm and is incremented by r3 at each iteration.

K1, K1 ∈ [0, number of iterations] is a parameter.
We apply an intercriteria analysis to the results achieved by ASO with

the application of various startup strategies [39]. An intercriteria analysis
was applied to show the relationship between the strategies. From it we can
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conclude that when the selection is banning subsets of vertices, the algorithm
works quite differently from the random selection variant (supervised or not).

4 Inspect GPS Network

The Global Positioning System (GPS) needs periodic tracking, consisting
of placing GPS receivers successively at certain points. The results of this
chapter are published in [63]. A GPS network can be defined as a set of sta-
tions (a1, a2, . . . , an) that are coordinated by placing receivers (X1, X2, . . .)
on them to determine the sessions (a1a2, a1a3, a2a3, . . .) between them. The
task is to find the best order in which these sessions can be arranged to give
the best schedule. Thus, the schedule can be defined as a series of sessions to
be observed consecutively. The solution is represented by a line graph with
weighted edges. The nodes represent the stations and the edges represent
the moving costs. The goal of the task is to reduce the cost of the solution,
which is the sum of the costs (time) of moving from one point to another.
Two variants of the ACO algorithm are applied to solve the problem, MMAS
and ACS. The test cases used ranged from 100 to 443 sessions.

A comparison is made between the two algorithms. The obtained results
show that MMAS achieves better results than ACS. A comparison is also
made with the algorithms used by other authors to solve this problem [110].
The results show that both proposed ACO algorithms outperform other au-
thors’ algorithms. To improve the behavior of the algorithm and the achieved
results, 6 local search procedures are proposed: sequential exchange of nodes;
exchange in to randomly selected nodes; delete a random rib; deletion of the
longest rib; delete 2 random edges; deleting the two longest ribs. The local
search procedure is applied only to the best solution of the current iteration.
In this way, there is an improvement in the solutions found, without a signif-
icant increase in the execution time of the algorithm. After the tests, it was
found that the fifth variant of the local search procedure with the removal of
two randomly selected edges gives the best results.

An ant method with a change in environment has also been proposed.
Added an additional change to the ant environment by adding an extra
shuffle to the pheromone exchange. A change in environment has been shown
to improve the results obtained.

An intercriteria analysis was applied to the ACO algorithm applied to the
average results of 5, 10, 20 and 30 runs. Through the intercriteria analysis,
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the correctness of the algorithm and the similarities in the structure of the
individual GPS networks can be examined.

5 Wireless Sensor Network Positioning

Spatially distributed sensors that communicate wirelessly form a wireless
sensor network (WSN). Each sensor node collects data from an area around
it, called the observation area. The observation radius defines the size of the
area observed by the sensor. The communication radius determines how far
a node can send the collected data. A special, more powerful node called the
High Energy Communication Node (HECN) collects the data from all the
sensors and sends it to the central computer where it is processed. As few
sensors and energy as possible should be used, provided that the monitored
terrain has full coverage. The task is multi-purpose. An algorithm based on
the ant method is proposed for solving the problem as a multi-objective and
two ACO algorithms for solving it as a single-objective. The results of this
chapter are published in [50, 53, 57, 107, 63].

One of the most important points of ACO algorithms is the construction
of the task graph. We need to choose which elements of the task will corre-
spond to the nodes and the meaning of the arcs, where it is more appropriate
to deposit the pheromone - on the nodes or on the arcs. In our WSN imple-
mentation, the task is represented by two graphs, which is one of our contri-
butions. The terrain is modeled by a rectangular grid G = {gij}N×M , where
M and N are the dimensions of the observed area. Through the graph G, the
coverage of the area is calculated. We use another graph G1N1×M1, in the
vertices of which we place the sensors, N1 ≤ N and M1 ≤ M . The param-
eters N1 ≤ N and M1 ≤M depend on the observation and communication
radii. In this way, we reduce the number of calculations that the algorithm
performs, the execution time is reduced accordingly. The pheromone binds
to the placement site Ph = {phij}N1×M1 , the initial pheromone has a small
value, for example, 1/nants . The place where the HECN is located is the
first position in the solution (zero position).

Our proposed heuristic information is a product of three parameters as
follows:

ηij(t) = sijlij(1− bij), (6)

where sij is the number of uncovered points that the new sensor will cover,
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lij =

{
1
0

(7)

b is the decision matrix and the matrix element bij = 1 when there is a
sensor placed on node (i, j) of graph G1, otherwise bij = 0. By sij we try
to increase the locally covered points, more newly covered points can lead
to less number of sensors. With lij we guarantee the connectivity of the
network. Sensor placement starts from the HECN to the periphery. Each
new sensor is placed so that it can transmit the collected information to the
HECN. The expression (1 − bij) guarantees that at most one sensor will be
placed on one node of graph G1, i.e. there will not be two or more sensors
in the same position. When the transition probability pij = 0 for all values
of i and j , the search for new sensor placement positions stops. Thus, the
construction of the solution stops if there are no more free positions, or all
points are covered, or new communication is impossible.

Two approaches were used to convert the task from multi-objective to
single-objective. In one approach, the objective function is a product of the
two objective functions of the task. In the other approach, the two objective
functions are summed, having previously been normalized by dividing by the
best value from the first iteration. There are two sub-options here: simple
sum and weighted sum.

A comparison is made between the different approaches and the results
obtained by other authors. For this purpose, the concept of extended Pareto
front was introduced. The influence of the algorithm parameters is investi-
gated.

Various variants of intercriteria analysis were applied. The influence of
the number of ants on the behavior of the algorithm was evaluated using
the intercriteria analysis. Again, with the help of the intercriteria analy-
sis, the similarity between the individual variants of the applied algorithm
was examined. There is more similarity between the behavior of the two
single-objective variants than between some of the single-objective and multi-
objective variants.

6 Workforce planning

Human resource management is one of the main parts of production organi-
zation. Given a set of jobs J = {1, . . . ,m} that must be completed in a fixed
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period of time. Each job j takes dj hours to complete. I = {1, . . . , n} is the
set of available workers. Each worker must work on each of their assigned
tasks for a minimum of hmin hours to work efficiently. Worker i is avail-
able si hours. The maximum number of jobs assigned to one worker is si
hours. Workers have different skills, the set Ai indicates which tasks worker
i is qualified for. The maximum number of workers that can be assigned in
the schedule period is t or at most t workers can be selected from the set I
of available workers, and the assigned workers must be able to complete all
jobs. The goal is to find a valid solution that has a minimum assignment
cost. In this work, an algorithm based on the ACO is proposed to solve the
Workforce planning problem [46, 106, 63, 108].

In the considered case, the task is represented by a three-dimensional
graph, where vertex (i, j, z) means that worker i is hired to work on task
j for time z. At the beginning of each iteration, each ant starts building
a solution from a random vertex of the task graph. Three random num-
bers are generated for each of the ants. The first random number is in the
interval [0, . . . , n] and corresponds to the worker being hired. The second
random number is in the interval [0, . . . ,m] and corresponds to the job on
which this worker should work. The third random number is in the interval
[hmin, . . . ,min{dj, si}] and corresponds to the number of hours worker i is
employed to work on job j . Heuristic information is calculated using the
following formula:

ηijl =

{
l/cij l = zij
0 otherwise

(8)

With this heuristic information, we encourage hiring the cheaper workers
for as long as possible. The set of test examples includes ten structured and
ten unstructured tasks. A task is structured when the time to complete the
task is proportional to the minimum time that must be worked on that task.
A comparison of the proposed ACO algorithm with algorithms proposed by
other authors is made and it is shown that the ACO algorithm outperforms
others for this task.

The task has strict constraints and some of the ants fail to find a valid
solution. A local search procedure is proposed to improve the algorithm.
It is applied to the invalid solutions found in the iteration. The procedure
is one-time, regardless of whether the solution after a local search is valid
or not. In this way, the execution time of the algorithm does not increase
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significantly. A decrease in the number of invalid solutions found by the ants
is observed even after the first iteration. In this way, the time (number of
iterations) to find the best solution decreases. Three variants of the local
search procedure are proposed: removing 25% of the assigned workers and
adding new ones using the ant method. Remove half the assigned workers
and add new ones by applying the ant method and delete the invalid solution
and build a new solution in its place. The procedure in which half of the
appointed workers are removed is the most effective. Removed workers are
randomly selected.

The influence of the parameters of the ACO algorithm on the quality of
the solutions found has been studied. Various numbers of ants (5, 10, 20 and
40) were used, and it was found that the best results were obtained when the
number of ants was 5.

An intercriteria analysis was applied to gain some additional knowledge
about the considered four variants of the ACO algorithm. It shows that at
5 and 10 ants we have a similar behavior of the algorithm as at 20 and 40.
On the other hand, ICrA confirms the conclusion that for this task the best
performance of the algorithm, i.e. using less computing resources, is with the
use of five ants.

7 Passenger Flow Modeling

Rail transport is the oldest form of public transport still in use today. Nowa-
days, bus transport competes with rail, especially where there are highways.
Analytical models are therefore very important for further planning and
decision-making in transport development. The results of this chapter are
published in [42, 58, 64].

In our case, there is a destination from stop A to stop B. There are several
types of vehicles, a variety of trains and buses that travel between stop A and
stop B. Each vehicle has a plurality of intermediate stops at which it stops
between the two final stops. Some of the intermediate stops may be shared
by some of the vehicles. Let the set of all stops be S = {s1, . . . , sn} and at
each stop si, i = 1, . . . , n−1, n is the number of stops, in each time slot, there
is a number of passengers who want to travel to station sj, j = i+ 1, . . . , n.
Each vehicle may have a different speed and cost to travel from stop si to
stop sj. We have defined two objective functions, the sum of the prices of all
tickets sold and the total travel time of the passengers. If any of the vehicles
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does not stop at any of the stops, then we set the travel time and price to
that stop to be 0.

When applying the ACO to the passenger flow modeling task, the time
is divided into time slots/slots ( N × 24 time slots corresponding to 60/N
minutes. The ants start building the solution from the first stop. They
choose randomly how many passengers will board each of the vehicles The
upper limit of passengers that can board the vehicle is the minimum of the
difference between the capacity of the vehicle and the passengers already in
it and the number of passengers who want to ride If there is only one vehicle
at a given stop at a given time, then as many passengers as possible board
it.

The developed algorithm is first applied to a small example and then to a
real example. The initial stop is Sofia, the capital of Bulgaria, and the final
stop is Varna, the maritime capital of Bulgaria. This is one of the longest
railway routes in Bulgaria, with a length of about 450 kilometers. There are 5
trains and 23 buses per day on this route. They run at different speeds, fares
for getting from one stop to another are different, and have differences in
intermediate stops. We do not have exact data on the number of passengers
traveling from one stop to another on the Sofia-Varna line. For this reason,
we have made an estimate of the number of passengers, taking into account
the number of inhabitants of the settlements where the vehicles stop.

8 Conclusion

Combinatorial optimization is extremely difficult from a computational point
of view. Usually, the application of a given method for solving such type of
tasks depends on the task itself and may be different for different variants
of the same task. The focus of this dissertation is on the application of
the ant method. This method is among the best for solving combinatorial
optimization problems. The ant method differs from other methods in that
it is a constructive method and outperforms most of the other methods in
a large number of applications. In the present dissertation, the results of
the author, in the field of the ant method and its applications, achieved
in the last 7 years are collected. At the beginning, a description of the
method and its varieties is given. Individual chapters present the application
of the ant method to various tasks. These are the backpack task, GPS
network inspection task, wireless sensor network construction task, workforce
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recruitment task, passenger flow modeling. The influence of the parameters
of the developed algorithms was investigated. An intercriteria analysis was
applied. A program implementation of the developed algorithms was made.
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8.3 Contributions

The contributions in this dissertation can be divided into scientific and ap-
plied science. Scientific contributions concern the development of algorithms
based on the ant method. The scientific and applied contributions refer to
the program implementation of the developed algorithms.

The scientific contributions are:

• A hybrid algorithm for solving the knapsack problem is developed as
a combination between applying the ant method and a suitable lo-
cal search procedure. The use of two variants of intuitionistic fuzzy
pheromone is introduced. With the help of intercriteria analysis, a
comparison was made between the variants of the algorithms used, as
well as the use of starting strategies.

• A GPS network inspection algorithm based on the ant method has
been developed. Added changes to the search environment. The cor-
rectness of the algorithm and the similarity between the networks were
investigated using intercriteria analysis.

• Algorithms have been developed to solve the task of building a wireless
sensor network based on the ant method. A sensitivity analysis was
performed against the number of ants used. The similarities and dif-
ferences of the individual algorithms were analyzed using intercriteria
analysis.

• An algorithm has been developed for solving the labor recruitment task
based on the ant method. Several variants of local search procedures
have been developed in order to improve the performance of the algo-
rithm. An analysis of the sensitivity of the algorithm to its parameters
was made. An intercriteria analysis was applied.

• An algorithm has been developed for modeling passenger flow in the
presence of various types of transport in one direction. The algorithm
is based on the ant method.

The scientific and applied contributions are:
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• A software implementation of the hybrid algorithm for solving MKP
was made;

• A software implementation of the GPS surveying network algorithm
was made with changes to the search environment;

• A software implementation of the algorithm for solving the work force
planning problem was made;

• A software implementation of a passenger flow modeling algorithm was
made.

The results of this dissertation can be used in various fields of science,
industry and practice. The developed algorithms and their program imple-
mentation refer to practical tasks and can be implemented in various branches
of the economy.
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